1
|
Coquart P, El Haddad A, Koutsouras DA, Bolander J. Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies. BIOSENSORS 2025; 15:253. [PMID: 40277566 PMCID: PMC12025328 DOI: 10.3390/bios15040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic-electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies.
Collapse
Affiliation(s)
- Pauline Coquart
- Research Unit ‘Soft Matter and Biophysics’, Department ‘Physics and Astronomy’, KU Leuven, B-3000 Leuven, Belgium;
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
| | - Andrea El Haddad
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Research Unit ’Assiocated Division ESAT-INSYS (INSYS), Integrated Systems’, Department ‘Electrical Engineering (ESAT)’, KU Leuven, B-3000 Leuven, Belgium
| | - Dimitrios A. Koutsouras
- IMEC NL, 5656 AE Eindhoven, The Netherlands
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Johanna Bolander
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Berlin Institute of Health Center for Regenerative Therapied (BCRT), Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Stoppini L, Heuschkel MO, Loussert-Fonta C, Gomez Baisac L, Roux A. Versatile micro-electrode array to monitor human iPSC derived 3D neural tissues at air-liquid interface. Front Cell Neurosci 2024; 18:1389580. [PMID: 38784710 PMCID: PMC11112036 DOI: 10.3389/fncel.2024.1389580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Engineered 3D neural tissues made of neurons and glial cells derived from human induced pluripotent stem cells (hiPSC) are among the most promising tools in drug discovery and neurotoxicology. They represent a cheaper, faster, and more ethical alternative to in vivo animal testing that will likely close the gap between in vitro animal models and human clinical trials. Micro-Electrode Array (MEA) technology is known to provide an assessment of compound effects on neural 2D cell cultures and acute tissue preparations by real-time, non-invasive, and long-lasting electrophysiological monitoring of spontaneous and evoked neuronal activity. Nevertheless, the use of engineered 3D neural tissues in combination with MEA biochips still involves series of constraints, such as drastically limited diffusion of oxygen and nutrients within tissues mainly due to the lack of vascularization. Therefore, 3D neural tissues are extremely sensitive to experimental conditions and require an adequately designed interface that provides optimal tissue survival conditions. A well-suited technique to overcome this issue is the combination of the Air-Liquid Interface (ALI) tissue culture method with the MEA technology. We have developed a full 3D neural tissue culture process and a data acquisition system composed of high-end electronics and novel MEA biochips based on porous, flexible, thin-film membranes integrating recording electrodes, named as "Strip-MEA," to allow the maintenance of an ALI around the 3D neural tissues. The main motivation of the porous MEA biochips development was the possibility to monitor and to study the electrical activity of 3D neural tissues under different recording configurations, (i) the Strip-MEA can be placed below a tissue, (ii) or by taking advantage of the ALI, be directly placed on top of the tissue, or finally, (iii) it can be embedded into a larger neural tissue generated by the fusion of two (or more) tissues placed on both sides of the Strip-MEA allowing the recording from its inner part. This paper presents the recording and analyses of spontaneous activity from the three positioning configurations of the Strip-MEAs. Obtained results are discussed with the perspective of developing in vitro models of brain diseases and/or impairment of neural network functioning.
Collapse
Affiliation(s)
| | | | | | | | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| |
Collapse
|
5
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
6
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Seiti M, Giuri A, Corcione CE, Ferraris E. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213655. [PMID: 37866232 DOI: 10.1016/j.bioadv.2023.213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In the field of bioelectronics, the demand for biocompatible, stable, and electroactive materials for functional biological interfaces, sensors, and stimulators, is drastically increasing. Conductive polymers (CPs) are synthetic materials, which are gaining increasing interest mainly due to their outstanding electrical, chemical, mechanical, and optical properties. Since its discovery in the late 1980s, the CP Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) has become extremely attractive, being considered as one of the most capable organic electrode materials for several bioelectronic applications in the field of tissue engineering and regenerative medicine. Main examples refer to thin, flexible films, electrodes, hydrogels, scaffolds, and biosensors. Within this context, the authors contend that PEDOT:PSS properties should be customized to encompass: i) biocompatibility, ii) conductivity, iii) stability in wet environment, iv) adhesion to the substrate, and, when necessary, v) (bio-)degradability. However, consolidating all these properties into a single functional solution is not always straightforward. Therefore, the objective of this review paper is to present various methods for acquiring and improving PEDOT:PSS properties, with the primary focus on ensuring its biocompatibility, and simultaneously addressing the other functional features. The last section highlights a collection of designated studies, with a particular emphasis on PEDOT:PSS/carbon filler composites due to their exceptional characteristics.
Collapse
Affiliation(s)
- Miriam Seiti
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Antonella Giuri
- CNR-NANOTEC-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecotekne, via Monteroni, I-73100 Lecce, Italy
| | | | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
8
|
Ghazal M, Susloparova A, Lefebvre C, Daher Mansour M, Ghodhbane N, Melot A, Scholaert C, Guérin D, Janel S, Barois N, Colin M, Buée L, Yger P, Halliez S, Coffinier Y, Pecqueur S, Alibart F. Electropolymerization processing of side-chain engineered EDOT for high performance microelectrode arrays. Biosens Bioelectron 2023; 237:115538. [PMID: 37506488 DOI: 10.1016/j.bios.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophilic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophilicity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-the-art PEDOT microelectrodes and close to that of state-of-the-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with many-compound properties to easily gather them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.
Collapse
Affiliation(s)
- Mahdi Ghazal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Anna Susloparova
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Camille Lefebvre
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Michel Daher Mansour
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Najami Ghodhbane
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Alexis Melot
- Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| | - Corentin Scholaert
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - David Guérin
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France
| | - Sébastien Janel
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Nicolas Barois
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Pierre Yger
- Plasticity & SubjectivitY Team, Lille Neuroscience & Cognition Research Centre, University of Lille, INSERM U1172, Lille, France; Institut de La Vision, Sorbonne Université, INSERM, Centre National de La Recherche Scientifique, Paris, France
| | - Sophie Halliez
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Sébastien Pecqueur
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France.
| | - Fabien Alibart
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520) | Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, 59000, Lille, France; Laboratoire Nanotechnologies & Nanosystèmes (LN2, UMI 3463) | CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| |
Collapse
|
9
|
Loussert-Fonta C, Stoppini L, Neuenschwander Y, Righini O, Prim D, Schmidt C, Heuschkel MO, Gomez Baisac L, Jovic´ M, Pfeifer ME, Extermann J, Roux A. Opening the black box of traumatic brain injury: a holistic approach combining human 3D neural tissue and an in vitro traumatic brain injury induction device. Front Neurosci 2023; 17:1189615. [PMID: 37397462 PMCID: PMC10308006 DOI: 10.3389/fnins.2023.1189615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by a wide range of physical events and can induce an even larger spectrum of short- to long-term pathophysiologies. Neuroscientists have relied on animal models to understand the relationship between mechanical damages and functional alterations of neural cells. These in vivo and animal-based in vitro models represent important approaches to mimic traumas on whole brains or organized brain structures but are not fully representative of pathologies occurring after traumas on human brain parenchyma. To overcome these limitations and to establish a more accurate and comprehensive model of human TBI, we engineered an in vitro platform to induce injuries via the controlled projection of a small drop of liquid onto a 3D neural tissue engineered from human iPS cells. With this platform, biological mechanisms involved in neural cellular injury are recorded through electrophysiology measurements, quantification of biomarkers released, and two imaging methods [confocal laser scanning microscope (CLSM) and optical projection tomography (OPT)]. The results showed drastic changes in tissue electrophysiological activities and significant releases of glial and neuronal biomarkers. Tissue imaging allowed us to reconstruct the injured area spatially in 3D after staining it with specific nuclear dyes and to determine TBI resulting in cell death. In future experiments, we seek to monitor the effects of TBI-induced injuries over a prolonged time and at a higher temporal resolution to better understand the subtleties of the biomarker release kinetics and the cell recovery phases.
Collapse
Affiliation(s)
- Céline Loussert-Fonta
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Yoan Neuenschwander
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Ophélie Righini
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Denis Prim
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Cédric Schmidt
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Marc O. Heuschkel
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Loris Gomez Baisac
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Milica Jovic´
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Marc E. Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Jérôme Extermann
- Micro-Nanotechnology Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| |
Collapse
|
10
|
Ghazal M, Scholaert C, Dumortier C, Lefebvre C, Barois N, Janel S, Tarhan MC, Colin M, Buée L, Halliez S, Pecqueur S, Coffinier Y, Alibart F, Yger P. Precision of neuronal localization in 2D cell cultures by using high-performance electropolymerized microelectrode arrays correlated with optical imaging. Biomed Phys Eng Express 2023; 9. [PMID: 36745905 DOI: 10.1088/2057-1976/acb93e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.
Collapse
Affiliation(s)
- Mahdi Ghazal
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
| | - Corentin Scholaert
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
| | - Corentin Dumortier
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
| | - Camille Lefebvre
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mehmet Cagatay Tarhan
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
| | - Morvane Colin
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
| | - Luc Buée
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
| | - Sophie Halliez
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
| | - Sebastien Pecqueur
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
| | - Yannick Coffinier
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
| | - Fabien Alibart
- Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France
- Laboratoire Nanotechnologies & Nanosystèmes (LN2), CNRS, Université de Sherbrooke, J1X0A5, Sherbrooke, Canada
| | - Pierre Yger
- Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
11
|
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, Ghezzi D. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets. Biomaterials 2023; 293:121979. [PMID: 36586146 DOI: 10.1016/j.biomaterials.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Collapse
Affiliation(s)
- Eleonora Borda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Danashi Imani Medagoda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
12
|
Han IK, Song KI, Jung SM, Jo Y, Kwon J, Chung T, Yoo S, Jang J, Kim YT, Hwang DS, Kim YS. Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203431. [PMID: 35816086 DOI: 10.1002/adma.202203431] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
As a new class of materials, implantable flexible electrical conductors have recently been developed and applied to bioelectronics. An ideal electrical conductor requires high conductivity, tissue-like mechanical properties, low toxicity, reliable adhesion to biological tissues, and the ability to maintain its shape in wet physiological environments. Despite significant advances, electrical conductors that satisfy all these requirements are insufficient. Herein, a facile method for manufacturing a new conductive hydrogels through the simultaneous exfoliation of graphite and polymerization of zwitterionic monomers triggered by microwave irradiation is introduced. The mechanical properties of the obtained conductive hydrogel are similar to those of living tissue, which is ideal as a bionic adhesive for minimizing contact damage due to mechanical mismatches between hard electronics and soft tissues. Furthermore, it exhibits excellent adhesion performance, electrical conductivity, non-swelling, and high conformability in water. Excellent biocompatibility of the hydrogel is confirmed through a cytotoxicity test using C2C12 cells, a biocompatibility test on rat tissues, and their histological analysis. The hydrogel is then implanted into the sciatic nerve of a rat and neuromodulation is demonstrated through low-current electrical stimulation. This hydrogel demonstrates a tissue-like extraneuronal electrode, which possesses high conformability to improve the tissue-electronics interfaces, promising next-generation bioelectronics applications.
Collapse
Affiliation(s)
- Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kang-Il Song
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sang-Mun Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaesub Kwon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Surim Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Tae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
13
|
Perkucin I, Lau KSK, Chen T, Iwasa SN, Naguib HE, Morshead CM. Facile Fabrication of Injectable Alginate and Poly(3,4-ethylenedioxythiophene)-Based Soft Electrodes toward the Goal of Neuro-Regenerative Applications. Adv Healthc Mater 2022; 11:e2201164. [PMID: 36177684 DOI: 10.1002/adhm.202201164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/12/2022] [Indexed: 01/28/2023]
Abstract
Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electric field application by proliferating, differentiating, and undergoing rapid and directed cathodal migration. Harnessing NPC potential is a promising strategy to facilitate neural repair following injury or disease. The use of electric fields to activate NPCs is limited by current electrode designs which are typically made of conductive metals that are stiff and can lead to neuroinflammation following implantation, in part due to the mechanical mismatch between physiological conditions and material. Herein, the design of a novel, injectable biobased soft electrode with properties suitable for electrical stimulation in vivo is explored. The recent interest in using biologically derived polymers which are relatively abundant and afford economic feasibility have been built upon. Sodium alginate is utilized to form soft hydrogels, thereby addressing the issue of mechanical mismatch, and the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), to generate an innovative new material. It is demonstrated that the optimized alginate PEDOT blend matches the modulus of the brain and is suitable for injection and is not cytotoxic to neural cells. Furthermore, in vivo studies demonstrate minimal activation of inflammatory cells upon implantation in the brain compared to classically used platinum-based electrodes.
Collapse
Affiliation(s)
- Ivana Perkucin
- Department of Chemical Engineering & Applied Sciences, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Kylie S K Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Department of Materials Science Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada.,Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2C4, Canada.,Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, M5T 1P5, Canada
| |
Collapse
|
14
|
Huang WC, Hung CH, Lin YW, Zheng YC, Lei WL, Lu HE. Electrically Copolymerized Polydopamine Melanin/Poly(3,4-ethylenedioxythiophene) Applied for Bioactive Multimodal Neural Interfaces with Induced Pluripotent Stem Cell-Derived Neurons. ACS Biomater Sci Eng 2022; 8:4807-4818. [PMID: 36222713 DOI: 10.1021/acsbiomaterials.2c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimodal neural interfaces include combined functions of electrical neuromodulation and synchronic monitoring of neurochemical and physiological signals in one device. The remarkable biocompatibility and electrochemical performance of polystyrene sulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) have made it the most recommended conductive polymer neural electrode material. However, PEDOT:PSS formed by electrochemical deposition, called PEDOT/PSS, often need multiple doping to improve structural instability in moisture, resolve the difficulties of functionalization, and overcome the poor cellular affinity. In this work, inspired by the catechol-derived adhesion and semiconductive properties of polydopamine melanin (PDAM), we used electrochemical oxidation polymerization to develop PDAM-doped PEDOT (PEDOT/PDAM) as a bioactive multimodal neural interface that permits robust electrochemical performance, structural stability, analyte-trapping capacity, and neural stem cell affinity. The use of potentiodynamic scans resolved the problem of copolymerizing 3,4-ethylenedioxythiophene (EDOT) and dopamine (DA), enabling the formation of PEDOT/PDAM self-assembled nanodomains with an ideal doping state associated with remarkable current storage and charge transfer capacity. Owing to the richness of hydrogen bond donors/acceptors provided by the hydroxyl groups of PDAM, PEDOT/PDAM presented better electrochemical and mechanical stability than PEDOT/PSS. It has also enabled high sensitivity and selectivity in the electrochemical detection of DA. Different from PEDOT/PSS, which inhibited the survival of human induced pluripotent stem cell-derived neural progenitor cells, PEDOT/PDAM maintained cell proliferation and even promoted cell differentiation into neuronal networks. Finally, PEDOT/PDAM was modified on a commercialized microelectrode array system, which resulted in the reduction of impedance by more than one order of magnitude; this significantly improved the resolution and reduced the noise of neuronal signal recording. With these advantages, PEDOT/PDAM is anticipated to be an efficient bioactive multimodal neural electrode material with potential application to brain-machine interfaces.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ching-Heng Hung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yueh-Wen Lin
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Cheng Zheng
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Wan-Lou Lei
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
15
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
16
|
Pisciotta A, Lunghi A, Bertani G, Di Tinco R, Bertoni L, Orlandi G, Biscarini F, Bianchi M, Carnevale G. PEDOT: PSS promotes neurogenic commitment of neural crest-derived stem cells. Front Physiol 2022; 13:930804. [PMID: 36060701 PMCID: PMC9428488 DOI: 10.3389/fphys.2022.930804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT). In addition, we evaluated the immunomodulatory properties of hDPSCs on PEDOT:PSS by investigating the expression and maintenance of the Fas ligand (FasL). We found that both SC-PEDOT and ED-PEDOT thin films supported hDPSCs adhesion and proliferation; however, the number of cells on the ED-PEDOT after 1 week of culture was significantly higher than that on SC-PEDOT. To be noted, both PEDOT:PSS films did not affect the stemness phenotype of hDPSCs, as indicated by the maintenance of the neural crest markers Nestin and SOX10. Interestingly, neurogenic induction was clearly promoted on ED-PEDOT, as indicated by the strong expression of MAP-2 and β—Tubulin-III as well as evident cytoskeletal reorganisation and appreciable morphology shift towards a neuronal-like shape. In addition, strong FasL expression was detected on both undifferentiated or undergoing neurogenic commitment hDPSCs, suggesting that ED-PEDOT supports the expression and maintenance of FasL under both expansion and differentiation conditions.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Sezione di Fisiologia, Università di Ferrara, Ferrara, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Life Sciences, Università di Modena e Reggio Emilia, Modena, Italy
| | - Michele Bianchi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- *Correspondence: Michele Bianchi,
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
18
|
Lim C, Park C, Sunwoo SH, Kim YG, Lee S, Han SI, Kim D, Kim JH, Kim DH, Hyeon T. Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites. ACS NANO 2022; 16:10431-10442. [PMID: 35766461 DOI: 10.1021/acsnano.2c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble metal nanomaterials have been studied as conductive fillers for stretchable, conductive, and biocompatible nanocomposites. However, their performance as conductive filler materials is far from ideal because of their high percolation threshold and low intrinsic conductivity. Moreover, the difficulty in large-scale production is another critical hurdle in their practical applications. Here we report a method for the facile and scalable synthesis of whiskered gold nanosheets (W-AuNSs) for stretchable, conductive, and biocompatible nanocomposites and their application to stretchable bioelectrodes. W-AuNSs show a lower percolation threshold (1.56 vol %) than those of gold nanoparticles (5.02 vol %) and gold nanosheets (2.74 vol %), which enables the fabrication of W-AuNS-based stretchable nanocomposites with superior conductivity and high stretchability. Addition of platinum-coated W-AuNSs (W-AuNSs@Pt) to the prepared nanocomposite significantly reduces the impedance and improved charge storage capacity. Such enhanced performance of the stretchable nanocomposite enables us to fabricate stretchable bioelectrodes whose performance is demonstrated through animal experiments including electrophysiological recording and electrical stimulation in vivo.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang Univeristy, Ansan 15588, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
20
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [PMID: 35302129 DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Margherita Montanari
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Nicola Sangiorgi
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Emanuela Saracino
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Alessandra Sanson
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Valentina Benfenati
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Anna Tampieri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| |
Collapse
|
21
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
23
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
24
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic bioelectronics involves the connection of organic semiconductors with living organisms, organs, tissues, cells, membranes, proteins, and even small molecules. In recent years, this field has received great interest due to the development of all kinds of devices architectures, enabling the detection of several relevant biomarkers, the stimulation and sensing of cells and tissues, and the recording of electrophysiological signals, among others. In this review, we discuss recent functionalization approaches for PEDOT and PEDOT:PSS films with the aim of integrating biomolecules for the fabrication of bioelectronics platforms. As the choice of the strategy is determined by the conducting polymer synthesis method, initially PEDOT and PEDOT:PSS films preparation methods are presented. Later, a wide variety of PEDOT functionalization approaches are discussed, together with bioconjugation techniques to develop efficient organic-biological interfaces. Finally, and by making use of these approaches, the fabrication of different platforms towards organic bioelectronics devices is reviewed.
Collapse
|
26
|
Li H, Wu G, Weng Z, Sun H, Nistala R, Zhang Y. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens 2021; 6:2181-2190. [PMID: 34038108 DOI: 10.1021/acssensors.0c02330] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrolytes play a pivotal role in regulating cardiovascular functions, hydration, and muscle activation. The current standards for monitoring electrolytes involve periodic sampling of blood and measurements using laboratory techniques, which are often uncomfortable/inconvenient to the subjects and add considerable expense to the management of their underlying disease conditions. The wide range of electrolytes in skin interstitial fluids (ISFs) and their correlations with those in plasma create exciting opportunities for applications such as electrolyte and circadian metabolism monitoring. However, it has been challenging to monitor these electrolytes in the skin ISFs. In this study, we report a minimally invasive microneedle-based potentiometric sensing system for multiplexed and continuous monitoring of Na+ and K+ in the skin ISFs. The potentiometric sensing system consists of a miniaturized stainless-steel hollow microneedle to prevent sensor delamination and a set of modified microneedle electrodes for multiplex monitoring. We demonstrate the measurement of Na+ and K+ in artificial ISFs with a fast response time, excellent reversibility and repeatability, adequate selectivity, and negligible potential interferences upon the addition of a physiologically relevant concentration of metabolites, dietary biomarkers, and nutrients. In addition, the sensor maintains the sensitivity after multiple insertions into the chicken skin model. Furthermore, the measurements in artificial ISFs using calibrated sensors confirm the accurate measurements of physiological electrolytes in artificial ISFs. Finally, the skin-mimicking phantom gel and chicken skin model experiments demonstrate the sensor's potential for minimally invasive monitoring of electrolytes in skin ISFs. The developed sensor platform can be adapted for a wide range of other applications, including real-time monitoring of nutrients, metabolites, and proteins.
Collapse
Affiliation(s)
- Huijie Li
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Guangfu Wu
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhengyan Weng
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - He Sun
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, United States
| | - Yi Zhang
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
27
|
Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annu Rev Chem Biomol Eng 2021; 12:359-391. [PMID: 34097846 DOI: 10.1146/annurev-chembioeng-101420-024336] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ho Ha
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA;
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea;
| | - Nanshu Lu
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA; .,Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Department of Biomedical Engineering, and Texas Material Institute, The University of Texas at Austin, Texas 78712, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Gori M, Vadalà G, Giannitelli SM, Denaro V, Di Pino G. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Front Bioeng Biotechnol 2021; 9:659033. [PMID: 34113605 PMCID: PMC8185207 DOI: 10.3389/fbioe.2021.659033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neural-interfaced prostheses aim to restore sensorimotor limb functions in amputees. They rely on bidirectional neural interfaces, which represent the communication bridge between nervous system and neuroprosthetic device by controlling its movements and evoking sensory feedback. Compared to extraneural electrodes (i.e., epineural and perineural implants), intraneural electrodes, implanted within peripheral nerves, have higher selectivity and specificity of neural signal recording and nerve stimulation. However, being implanted in the nerve, their main limitation is represented by the significant inflammatory response that the body mounts around the probe, known as Foreign Body Reaction (FBR), which may hinder their rapid clinical translation. Furthermore, the mechanical mismatch between the consistency of the device and the surrounding neural tissue may contribute to exacerbate the inflammatory state. The FBR is a non-specific reaction of the host immune system to a foreign material. It is characterized by an early inflammatory phase eventually leading to the formation of a fibrotic capsule around intraneural interfaces, which increases the electrical impedance over time and reduces the chronic interface biocompatibility and functionality. Thus, the future in the reduction and control of the FBR relies on innovative biomedical strategies for the fabrication of next-generation neural interfaces, such as the development of more suitable designs of the device with smaller size, appropriate stiffness and novel conductive and biomimetic coatings for improving their long-term stability and performance. Here, we present and critically discuss the latest biomedical approaches from material chemistry and tissue engineering for controlling and mitigating the FBR in chronic neural implants.
Collapse
Affiliation(s)
- Manuele Gori
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sara Maria Giannitelli
- Laboratory of Tissue Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
29
|
Abstract
The recent advances in bio-integratable electronics are creating new opportunities for investigating and directing biologically significant processes, yet their performance to date is still limited by the inherent physiochemical and signaling mismatches at the heterogeneous interfaces. Hydrogels represent a unique category of materials to bridge the gap between biological and electronic systems because of their structural/functional similarity to biological tissues and design versatility to accommodate cross-system communication. In this review, we discuss the latest progress in the engineering of hydrogel interfaces for bioelectronics development that promotes (1) structural compatibility, where the mechanical and chemical properties of hydrogels can be modulated to achieve coherent, chronically stable biotic-abiotic junctions; and (2) interfacial signal transduction, where the charge and mass transport within the hydrogel mediators can be rationally programmed to condition/amplify the bioderived signals and enhance the electrical/electrochemical coupling. We will further discuss the application of functional hydrogels in complex physiological environments for bioelectronic integration across different scales/biological levels. These ongoing research efforts have the potential to blur the distinction between living systems and artificial electronics, and ultimately decode and regulate biological functioning for both fundamental inquiries and biomedical applications.
Collapse
Affiliation(s)
- Richard Vo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
30
|
Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021; 274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.
Collapse
Affiliation(s)
- Laura Ferlauto
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Adele Fanelli
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland.
| |
Collapse
|
31
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
32
|
Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021; 121:2109-2146. [DOI: 10.1021/acs.chemrev.0c00897] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunya Wang
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Promsuwan K, Meng L, Suklim P, Limbut W, Thavarungkul P, Kanatharana P, Mak WC. Bio-PEDOT: Modulating Carboxyl Moieties in Poly(3,4-ethylenedioxythiophene) for Enzyme-Coupled Bioelectronic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39841-39849. [PMID: 32805895 DOI: 10.1021/acsami.0c10270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Modulation of chemical functional groups on conducting polymers (CPs) provides an effective way to tailor the physicochemical properties and electrochemical performance of CPs, as well as serves as a functional interface for stable integration of CPs with biomolecules for organic bioelectronics (OBEs). Herein, we introduced a facile approach to modulate the carboxylate functional groups on the PEDOT interface through a systematic evaluation on the effect of a series of carboxylate-containing molecules as counterion dopant integrated into the PEDOT backbone, including acetate as monocarboxylate (mono-COO-), malate as dicarboxylate (di-COO-), citrate as tricarboxylate (tri-COO-), and poly(acrylamide-co-acrylate) as polycarboxylate (poly-COO-) bearing different amounts of molecular carboxylate moieties to create tunable PEDOT:COO- interfaces with improved polymerization efficiency. We demonstrated the modulation of PEDOT:COO- interfaces with various granulated morphologies from 0.33 to 0.11 μm, tunable surface carboxylate densities from 0.56 to 3.6 μM cm-2, and with improved electrochemical kinetics and cycling stability. We further demonstrated the effective and stable coupling of an enzyme model lactate dehydrogenase (LDH) with the optimized PEDOT:poly-COO- interface via simple covalent chemistry to develop biofunctionalized PEDOT (Bio-PEDOT) as a lactate biosensor. The biosensing mechanism is driven by a sequential bioelectrochemical signal transduction between the bio-organic LDH and organic PEDOT toward the concept of all-polymer-based OBEs with a high sensitivity of 8.38 μA mM-1 cm-2 and good reproducibility. Moreover, we utilized the LDH-PEDOT biosensor for the detection of lactate in spiked serum samples with a high recovery value of 91-96% and relatively small RSD in the range of 2.1-3.1%. Our findings provide a new insight into the design and optimization of functional CPs, leading to the development of new OBEs for sensing, biosensing, bioengineering, and biofuel cell applications.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Phachara Suklim
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
34
|
Shur M, Fallegger F, Pirondini E, Roux A, Bichat A, Barraud Q, Courtine G, Lacour SP. Soft Printable Electrode Coating for Neural Interfaces. ACS APPLIED BIO MATERIALS 2020; 3:4388-4397. [DOI: 10.1021/acsabm.0c00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Shur
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva 1211, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA - HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva 1202, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), Basel 4055, Switzerland
| | - Arnaud Bichat
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1002, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Stéphanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| |
Collapse
|
35
|
Affiliation(s)
- Marta J.I. Airaghi Leccardi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| |
Collapse
|
36
|
Colachis M, Shqau K, Colachis S, Annetta N, Heintz AM. Soft mixed ionic–electronic conductive electrodes for noninvasive stimulation. J Appl Polym Sci 2020. [DOI: 10.1002/app.48998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew Colachis
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| | - Krenar Shqau
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| | - Samuel Colachis
- Department of Medical Devices and Health AnalyticsBattelle Memorial Institute Columbus Ohio
| | - Nicholas Annetta
- Department of Medical Devices and Health AnalyticsBattelle Memorial Institute Columbus Ohio
| | - Amy M. Heintz
- Department of Advanced Materials and MicrofabricationBattelle Memorial Institute Columbus Ohio
| |
Collapse
|
37
|
Chenais NAL, Leccardi MJIA, Ghezzi D. Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. J Neural Eng 2019; 16:066009. [DOI: 10.1088/1741-2552/ab3913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Kleber C, Lienkamp K, Rühe J, Asplund M. Wafer-Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. ACTA ACUST UNITED AC 2019; 3:e1900072. [PMID: 32648703 DOI: 10.1002/adbi.201900072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Indexed: 11/06/2022]
Abstract
Future-oriented directions in neural interface technologies point towards the development of multimodal devices that combine different functionalities such as neural stimulation, neurotransmitter sensing, and drug release within one platform. Conducting polymer hydrogels (CPHs) are suggested as materials for the coating of standard metal electrodes to add functionalities such as local delivery of therapeutic drugs. However, to make such coatings truly useful for multimodal devices, it is necessary to develop process technologies that allow the micropatterning of CPHs onto selected electrode sites. In this study, a wafer-scale fabrication procedure is presented, which is used to coat the CPH, based on the hydrogel P(DMAA-co-5%MABP-co-2,5%SSNa) and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), onto flexible neural probes. The resulting material has favorable properties for the generation of recording electrodes and in addition offers a convenient platform for biofunctionalization. By controlling the PEDOT content within the hydrogel matrix, charge injection limits of up to 3.7 mC cm- 2 are obtained. Long-term stability is tested by immersing coated samples in phosphate-buffered saline solution at 37 °C for 1 year. Non-cytotoxicity of the coatings is confirmed with a direct cell culture test using a fluorescent neuroblastoma cell line.
Collapse
Affiliation(s)
- Carolin Kleber
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
39
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Abstract
The widespread use of conducting polymers, especially poly(3,4-ethylene dioxythiophene) (PEDOT), within the space of bioelectronics has enabled improvements, both in terms of electrochemistry and functional versatility, of conventional metallic electrodes. This short review aims to provide an overview of how PEDOT coatings have contributed to functionalizing existing bioelectronics, the challenges which meet conducting polymer coatings from a regulatory and stability point of view and the possibilities to bring PEDOT-based coatings into large-scale clinical applications. Finally, their potential use for enabling new technologies for the field of bioelectronics as biodegradable, stretchable and slow-stimulation materials will be discussed.
Collapse
Affiliation(s)
- Christian Boehler
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Zaid Aqrawe
- Department of Anatomy & Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Maria Asplund
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Aplin FP, Fridman GY. Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy. Front Neurosci 2019; 13:379. [PMID: 31057361 PMCID: PMC6482222 DOI: 10.3389/fnins.2019.00379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Implantable neuroprostheses such as cochlear implants, deep brain stimulators, spinal cord stimulators, and retinal implants use charge-balanced alternating current (AC) pulses to recover delivered charge and thus mitigate toxicity from electrochemical reactions occurring at the metal-tissue interface. At low pulse rates, these short duration pulses have the effect of evoking spikes in neural tissue in a phase-locked fashion. When the therapeutic goal is to suppress neural activity, implants typically work indirectly by delivering excitation to populations of neurons that then inhibit the target neurons, or by delivering very high pulse rates that suffer from a number of undesirable side effects. Direct current (DC) neural modulation is an alternative methodology that can directly modulate extracellular membrane potential. This neuromodulation paradigm can excite or inhibit neurons in a graded fashion while maintaining their stochastic firing patterns. DC can also sensitize or desensitize neurons to input. When applied to a population of neurons, DC can modulate synaptic connectivity. Because DC delivered to metal electrodes inherently violates safe charge injection criteria, its use has not been explored for practical applicability of DC-based neural implants. Recently, several new technologies and strategies have been proposed that address this safety criteria and deliver ionic-based direct current (iDC). This, along with the increased understanding of the mechanisms behind the transcutaneous DC-based modulation of neural targets, has caused a resurgence of interest in the interaction between iDC and neural tissue both in the central and the peripheral nervous system. In this review we assess the feasibility of in-vivo iDC delivery as a form of neural modulation. We present the current understanding of DC/neural interaction. We explore the different design methodologies and technologies that attempt to safely deliver iDC to neural tissue and assess the scope of application for direct current modulation as a form of neuroprosthetic treatment in disease. Finally, we examine the safety implications of long duration iDC delivery. We conclude that DC-based neural implants are a promising new modulation technology that could benefit from further chronic safety assessments and a better understanding of the basic biological and biophysical mechanisms that underpin DC-mediated neural modulation.
Collapse
Affiliation(s)
- Felix P Aplin
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gene Y Fridman
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
42
|
Abstract
OBJECTIVE In many applications, multielectrode arrays employed as neural implants require a high density and a high number of electrodes to precisely record and stimulate the activity of the nervous system while preserving the overall size of the array. APPROACH Here we present a multilayer and three-dimensional (3D) electrode array, together with its manufacturing method, enabling a higher electrode density and a more efficient signal transduction with the biological tissue. MAIN RESULTS The 3D structure of the electrode array allows for a multilayer placement of the interconnects within a flexible substrate, it narrows the probe size per the same number of electrodes, and it maintains the electrode contacts at the same level within the tissue. In addition, it augments the electrode surface area, leading to a lower electrochemical impedance and a higher charge storage capacity. To characterize the recordings capabilities of the multilayer 3D electrodes, we measured visually evoked cortical potentials in mice and analysed the evolution of the peak prominences and latencies according to different light intensities and recording depths within the brain. The resulting signal-to-noise ratio is improved compared to flat electrodes. Finally, the 3D electrodes have been imaged inside a clarified mouse brain using a light-sheet microscope to visualize their integrity within the tissue. SIGNIFICANCE The multilayer 3D electrodes have proved to be a valid technology to ensure tissue proximity and higher recording/stimulating efficiencies while enabling higher electrode density and reducing the probe size.
Collapse
Affiliation(s)
- Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|