1
|
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, Nuh AM, Jiang W, Farooqi HMU, Bai Q. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:84-103. [PMID: 38235991 DOI: 10.1080/21691401.2024.2304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Tamreez Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mansoor Husn
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ahmad Khan
- Department of Psychology, University of Karachi, Karachi, Pakistan
| | - Abdifatah Mohamed Nuh
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Qain Bai
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Atkinson RAK, Collins JM, Sreedharan J, King AE, Fernandez-Martos CM. Alterations to metabolic hormones in amyotrophic lateral sclerosis and frontotemporal dementia postmortem human tissue. J Neuropathol Exp Neurol 2024; 83:907-916. [PMID: 38917432 PMCID: PMC11487092 DOI: 10.1093/jnen/nlae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| |
Collapse
|
3
|
Ladwig KH, Marten-Mittag B, Olliges E, Johar H, Atasoy S, Holdenrieder S, Albus C, Deter HC, DeZwaan M, Fritzsche K, Jünger J, Petrowski K, Michal M, Söllner W, Weber CS, Herrmann-Lingen C, Ronel J. Recurrent depression predicts high leptin concentrations in patients with coronary artery disease over an 18-months follow-up period: Findings from the prospective multicenter randomized controlled SPIRR-CAD Trial. J Affect Disord 2024; 369:174-181. [PMID: 39321975 DOI: 10.1016/j.jad.2024.09.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Leptin, an adipokine suspected to play a role in coronary artery disease (CAD), may also be associated with deteriorated mental health. We investigated the prospective impact of recurrent depressed mood (RDM) on heightened plasma leptin levels in CAD patients. METHODS Derived from the randomized SPIRR-CAD trial, plasma leptin were measured by the Human Leptin DuoSet ELISA at baseline in 539 patients (including 115 (21.3 %) women and 424 (78.7 %) men) and in 373 participants after 18-months follow up (T3). RDM was based on the clinical course from baseline to follow-up assessed by the Hamilton Depression Rating Scale (HAMD). Multivariate binary logistic regression models identified predictors for heightened leptin at T3. RESULTS At baseline, highest leptin level (3rd tertile) was associated with type 2 diabetes (p = 0.009), heart failure symptoms (NYHA III) (p < 0.001), female sex and BMI ≥30 (p < 0.001) but not with age and depression. At study endpoint (T3), RDM was associated with a substantially increased risk of experiencing the highest plasma leptin level (OR 2.92 (95 % CI 1.27-6.75)) followed by increased NT-proBNP (the most prominent indicator of CHF) with an OR of 2.73 (1.22-6.11) - both after adjustment for concurrent factors including weight gain (diff BMI T3-T1) over the study period - the latter accounting for an OR of 1.41 (1.17-1.70). LIMITATIONS Findings are limited to people of Caucasian ancestry which prevents being generalized to other ethnicities. Although relying upon a prospective design, reverse causality cannot be excluded but is unlikely. CONCLUSIONS In CAD patients, RDM is a significant predictor of heightened leptin -a finding opening room for a new pathway of the psychobiological underpinning of depression on CAD risk.
Collapse
Affiliation(s)
- Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Munich Heart Alliance, Munich, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Birgitt Marten-Mittag
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elisabeth Olliges
- Department of Psychosomatic Medicine and Psychotherapy, Klinik Barmelweid AG, Barmelweid, Switzerland
| | - Hamima Johar
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany; Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Seryan Atasoy
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Deutsches Herzzentrum Munich, Technische Universität München, Munich, Germany
| | - Christian Albus
- Department of Psychosomatics and Psychotherapy, University of Cologne, Cologne, Germany
| | - Hans Christian Deter
- Department of Psychosomatics and Psychotherapy, Charité Universitaetsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Martina DeZwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kurt Fritzsche
- Department of Psychosomatic Medicine and Psychotherapy, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Jana Jünger
- University Heidelberg, Medical Faculty, MME Study Programme, Heidelberg, Germany; Institut für Kommunikations- und Prüfungsforschung gGmbH, Heidelberg, Germany
| | - Katja Petrowski
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wolfgang Söllner
- Department of Psychosomatic Medicine and Psychotherapy, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Cora S Weber
- Department of Psychosomatics and Psychotherapy, Charité Universitaetsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Goettingen Medical Center, Georg-August University, Göttingen, Germany; Medical Center and German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Joram Ronel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Psychosomatic Medicine and Psychotherapy, Klinik Barmelweid AG, Barmelweid, Switzerland
| |
Collapse
|
4
|
Fernandes C, Forny-Germano L, Andrade MM, Lyra E Silva NM, Ramos-Lobo AM, Meireles F, Tovar-Moll F, Houzel JC, Donato J, De Felice FG. Leptin receptor reactivation restores brain function in early-life Lepr-deficient mice. Brain 2024; 147:2706-2717. [PMID: 38650574 PMCID: PMC11292908 DOI: 10.1093/brain/awae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.
Collapse
Affiliation(s)
- Caroline Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayara M Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda Meireles
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Jean Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
5
|
Al Shamsi HSS, Rainey-Smith SR, Gardener SL, Sohrabi HR, Canovas R, Martins RN, Fernando WMADB. The Relationship between Diet, Depression, and Alzheimer's Disease: A Narrative Review. Mol Nutr Food Res 2024; 68:e2300419. [PMID: 38973221 DOI: 10.1002/mnfr.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/02/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review evaluates the role of diet in the relationship between depression and Alzheimer's disease (AD). RECENT FINDINGS AD and depression are often comorbid, and depression appears to independently increase the future risk of AD. Evidence suggests diet influences the risk of both conditions directly and indirectly. Diet impacts neurochemical and biological processes that may affect the development and progression of depression and cognitive dysfunction. The dietary components offering the greatest protection against depression and AD are yet to be determined. Current evidence highlights the importance of polyphenolic compounds, folate, B vitamins, and polyunsaturated fatty acids, along with adherence to dietary patterns like the Mediterranean diet, which includes multiple beneficial dietary factors. SUMMARY The investigation of dietary factors in the prevention of depression and AD is a comparatively young field of research. Comprehensive highly characterised longitudinal datasets and advanced analytical approaches are required to further examine the complex relationship between diet, depression, and AD. There is a critical need for more research in this area to develop effective preventive strategies aimed at maintaining mental and physical health with advancing age.
Collapse
Affiliation(s)
- Hilal Salim Said Al Shamsi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Rodrigo Canovas
- Health & Biosecurity, The Commonwealth Scientific and Industrial Research Organisation, Herston, Queensland, 4029, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Warnakulasuriya Mary Ann Dipika Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
6
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Heinen D, Heissel A, Heinzel S, Fydrich T, Ströhle A, Rapp MA, Vogel H. Effect of acute and long-term exercise on leptin levels in depressed outpatients. BMC Public Health 2023; 23:2509. [PMID: 38098007 PMCID: PMC10722655 DOI: 10.1186/s12889-023-17362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Depression is a leading cause of disability worldwide and a significant contributor to the global burden of disease. Altered leptin levels are known to be associated with depressive symptoms, however discrepancies in the results of increased or decreased levels exist. Due to various limitations associated with commonly used antidepressant drugs, alternatives such as exercise therapy are gaining more importance. Therefore, the current study investigates whether depressed patients have higher leptin levels compared to healthy controls and if exercise is efficient to reduce these levels. METHODS Leptin levels of 105 participants with major depressive disorder (MDD; 45.7% female, age mean ± SEM: 39.1 ± 1.0) and 34 healthy controls (HC; 61.8% female, age mean ± SEM: 36.0 ± 2.0) were measured before and after a bicycle ergometer test. Additionally, the MDD group was separated into three groups: two endurance exercise intervention groups (EX) differing in their intensities, and a waiting list control group (WL). Leptin levels were measured pre and post a 12-week exercise intervention or the waiting period. RESULTS Baseline data showed no significant differences in leptin levels between the MDD and HC groups. As expected, correlation analyses displayed significant relations between leptin levels and body weight (HC: r = 0.474, p = 0.005; MDD: r = 0.198, p = 0.043) and even more with body fat content (HC: r = 0.755, p < 0.001; MDD: r = 0.675, p < 0.001). The acute effect of the bicycle ergometer test and the 12-week training intervention showed no significant changes in circulating leptin levels. CONCLUSION Leptin levels were not altered in patients with major depression compared to healthy controls and exercise, both the acute response and after 12 weeks of endurance training, had no effect on the change in leptin levels. TRIAL REGISTRATION The study was registered at the German register for clinical studies (DRKS) and the International Clinical Trials Registry Platform of the World Health Organization https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00008869 on 28/07/2015.
Collapse
Affiliation(s)
- Darlene Heinen
- Social- and Preventive Medicine, Department of Exercise and Health Sciences, University of Potsdam, Potsdam, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Andreas Heissel
- Social- and Preventive Medicine, Department of Sports and Health Sciences, Intra-Faculty Unit Cognitive Sciences, Faculty of Human Science, and Faculty of Health Sciences Brandenburg, Research Area Services Research and E-Health, University of Potsdam, Potsdam, Germany
- Sport-Gesundheitspark Berlin E.V./Zentrum Für Sportmedizin, Berlin, Germany
| | - Stephan Heinzel
- Clinical Psychology and Psychotherapy, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, Department of Educational Sciences and Psychology, TU Dortmund University, Dortmund, Deutschland
| | - Thomas Fydrich
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ströhle
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Michael A Rapp
- Social- and Preventive Medicine, Department of Sports and Health Sciences, Intra-Faculty Unit Cognitive Sciences, Faculty of Human Science, and Faculty of Health Sciences Brandenburg, Research Area Services Research and E-Health, University of Potsdam, Potsdam, Germany
| | - Heike Vogel
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany.
- German Center for Diabetes Research (DZD), Munich-Neuherberg, 85764, München, Germany.
| |
Collapse
|
8
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023:1-22. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Burrows K, McNaughton BA, Figueroa-Hall LK, Spechler PA, Kuplicki R, Victor TA, Aupperle R, Khalsa SS, Savitz JB, Teague TK, Paulus MP, Stewart JL. Elevated serum leptin is associated with attenuated reward anticipation in major depressive disorder independent of peripheral C-reactive protein levels. Sci Rep 2023; 13:11313. [PMID: 37443383 PMCID: PMC10344903 DOI: 10.1038/s41598-023-38410-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Major depressive disorder (MDD) is associated with immunologic and metabolic alterations linked to central processing dysfunctions, including attenuated reward processing. This study investigated the associations between inflammation, metabolic hormones (leptin, insulin, adiponectin), and reward-related brain processing in MDD patients with high (MDD-High) and low (MDD-Low) C-reactive protein (CRP) levels compared to healthy comparison subjects (HC). Participants completed a blood draw and a monetary incentive delay task during functional magnetic resonance imaging. Although groups did not differ in insulin or adiponectin concentrations, both MDD-High (Wilcoxon p = 0.004, d = 0.65) and MDD-Low (Wilcoxon p = 0.046, d = 0.53) showed higher leptin concentrations than HC but did not differ from each other. Across MDD participants, higher leptin levels were associated with lower brain activation during reward anticipation in the left insula (r = - 0.30, p = 0.004) and left dorsolateral putamen (r = -- 0.24, p = 0.025). In contrast, within HC, higher leptin concentrations were associated with higher activation during reward anticipation in the same regions (insula: r = 0.40, p = 0.007; putamen: r = 0.37, p = 0.014). Depression may be characterized by elevated pro-inflammatory signaling via leptin concentrations through alternate inflammatory pathways distinct to CRP.
Collapse
Affiliation(s)
- Kaiping Burrows
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA.
| | - Breanna A McNaughton
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Philip A Spechler
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
| | - Robin Aupperle
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Jonathan B Savitz
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
10
|
Gorska-Ciebiada M, Ciebiada M. Association between Serum Irisin and Leptin Levels and Risk of Depressive Symptoms in the Diabetic Elderly Population. J Clin Med 2023; 12:4283. [PMID: 37445318 DOI: 10.3390/jcm12134283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Adipokines are considered to be involved in the pathogenesis of diabetes and depression. The associations of serum levels of leptin and irisin with depressive symptoms were investigated in elderly patients with type 2 diabetes (T2DM). METHODS 189 elderly diabetics were assessed with the 30-item Geriatric Depression Scale (GDS-30), and 57 patients with depressive symptoms and 132 controls were selected. Blood biochemical parameters, including serum irisin and leptin, were measured. RESULTS Serum irisin levels were decreased and leptin concentrations were significantly higher in T2DM patients with depressive symptoms compared to controls. In all subjects, the irisin level was inversely correlated with the leptin level and the GDS-30 score, whereas the leptin level was highly correlated with BMI and the GDS-30 score. Higher levels of leptin and lower concentrations of irisin are, among other factors, variables indicative of predictive capacity for depressive symptoms in elderly patients with T2DM. CONCLUSIONS The results indicated that irisin and leptin levels may be used as diagnostic markers of depressive symptoms in diabetic, elderly patients and as potential therapeutic targets for the treatment. Further prospective and more extensive studies are needed to clarify the role of these adipokines in the common pathogenesis of depression and diabetes.
Collapse
Affiliation(s)
| | - Maciej Ciebiada
- Department of General and Oncological Pneumology, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
11
|
Milanowski J, Kozerawski K, Falęcka W, Dudek D, Lisewska B, Lisewski P, Nuszkiewicz J, Wesołowski R, Wojtasik J, Mila-Kierzenkowska C, Szewczyk-Golec K. Changes in the Secretion of Melatonin and Selected Adipokines during the Progression of Parkinson's Disease-Preliminary Studies. Metabolites 2023; 13:metabo13050668. [PMID: 37233709 DOI: 10.3390/metabo13050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting elderly people. Considering the gap in the literature on melatonin and adipokine levels in PD patients at various stages of the disease, we conducted a study to investigate the levels of selected parameters in PD patients at the disease's early (ES) and advanced (AS) stages. Melatonin, leptin, adiponectin, and resistin concentrations were measured in the blood serum of 20 PD patients without dyskinesia (ES), 24 PD patients with dyskinesia (AS), and 20 healthy volunteers as a control group (CG). The data were analyzed using ANOVA. Melatonin was significantly lower in ES (p < 0.05) and higher in AS patients (p < 0.05) compared to CG. The level of leptin was increased both in ES (p < 0.001) and AS (p < 0.001) versus CG, while resistin was increased only in patients with dyskinesia (p < 0.05). Higher melatonin (p < 0.001) and resistin (p < 0.05) and lower leptin (p < 0.05) levels were found in AS versus ES. The main findings of the study include the changes in inflammatory markers' levels during PD and a surprising increase in melatonin level in dyskinesia patients. Further research is necessary, which will be aimed at modulating the secretion of melatonin and adipokines as a treatment target for PD.
Collapse
Affiliation(s)
- Jan Milanowski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Kamil Kozerawski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Weronika Falęcka
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Dominik Dudek
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | | | | | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 St., 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| |
Collapse
|
12
|
Nota MH, Nicolas S, O’Leary OF, Nolan YM. Outrunning a bad diet: interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci Biobehav Rev 2023; 149:105147. [PMID: 36990371 DOI: 10.1016/j.neubiorev.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.
Collapse
|
13
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
14
|
Shih YL, Shih YH, Huang TC, Shih CC, Chen JY. Association between sedentary time and plasma leptin levels in middle-aged and older adult population in Taiwan: A community-based, cross-sectional study. Front Cardiovasc Med 2023; 9:1057497. [PMID: 36698957 PMCID: PMC9868819 DOI: 10.3389/fcvm.2022.1057497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background Association of sedentary behavior and plasma leptin levels is a popular topic in recent research. Aged populations often suffer from cardiometabolic diseases, and leptin is considered a novel marker for many cardiometabolic diseases. To further explore this topic, our research investigates the relationship between sedentary time and serum leptin levels in middle-aged and older populations. Methods A total of 396 middle-aged and older adult Taiwanese participants were included in this study. We recorded their self-reported sitting time as sedentary time. Participants were categorized into low leptin, medium leptin group, and high leptin groups according to the tertile of serum leptin level in the study. We also analyzed the anthropometric and cardiometabolic parameters between the three groups. Spearman's correlation coefficient was used to analyze the correlation between leptin level, sedentary time, and other cardiometabolic risk factors. The relationsip between leptin and sedentary time was also shown in a scatter plot. Multivariate linear regression was performed to determine the association between serum leptin levels and sedentary time after adjusting for age, sex, alcohol consumption, smoking, triglycerides, body mass index (BMI), fasting plasma glucose, systolic blood pressure, uric acid, creatinine, and alanine transaminase (ALT). Results In our study, data from a total of 396 participants were analyzed. The average age of participants was 64.75 (±8.75) years, and ~41.4% were male. A longer period of sedentary time was observed in the high leptin group. A positive correlation was found between serum leptin level and sedentary time in Spearman's correlation, in all BMI groups. Serum leptin levels were positively associated with sedentary time (B = 0.603, p = 0.016) in the multivariate linear regression after adjusting for age, sex, alcohol consumption, smoking, triglycerides, BMI, fasting plasma glucose, systolic blood pressure, uric acid, creatinine, and ALT. Conclusion Prolonged sedentary time can be an independent risk factor for high serum leptin levels, and high leptin levels can be a novel marker in future healthcare to screen the individual with prolonged sedentary time. Furthermore, based on our study, future research can further explore the relationship between leptin levels and health promotion, especially decreasing sedentary time in the middle-aged and elder population, which is vulnerable to cardiometabolic diseases.
Collapse
Affiliation(s)
- Yu-Lin Shih
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Hsiang Shih
- School of Medicine, Medical University of Lublin, Lublin, Poland
| | - Tzu-Cheng Huang
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chuan Shih
- General Administrative Department, United Safety Medical Group, New Taipei City, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Jau-Yuan Chen ✉
| |
Collapse
|
15
|
Tayanloo-Beik A, Nikkhah A, Alaei S, Goodarzi P, Rezaei-Tavirani M, Mafi AR, Larijani B, Shouroki FF, Arjmand B. Brown adipose tissue and alzheimer's disease. Metab Brain Dis 2023; 38:91-107. [PMID: 36322277 DOI: 10.1007/s11011-022-01097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-β (Aβ) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Choi W, Kim JW, Kang HJ, Kim HK, Kang HC, Lee JY, Kim SW, Stewart R, Kim JM. Interactive Effects of Serum Leptin Levels and Physical Comorbidity on the Pharmacotherapeutic Response of Depressive Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:662-674. [PMID: 36263641 PMCID: PMC9606432 DOI: 10.9758/cpn.2022.20.4.662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate individual and interactive associations of baseline serum leptin levels and physical comorbidity with short- and long-term treatment outcomes in outpatients with depressive disorders who received stepwise antidepressant treatment in a naturalistic prospective study design. METHODS Baseline serum leptin levels were measured, and the number of concurrent physical disorders ascertained from 1,094 patients. These patients received initial antidepressant monotherapy; then, for patients with an insufficient response or who experienced uncomfortable side effects, treatment was administered using alternative strategies every 3 weeks in the acute treatment phase (at 3, 6, 9, and 12 weeks) and every 3 months in the continuation treatment phase (at 6, 9, and 12 months). Then, 12-week and 12-month remission, defined as a Hamilton Depression Rating Scale score of ≤7, was estimated. RESULTS In multivariable logistic regression analyses, individual effects were found only between higher baseline serum leptin levels and 12-week non-remission. Significant interactive effects between higher leptin levels and fewer physical disorders (< 2 physical disorders) on 12-week non-remission were observed. However, neither individual nor interactive effects between leptin levels and physical comorbidity were associated with 12-month remission. CONCLUSION The combination of serum leptin level and number of physical disorders may be a useful predictor of short-term treatment responses in patients with depressive disorders receiving pharmacotherapy.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Robert Stewart
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK,South London and Maudsley NHS Foundation Trust, London, UK
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea,Address for correspondence: Jae-Min Kim Department of Psychiatry, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea, E-mail: , ORCID: https://orcid.org/0000-0001-7409-6306
| |
Collapse
|
17
|
Yin X, Wang M, Wang W, Chen T, Song G, Niu Y, Jiang Z, Gao Z, Wang Z. Identification of Potential miRNA-mRNA Regulatory Network Contributing to Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:2877728. [PMID: 36105301 PMCID: PMC9467752 DOI: 10.1155/2022/2877728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the mechanism underlying PD pathogenesis is not completely understood. Increasing evidence indicates that microRNAs (miRNAs) play a critical regulatory role in the pathogenesis of PD. This study aimed to explore the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from the miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when they were predicted by three or four online databases and overlapped with DEGs from GSE100054. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tools. The correlation between the screened genes and PD was evaluated with the online tool Comparative Toxicogenomics Database (CTD), and protein-protein interaction (PPI) networks were built by the STRING platform. We further investigated the expression of genes in the miRNA-mRNA regulatory network in blood samples collected from PD patients and healthy donors via qRT-PCR. We identified 1505 upregulated and 1302 downregulated DEGs, and 77 upregulated and 112 downregulated DEmis were preliminarily screened from the GEO database. Further functional enrichment analysis identified 10 PD-related hub genes, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A, and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway, and signaling by Leptin. A miRNA-mRNA regulatory network was then constructed with 10 hub genes, and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p, and miR-21-5p. Analysis of clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p and miR-30e-5p in PD patients as compared with healthy donors. Thus, the miRNA-mRNA regulatory network was initially constructed and has the potential to provide novel insights into the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Xi Yin
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wei Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ge Song
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yixuan Niu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ziying Jiang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhongbao Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhenfu Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
19
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
20
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
21
|
Cheng X, Jiang JM, Wang CY, Zou W, Zhang P, Tang XQ. Hydrogen sulfide prevents arecoline-induced neurotoxicity via promoting leptin/leptin receptor signaling pathway. Cell Biol Int 2022; 46:1355-1366. [PMID: 35819076 DOI: 10.1002/cbin.11850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 11/09/2022]
Abstract
Arecoline, a major alkaloid of the areca nut, has potential toxicity to the nervous system. Our previous study reveals that the neurotoxicity of arecoline involves in inhibited endogenous hydrogen sulfide (H2 S) generation. Therefore, the present study investigated whether exogenous H2 S protects against arecoline-induced neurotoxicity and further explore the underlying mechanisms focusing on leptin/leptin receptor signaling pathway. The cell viability was measured by CCK-8 kit. The apoptosis were detected by Hoechst 33258 and Annexin V/PI (propidium iodide) staining. The protein expressions were determined by Western blot analysis. Our results demonstrated that NaHS, an exogenous H2 S donor, significantly increases the cell viability, decreases apoptosis ratio, and reduces caspase-3 activity as well as Bax/Bcl-2 ratio in PC12 cells exposed to arecoline, indicating the protection of H2 S against arecoline-induced cytotoxicity and apoptosis. Also, NaHS attenuated arecoline-induced endoplasmic reticulum (ER) stress, as evidenced by the decreases in the expressions of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Cleaved caspase-12. Meanwhile, NaHS promoted leptin/leptin receptor signaling pathway in arecoline-exposed PC12 cells, as illustrated by upregulations of leptin and leptin receptor expressions. Furthermore, leptin tA, an antagonist of leptin receptor, obviously abolished the inhibitory effects of NaHS on arecoline-induced cytotoxicity, apoptosis, and ER stress in arecoline-exposed PC12 cells. Taken together, these results suggested that H2 S prevents arecoline-induced neurotoxicity via enhancing the leptin/leptin receptor signaling pathway.
Collapse
Affiliation(s)
- Xiang Cheng
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China.,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Jia-Mei Jiang
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China.,The First Affiliated Hospital, Institute of Neurology, University of South China, Hengyang, Hunan, P.R. China
| | - Chun-Yan Wang
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Wei Zou
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China.,The Affiliated Nanhua Hospital, Department of Neurology, University of South China, Hengyang, Hunan, P.R. China
| | - Ping Zhang
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China.,The Affiliated Nanhua Hospital, Department of Neurology, University of South China, Hengyang, Hunan, P.R. China
| | - Xiao-Qing Tang
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China.,The First Affiliated Hospital, Institute of Neurology, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
22
|
Li JY, Cui LY, Sun XH, Shen DC, Yang XZ, Liu Q, Liu MS. Alterations in metabolic biomarkers and their potential role in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2022; 9:1027-1038. [PMID: 35584112 PMCID: PMC9268864 DOI: 10.1002/acn3.51580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Metabolic dysfunction has been suggested to be involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). This study aimed to investigate the potential role of metabolic biomarkers in the progression of ALS and understand the possible metabolic mechanisms. Methods Fifty‐two patients with ALS and 24 normal controls were included, and blood samples were collected for analysis of metabolic biomarkers. Basal anthropometric measures, including body composition and clinical features, were measured in ALS patients. The disease progression rate was calculated using the revised ALS functional rating scale (ALSFRS‐R) during the 6‐month follow‐up. Results ALS patients had higher levels of adipokines (adiponectin, adipsin, resistin, and visfatin) and other metabolic biomarkers [C‐peptide, glucagon, glucagon‐like peptide 1 (GLP‐1), gastric inhibitory peptide, and plasminogen activator inhibitor type 1] than controls. Leptin levels in serum were positively correlated with body mass index, body fat, and visceral fat index (VFI). Adiponectin was positively correlated with the VFI and showed a positive correlation with the ALSFRS‐R and a negative correlation with baseline disease progression. Patients with lower body fat, VFI, and fat in limbs showed faster disease progression during follow‐ups. Lower leptin and adiponectin levels were correlated with faster disease progression. After adjusting for confounders, lower adiponectin levels and higher visfatin levels were independently correlated with faster disease progression. Interpretation The current study found altered levels of metabolic biomarkers in ALS patients, which may play a role in ALS pathogenesis. Adiponectin and visfatin represent potential biomarkers for prediction of disease progression in ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Al-Hussaniy HA, Alburghaif AH, Naji MA. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life 2022; 14:600-605. [PMID: 35027962 PMCID: PMC8742898 DOI: 10.25122/jml-2021-0153] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Leptin is a hormone derived from adipose tissue and the small intestine, mainly in enterocytes; it helps regulate the energy balance by suppressing hunger, resulting in decreased fat mass in adipocytes. Leptin has specific receptors in the ventromedial and arcuate nuclei and other parts of the hypothalamus and the feeding center in the ventral tegmental area. It also plays a role in regulatory aspects other than fat cells, such as obesity, which is linked to a loss of sensitivity of leptin receptors, resulting in an inability to produce satiety and an increase in food intake. Moreover, leptin plays a part in lactation, bone density, the immune system, diabetes treatments, and hypertriglyceridemia. The latest studies in leptin suggest that an analog of leptin may treat DM and hypertriglyceridemia. Further research should be conducted on the effectiveness of leptin on other related diseases.
Collapse
Affiliation(s)
| | | | - Meena Akeel Naji
- Department of Family Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
24
|
Ekraminasab S, Dolatshahi M, Sabahi M, Mardani M, Rashedi S. The Interactions between Adipose Tissue Secretions and Parkinson's disease; The Role of Leptin. Eur J Neurosci 2022; 55:873-891. [PMID: 34989050 DOI: 10.1111/ejn.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
Leptin is a hormone that regulates appetite by acting on receptors in the hypothalamus, where it modifies food intake to maintain equilibrium with the body energy resources. Leptin and its receptors are widely distributed in the central nervous system, suggesting that they may give neuronal survival signals. The potential of leptin to decrease/increase neuronal damage and neuronal plasticity in Parkinson's diseases (PD) is the subject of this review, which outlines our current knowledge of how leptin acts in the brain. Although leptin-mediated neuroprotective signaling results in neuronal death prevention, it can affect neuroinflammatory cascades and also neuronal plasticity which contribute to PD pathology. Other neuroprotective molecules, such as insulin and erythropoietin, share leptin-related signaling cascades, and therefore constitute a component of the neurotrophic effects mediated by endogenous hormones. With the evidence that leptin dysregulation causes increased neuronal vulnerability to damage in PD, using leptin as a target for therapeutic modification is an appealing and realistic option.
Collapse
Affiliation(s)
- Sara Ekraminasab
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahta Mardani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Rashedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Ferrer-Donato A, Contreras A, Fernandez P, Fernandez-Martos CM. The potential benefit of leptin therapy against amyotrophic lateral sclerosis (ALS). Brain Behav 2022; 12:e2465. [PMID: 34935299 PMCID: PMC8785645 DOI: 10.1002/brb3.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Targeting leptin could represent a rational strategy to treat amyotrophic lateral sclerosis (ALS), as previously clinical studies have shown its levels to be associated with a lower risk of ALS disease. However, very little is known about the potential influence of leptin in altering disease progression in ALS, as it has thus far been correlated with the protection exerted by increased fat mass stores. METHODS We studied the impact of leptin treatment beginning at 42-days of age (asymptomatic stage of disease) in the TDP-43 (TDP43A315T ) transgenic (Tg) ALS mouse model. RESULTS Our study shows that leptin treatment was associated with altered expression of adipokines and metabolic proteins in TDP43A315T mice. We also observed that weight loss decline was less prominent after leptin treatment in TDP43A315T mice relative to vehicle-treated animals. In TDP43A315T mice treated with leptin the disease duration lasted longer along with an improvement in motor performance relative to vehicle-treated animals. CONCLUSIONS Collectively, our results support leptin as a potential novel treatment approach for ALS.
Collapse
Affiliation(s)
- Agueda Ferrer-Donato
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ana Contreras
- Centro de Investigación en Salud (CEINSA), Universidad de Almería, Almería, Spain
| | - Paloma Fernandez
- Institute of Applied Molecular Medicine (IMMA), Faculty of Medicine, Universidad San Pablo CEU, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
26
|
Vieira DB, Antel J, Peters T, Miehle K, Stumvoll M, Hebebrand J, Schlögl H. Suggestive Evidence for an Antidepressant Effect of Metreleptin Treatment in Patients with Lipodystrophy. Obes Facts 2022; 15:685-693. [PMID: 36037795 PMCID: PMC9669995 DOI: 10.1159/000526357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Lipodystrophy (LD) syndromes are rare heterogeneous disorders characterized by reduction or absence of subcutaneous fat, low or nondetectable leptin concentrations in blood and impaired hunger/satiety regulation. Metreleptin treatment reverses metabolic complications and improves eating behavior in LD. Because depression in anorexia nervosa (AN), which is also characterized by hypoleptinemia, improves substantially upon treatment with metreleptin, we hypothesized that metreleptin substitution may be associated with an antidepressant effect in patients with LD, too. METHODS In this ancillary study, 10 adult patients with LD were treated with metreleptin. To assess depressive symptoms, the self-rating questionnaire Beck's Depression Inventory (BDI) was filled in at preestablished time points prior (T1) and after initiation of metreleptin (T2: 1 week; T3: 4 weeks; T4: 12 weeks) dosing. The differences between time points were tested with nonparametric Friedman's analysis of variance. Sensitivity analyses were performed upon exclusion of the BDI items addressing appetite and weight changes. RESULTS According to their BDI scores, 4 patients had mild depression and 2 had moderate depression at baseline. Friedman's test revealed significant differences in BDI scores between the four time points. Post hoc analyses revealed that the difference between T1 and T3 was significant upon Bonferroni correction (p = 0.034, effect size r = 0.88). The sensitivity analyses upon exclusion of the appetite and weight change items again revealed a significant Friedman's test and significant Bonferroni corrected differences in the revised BDI scores between T1 versus T2 (p = 0.002, r = 0.99) and T1 versus T3 (p = 0.007, r = 0.79). DISCUSSION/CONCLUSION Our study for the first time revealed suggestive evidence for an antidepressant effect of metreleptin in patients with LD. Metreleptin caused a rapid drop in depression scores within 1 week of treatment. A reduction of the depression score was also observed in 2 of the 3 LD patients whose BDI scores were in the normal range before start of the treatment. The reduction in total scores of BDI was still apparent after 3 months (T4) of dosing. This observation matches findings obtained in clinical case studies of AN patients, in whom depression scores also dropped during the first week of metreleptin treatment. It needs to be noted that by the nature of this observational study without a placebo group, nonspecific treatment expectation affecting mood cannot fully be ruled out.
Collapse
Affiliation(s)
- Diana Branco Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Child and Adolescent Psychiatry, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Konstanze Miehle
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Haiko Schlögl
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- **Haiko Schlögl,
| |
Collapse
|
27
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Abdelraouf ER, Rashad H, Kilany A, Zeidan HM, Elhadidy M, Hashish A, Nashaat NH, Metwally FM. Brain Derived Neurotrophic Factor and Serotonin Levels in Autistic Children: Do They Differ in Obesity? Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The risk of obesity among autism spectrum disorder (ASD) children is high which could be related to a disorder in their metabolism. Brain derived neurotrophic factor (BDNF) is involved in metabolic control, language behavior, and intellectual development. Serotonin has a role in satiety and energy expenditure.
AIM: Therefore, the aim of this study was to measure the serum levels of BDNF and serotonin in obese compared to non-obese ASD children. The influence of obesity on ASD severity, intellectual, and language development was also investigated.
METHODS: The study included 60 autistic children (Group I: 30 ASD children with obesity and Group II: 30 ASD children without obesity). The serum BDNF and serotonin levels were estimated by ELISA and by high-performance liquid chromatography.
RESULTS: All participants manifested delayed language development. Almost all of them had intellectual disability. The difference between groups regarding ASD severity, language, and intellectual development was non-significant. However, BDNF level in obese group was less than that in the other group while serotonin was higher in the obese group with significant statistical difference.
CONCLUSION: The difference between the groups regarding the levels of BDNF and serotonin, which are involved in the brain development, could be related to obesity. The influence of obesity on ASD severity, intellectual, and language development of ASD children was not distinctive in the participants. The influence of such markers on ASD severity and cognitive performance needs further investigations.
Collapse
|
29
|
Short Term Caloric Restriction and Biofeedback Enhance Psychological Wellbeing and Reduce Overweight in Healthy Women. J Pers Med 2021; 11:jpm11111096. [PMID: 34834448 PMCID: PMC8623687 DOI: 10.3390/jpm11111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity is highly prevalent, causing substantial cardiovascular and mental health morbidity. Women show increased risk for mental health disorders, that is multiplied in obesity and related to cellular and psychological stress that can be targeted by non-pharmacological interventions. A total of 43 women underwent two weeks of caloric restriction, half of which also received 7 h of individualized clinical psychological intervention including psychoeducation, mindfulness, and heart-rate-variability biofeedback. Effects on body mass index (BMI), fatty liver index (FLI), bioimpedance measures, serum parameters, perceived stress (PSS), burn-out susceptibility (burn out diagnostic inventory) and dimensional psychiatric symptom load (brief symptom inventory, BSI) were analyzed with linear mixed effects models. Caloric restriction led to a reduction in BMI, body fat and FLI, decreased serum concentrations of leptin, PSS score, BSI dimensions and global severity index (all p ≤ 0.0001, withstanding Bonferroni–Holm correction). Benefits of add-on biofeedback were observed for BMI reduction (p = 0.041). Caloric restriction was effective in ameliorating both psychological wellbeing and metabolic functions following a BMI reduction. Biofeedback boosted effects on BMI reduction and the combinative therapy may be protective against common progression to mental health and cardiovascular disorders in overweight women while comparing favorably to pharmacological interventions in terms of side-effects and acceptability.
Collapse
|
30
|
Peters T, Antel J, Naaresh R, Laabs BH, Föcker M, Albers N, Bühlmeier J, Hinney A, Libuda L, Hebebrand J. Suggestive Evidence for Causal Effect of Leptin Levels on Risk for Anorexia Nervosa: Results of a Mendelian Randomization Study. Front Genet 2021; 12:733606. [PMID: 34594363 PMCID: PMC8476861 DOI: 10.3389/fgene.2021.733606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic correlations suggest a coexisting genetic predisposition to both low leptin levels and risk for anorexia nervosa (AN). To investigate the causality and direction of these associations, we performed bidirectional two-sample Mendelian randomization (MR) analyses using data of the most recent genome-wide association study (GWAS) for AN and both a GWAS and an exome-wide-association-study (EWAS) for leptin levels. Most MR methods with genetic instruments from GWAS showed a causal effect of lower leptin levels on higher risk of AN (e.g. IVW b = -0.923, p = 1.5 × 10-4). Because most patients with AN are female, we additionally performed analyses using leptin GWAS data of females only. Again, there was a significant effect of leptin levels on the risk of AN (e.g. IVW b = -0.826, p = 1.1 × 10-04). MR with genetic instruments from EWAS showed no overall effect of leptin levels on the risk for AN. For the opposite direction, MR revealed no causal effect of AN on leptin levels. If our results are confirmed in extended GWAS data sets, a low endogenous leptin synthesis represents a risk factor for developing AN.
Collapse
Affiliation(s)
- Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roaa Naaresh
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn-Hergen Laabs
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Nicola Albers
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany.,Evangelisches Krankenhaus Düsseldorf, Children's Hospital, Düsseldorf, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
31
|
Jiang W, Zou W, Hu M, Tian Q, Xiao F, Li M, Zhang P, Chen YJ, Jiang JM. Hydrogen sulphide attenuates neuronal apoptosis of substantia nigra by re-establishing autophagic flux via promoting leptin signalling in a 6-hydroxydopamine rat model of Parkinson's disease. Clin Exp Pharmacol Physiol 2021; 49:122-133. [PMID: 34494284 DOI: 10.1111/1440-1681.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/30/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.
Collapse
Affiliation(s)
- Wu Jiang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Hu
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Tian
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong-Jun Chen
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
32
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
33
|
Platzer M, Fellendorf FT, Bengesser SA, Birner A, Dalkner N, Hamm C, Lenger M, Maget A, Pilz R, Queissner R, Reininghaus B, Reiter A, Mangge H, Zelzer S, Kapfhammer HP, Reininghaus EZ. The Relationship Between Food Craving, Appetite-Related Hormones and Clinical Parameters in Bipolar Disorder. Nutrients 2020; 13:nu13010076. [PMID: 33383670 DOI: 10.3390/nu13010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity and weight gain in bipolar disorder (BD) have multifactorial underlying causes such as medication side effects, atypical depressive symptomatology, genetic variants, and disturbances in the neuro-endocrinal system. Therefore, we aim to explore the associations between food craving (FC), clinical parameters, psychotropic medication, and appetite-related hormones. In this cross-sectional investigation, 139 individuals with BD and 93 healthy controls (HC) completed the food craving inventory (FCI). In addition, blood samples (including leptin and acylated ghrelin) were analyzed and sociodemographic and anthropometric data were collected. Individuals with BD reported higher frequencies of total FC as well as craving for fat and fast food than HC. Additionally, we found a significant negative correlation between FC and ghrelin levels in BD. Smokers with BD reported significantly more craving for high fat foods than non-smokers. Age was significantly associated with FC independent of group. Individuals with BD taking olanzapine and quetiapine reported higher frequencies of craving for sweet food, while patients currently taking lithium reported less total FC compared to those without lithium therapy. Likewise, patients currently taking valproate reported less total FC and less craving for sweets than those not taking valproate. FC appears to be of clinical relevance in individuals with BD. Contrary to previous data, this does not seem to be a female phenomenon only and might encompass more than the specific craving for carbohydrates. Although due to the cross sectional design, causality cannot be determined, the association between depressive symptomatology and fast food craving warrants further research.
Collapse
Affiliation(s)
- Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Susanne A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - René Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Reiter
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Mangge
- Research Unit on Lifestyle and Inflammation-Associated Risk Biomarkers, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Sieglinde Zelzer
- Research Unit on Lifestyle and Inflammation-Associated Risk Biomarkers, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
34
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
35
|
Labban RSM, Alfawaz H, Almnaizel AT, Hassan WM, Bhat RS, Moubayed NM, Bjørklund G, El-Ansary A. High-fat diet-induced obesity and impairment of brain neurotransmitter pool. Transl Neurosci 2020; 11:147-160. [PMID: 33312720 PMCID: PMC7705990 DOI: 10.1515/tnsci-2020-0099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
Obesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.
Collapse
Affiliation(s)
- Ranyah Shaker M Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Ministry of Health, General Administration of Nutrition, Riyadh, Saudi Arabia
| | - Hanan Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed T Almnaizel
- Prince Naif for Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Wail M Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Missouri, USA
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nadine Ms Moubayed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Endomba FT, Tankeu AT, Nkeck JR, Tochie JN. Leptin and psychiatric illnesses: does leptin play a role in antipsychotic-induced weight gain? Lipids Health Dis 2020; 19:22. [PMID: 32033608 PMCID: PMC7006414 DOI: 10.1186/s12944-020-01203-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is the most prevalent somatic adverse event occurring in patients treated by antipsychotics, especially atypical antipsychotics. It is of particular interest because of its repercussion on cardiovascular morbidity and mortality especially now that the use of second-generation antipsychotics has been extended to other mental health illnesses such as bipolar disorders and major depressive disorder. The mechanism underlying antipsychotics-induced weight gain is still poorly understood despite a significant amount of work on the topic. Recently, there has been an on-going debate of tremendous research interest on the relationship between antipsychotic-induced weight gain and body weight regulatory hormones such as leptin. Given that, researchers have brought to light the question of leptin's role in antipsychotic-induced weight gain. Here we summarize and discuss the existing evidence on the link between leptin and weight gain related to antipsychotic drugs, especially atypical antipsychotics.
Collapse
Affiliation(s)
- Francky Teddy Endomba
- Psychiatry Internship Program, University of Bourgogne, 21000, Dijon, France.,Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurel T Tankeu
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,Aging and Metabolism Laboratory, Department of physiology, University of Lausanne, Lausanne, Switzerland
| | - Jan René Nkeck
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joel Noutakdie Tochie
- Department of Anaesthesiology and Critical Care Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. .,Human Research Education and Networking, Yaoundé, Cameroon.
| |
Collapse
|