1
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
2
|
Kooijmans ECM, Hoogendijk EO, Drapała N, Antonenko O, Burchell GL, Barańska I, Pokladníková J, Szczerbińska K, Fialová D, van Hout HPJ, Joling KJ. Defining and Categorizing Nonpharmacologic Interventions in the Older Population: A Systematic Review. J Am Med Dir Assoc 2024; 26:105306. [PMID: 39424279 DOI: 10.1016/j.jamda.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Nonpharmacologic interventions (NPIs) constitute an important part of treatment for older adults, cover a broad and diverse range of interventions, and have advantages over pharmacologic interventions (eg, limited adverse side effects). However, an unambiguous definition of NPIs is still lacking. Defining NPIs may facilitate research on this topic and enhance comparability of results between studies, and might help to face the challenges of recognition, acceptation, funding, and implementation. Therefore, the aim of this review was to provide an overview and comparison of the definitions of NPIs used in the current literature on older adults. DESIGN A systematic review was performed to provide an overview of the definitions of NPIs that are used in the current literature on older populations and to organize the characteristics involved in the definitions. SETTING AND PARTICIPANTS People ≥60 years of age were included, not limited to a specific setting. METHODS A systematic search was performed in the following 5 databases: PubMed, Embase, Clarivate Analytics/Web of Science Core Collection, Cumulative Index to Nursing and Allied Health Literature, and Wiley/Cochrane Library. The time frame within the databases was from inception to December 4, 2023. Review articles, editorials and consensus papers were included. RESULTS We included 28 articles. We organized the definitions of NPI according to 4 different aspects: types of interventions involved, target population, goals the interventions addressed, and requirements of the interventions. Definitions in the current literature can generally be divided into 2 groups: NPIs described as not involving medication, and more elaborated multidomain definitions. Based on the results, we formulated criteria for types of interventions that can be considered an NPI. CONCLUSIONS AND IMPLICATIONS Using current descriptions and characteristics, elements for a new definition for NPIs were proposed. To improve research in this field, consensus needs to be reached regarding elements covered by a definition of NPIs.
Collapse
Affiliation(s)
- Eline C M Kooijmans
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands.
| | - Emiel O Hoogendijk
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Natalia Drapała
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Olena Antonenko
- Department of Geriatrics and Gerontology, 1st Faculty of Medicine in Prague, Charles University, Czech Republic
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ilona Barańska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Jitka Pokladníková
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králová, Charles University, Hradec Králové, Czech Republic
| | - Katarzyna Szczerbińska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Daniela Fialová
- Department of Geriatrics and Gerontology, 1st Faculty of Medicine in Prague, Charles University, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králová, Charles University, Hradec Králové, Czech Republic
| | - Hein P J van Hout
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Karlijn J Joling
- Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands; Department of Medicine for Older People, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
4
|
Dawson EG. The tip of the iceberg …. World J Surg 2024; 48:1084-1085. [PMID: 38530122 DOI: 10.1002/wjs.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Erin G Dawson
- Traumatology, Surgical Critical Care, & Emergency Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Zureigat H, Osborne MT, Abohashem S, Mezue K, Gharios C, Grewal S, Cardeiro A, Naddaf N, Civieri G, Abbasi T, Radfar A, Aldosoky W, Seligowski AV, Wasfy MM, Guseh JS, Churchill TW, Rosovsky RP, Fayad Z, Rosenzweig A, Baggish A, Pitman RK, Choi KW, Smoller J, Shin LM, Tawakol A. Effect of Stress-Related Neural Pathways on the Cardiovascular Benefit of Physical Activity. J Am Coll Cardiol 2024; 83:1543-1553. [PMID: 38631773 PMCID: PMC11164527 DOI: 10.1016/j.jacc.2024.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms underlying the psychological and cardiovascular disease (CVD) benefits of physical activity (PA) are not fully understood. OBJECTIVES This study tested whether PA: 1) attenuates stress-related neural activity, which is known to potentiate CVD and for its role in anxiety/depression; 2) decreases CVD in part through this neural effect; and 3) has a greater impact on CVD risk among individuals with depression. METHODS Participants from the Mass General Brigham Biobank who completed a PA survey were studied. A subset underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomographic imaging. Stress-related neural activity was measured as the ratio of resting amygdalar-to-cortical activity (AmygAC). CVD events were ascertained from electronic health records. RESULTS A total of 50,359 adults were included (median age 60 years [Q1-Q3: 45-70 years]; 40.1% male). Greater PA was associated with both lower AmygAC (standardized β: -0.245; 95% CI: -0.444 to -0.046; P = 0.016) and CVD events (HR: 0.802; 95% CI: 0.719-0.896; P < 0.001) in multivariable models. AmygAC reductions partially mediated PA's CVD benefit (OR: 0.96; 95% CI: 0.92-0.99; P < 0.05). Moreover, PA's benefit on incident CVD events was greater among those with (vs without) preexisting depression (HR: 0.860; 95% CI: 0.810-0.915; vs HR: 0.929; 95% CI: 0.910-0.949; P interaction = 0.011). Additionally, PA above guideline recommendations further reduced CVD events, but only among those with preexisting depression (P interaction = 0.023). CONCLUSIONS PA appears to reduce CVD risk in part by acting through the brain's stress-related activity; this may explain the novel observation that PA reduces CVD risk to a greater extent among individuals with depression.
Collapse
Affiliation(s)
- Hadil Zureigat
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenechukwu Mezue
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charbel Gharios
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simran Grewal
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alex Cardeiro
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicki Naddaf
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni Civieri
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Taimur Abbasi
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Azar Radfar
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wesam Aldosoky
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonia V Seligowski
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA, and Harvard Medical School, Boston, Massachusetts, USA
| | - Meagan M Wasfy
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James Sawalla Guseh
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W Churchill
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel P Rosovsky
- Division of Hematology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zahi Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Rosenzweig
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Baggish
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roger K Pitman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Karmel W Choi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jordan Smoller
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lisa M Shin
- Department of Psychology, Tufts University, Medford, Massachusetts, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Lee SY. Comment on Krikorian et al. Early Intervention in Cognitive Aging with Strawberry Supplementation. Nutrients 2023, 15, 4431. Nutrients 2024; 16:824. [PMID: 38542735 PMCID: PMC10975459 DOI: 10.3390/nu16060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/07/2024] [Indexed: 08/14/2024] Open
Abstract
I read with interest the paper by Krikorian et al [...].
Collapse
Affiliation(s)
- Sang Yeoup Lee
- Family Medicine Clinic, Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; ; Tel.: +82-55-3601442
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan 50612, Republic of Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Zou M, Wang D, Chen Y, Yang C, Xu S, Dai Y. Dajianzhong decoction ameliorated D-gal-induced cognitive aging by triggering mitophagy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117212. [PMID: 37783403 DOI: 10.1016/j.jep.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dajianzhong decoction (DJZ) is a classical famous formula for treating yang-deficiency-syndrome in traditional Chinese medicine and recorded in Jin-Kui-Yao-Lue in Dynasty of Dong Han. Cognitive aging can present similar features of mitochondrial energy deficits to the clinical features of Yang deficiency. However, there is poor understanding of the effects of DJZ treatment on mitophagy in cognitive aging. AIM OF THE STUDY The aims of this work were to decipher the effectiveness and mechanism of DJZ against cognitive aging, focusing on mitophagy. MATERIALS AND METHODS YFP-Parkin HeLa cells, D-galactose (D-gal) -induced mice (500 mg/kg for 35 d, s. c.) and SH-SY5Y cells (80 mg/ml for 6 h) were established. Firstly, the formation of YFP-Parkin puncta (a well-known mitophagy marker) in YFP-Parkin HeLa cells was employed to discover the mitophagy induction of DJZ. Moreover, the genes and proteins related to PINK1/Parkin pathway and mitochondrial functions were evaluated after treatment with DJZ in vivo (3.5 g/kg or 1.75 g/kg, i. g, 35 d) and in vitro (0.2, 2 and 20 μg/ml, 12 h). Furthermore, the effectiveness of DJZ (3.5 g/kg or 1.75 g/kg, i. g) for alleviating cognitive aging and nerve damage was measured in D-gal mice. Finally, siPINK1 was applied to reverse validation of DJZ in vitro. RESULTS The formation of YFP-Parkin puncta in YFP-Parkin HeLa cells was markedly induced by DJZ in a dose-dependent manner. The immunofluorescence intensity of Parkin and the protein expression of Parkin in mitochondrial membrane in D-gal mice were significantly increased after treatment of DJZ. The inhibition of PINK1/Parkin pathway in D-gal-induced mice and SH-SY5Y cells was significantly activated by DJZ. Simultaneously, the impairment of mitochondrial functions induced by D-gal were markedly reversed by DJZ. In addition, DJZ significantly ameliorated the neuropathological injury and cognitive declines in D-gal mice. Finally, after PINK1 was knocked down by siPINK1 in vitro, the neuroprotective effects of DJZ and the Parkin enhancement effect of DJZ were markedly reversed. CONCLUSION Our findings firstly showed DJZ could relieve cognitive aging through facilitating PINK1/Parkin-mediated mitophagy to protect against mitochondrial functions, indicating DJZ may be regarded as a promising intervention in cognitive aging.
Collapse
Affiliation(s)
- Mi Zou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Dan Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yuanyuan Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Yang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
8
|
Vazquez-Medina A, Rodriguez-Trujillo N, Ayuso-Rodriguez K, Marini-Martinez F, Angeli-Morales R, Caussade-Silvestrini G, Godoy-Vitorino F, Chorna N. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis. Front Microbiol 2024; 15:1326584. [PMID: 38318337 PMCID: PMC10838991 DOI: 10.3389/fmicb.2024.1326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The emergent recognition of the gut-brain axis connection has shed light on the role of the microbiota in modulating the gut-brain axis's functions. Several microbial metabolites, such as serotonin, kynurenine, tryptamine, indole, and their derivatives originating from tryptophan metabolism have been implicated in influencing this axis. In our study, we aimed to investigate the impact of running exercises on microbial tryptophan metabolism using a mouse model. We conducted a multi-omics analysis to obtain a comprehensive insight into the changes in tryptophan metabolism along the microbiota-gut-brain axis induced by running exercises. The analyses integrated multiple components, such as tryptophan changes and metabolite levels in the gut, blood, hippocampus, and brainstem. Fecal microbiota analysis aimed to examine the composition and diversity of the gut microbiota, and taxon-function analysis explored the associations between specific microbial taxa and functional activities in tryptophan metabolism. Our findings revealed significant alterations in tryptophan metabolism across multiple sites, including the gut, blood, hippocampus, and brainstem. The outcomes indicate a shift in microbiota diversity and tryptophan metabolizing capabilities within the running group, linked to increased tryptophan transportation to the hippocampus and brainstem through circulation. Moreover, the symbiotic association between Romboutsia and A. muciniphila indicated their potential contribution to modifying the gut microenvironment and influencing tryptophan transport to the hippocampus and brainstem. These findings have potential applications for developing microbiota-based approaches in the context of exercise for neurological diseases, especially on mental health and overall well-being.
Collapse
Affiliation(s)
- Alejandra Vazquez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nicole Rodriguez-Trujillo
- Nutrition and Dietetics Program, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kiara Ayuso-Rodriguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Roberto Angeli-Morales
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
9
|
Nicolini P, Malfatto G, Lucchi T. Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies. J Clin Med 2024; 13:280. [PMID: 38202287 PMCID: PMC10780278 DOI: 10.3390/jcm13010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Heart rate variability (HRV) is a reliable and convenient method to assess autonomic function. Cross-sectional studies have established a link between HRV and cognition. Longitudinal studies are an emerging area of research with important clinical implications in terms of the predictive value of HRV for future cognition and in terms of the potential causal relationship between HRV and cognition. However, they have not yet been the objective of a systematic review. Therefore, the aim of this systematic review was to investigate the association between HRV and cognition in longitudinal studies. METHODS The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Embase, PsycINFO and PubMed databases were searched from the earliest available date to 26 June 2023. Studies were included if they involved adult human subjects and evaluated the longitudinal association between HRV and cognition. The risk of bias was assessed with the Newcastle-Ottawa Scale for Cohort Studies. The results were presented narratively. RESULTS Of 14,359 records screened, 12 studies were included in this systematic review, with a total of 24,390 participants. Two thirds of the studies were published from 2020 onwards. All studies found a longitudinal relationship between HRV and cognition. There was a consistent association between higher parasympathetic nervous system (PNS) activity and better cognition, and some association between higher sympathetic nervous system activity and worse cognition. Also, higher PNS activity persistently predicted better executive functioning, while data on episodic memory and language were more scant and/or controversial. CONCLUSIONS Our results support the role of HRV as a biomarker of future cognition and, potentially, as a therapeutic target to improve cognition. They will need confirmation by further, more comprehensive studies also including unequivocal non-HRV sympathetic measures and meta-analyses.
Collapse
Affiliation(s)
- Paola Nicolini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, 20122 Milan, Italy;
| | - Gabriella Malfatto
- Istituto Auxologico Italiano IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale San Luca, 20149 Milan, Italy;
| | - Tiziano Lucchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, 20122 Milan, Italy;
| |
Collapse
|
10
|
Adams JA, Uryash A, Lopez JR. Harnessing Passive Pulsatile Shear Stress for Alzheimer's Disease Prevention and Intervention. J Alzheimers Dis 2024; 98:387-401. [PMID: 38393906 DOI: 10.3233/jad-231010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) affects more than 40 million people worldwide and is the leading cause of dementia. This disease is a challenge for both patients and caregivers and puts a significant strain on the global healthcare system. To address this issue, the Lancet Commission recommends focusing on reducing modifiable lifestyle risk factors such as hypertension, diabetes, and physical inactivity. Passive pulsatile shear stress (PPSS) interventions, which use devices like whole-body periodic acceleration, periodic acceleration along the Z-axis (pGz), and the Jogging Device, have shown significant systemic and cellular effects in preclinical and clinical models which address these modifiable risks factors. Based on this, we propose that PPSS could be a potential non-pharmacological and non-invasive preventive or therapeutic strategy for AD. We perform a comprehensive review of the biological basis based on all publications of PPSS using these devices and demonstrate their effects on the various aspects of AD. We draw from this comprehensive analysis to support our hypothesis. We then delve into the possible application of PPSS as an innovative intervention. We discuss how PPSS holds promise in ameliorating hypertension and diabetes while mitigating physical inactivity, potentially offering a holistic approach to AD prevention and management.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
11
|
Khirallah Abd El Fatah N, Abdelwahab Khedr M, Alshammari M, Mabrouk Abdelaziz Elgarhy S. Effect of Immersive Virtual Reality Reminiscence versus Traditional Reminiscence Therapy on Cognitive Function and Psychological Well-being among Older Adults in Assisted Living Facilities: A randomized controlled trial. Geriatr Nurs 2024; 55:191-203. [PMID: 38007908 DOI: 10.1016/j.gerinurse.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Virtual reality (VR) reminiscence is an innovative strategy that integrates technology into the care of older adults. Limited research was conducted to compare the role of VR reminiscence and traditional RT in improving older adults' cognitive and psychological well-being. AIM Investigate the effect of virtual reality reminiscence versus traditional reminiscence therapy on cognitive function and psychological well-being among older adults in assisted living facilities. METHODS A randomized controlled trial research design was followed. Sixty older adults were recruited and randomly assigned to three equal groups (20 older adults for each group). RESULTS Post interventions, a significant increase in the mean scores of cognitive function and psychological well-being was evident among the VR and RT groups with statistically significant differences (P <0.05) compared with pre-intervention and the control group. CONCLUSION Application of VR reminiscence or traditional RT is efficacious in improving cognitive function and psychological well-being among institutionalized older adults.
Collapse
Affiliation(s)
| | - Mahmoud Abdelwahab Khedr
- Department of Psychiatric and Mental Health Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt; Department of Nursing, College of Applied Medical Sciences, Hafr Albatin University, Hafr Albatin, Saudi Arabia.
| | - Mukhlid Alshammari
- Department of Nursing, College of Applied Medical Sciences, Hafr Albatin University, Hafr Albatin, Saudi Arabia.
| | | |
Collapse
|
12
|
Koshatwar M, Acharya S, Prasad R, Lohakare T, Wanjari M, Taksande AB. Exploring the Potential of Antidiabetic Agents as Therapeutic Approaches for Alzheimer's and Parkinson's Diseases: A Comprehensive Review. Cureus 2023; 15:e44763. [PMID: 37809189 PMCID: PMC10556988 DOI: 10.7759/cureus.44763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's and Parkinson's are two prevalent neurodegenerative disorders with significant societal and healthcare burdens. The search for effective therapeutic approaches to combat these diseases has led to growing interest in exploring the potential of antidiabetic agents. This comprehensive review aims to provide a detailed overview of the current literature on using antidiabetic agents as therapeutic interventions for Alzheimer's and Parkinson's diseases. We discuss the underlying pathological mechanisms of these neurodegenerative diseases, including protein misfolding, inflammation, oxidative stress, and mitochondrial dysfunction. We then delve into the potential mechanisms by which antidiabetic agents may exert neuroprotective effects, including regulation of glucose metabolism and insulin signaling, anti-inflammatory effects, modulation of oxidative stress, and improvement of mitochondrial function and bioenergetics. We highlight in vitro, animal, and clinical studies that support the potential benefits of antidiabetic agents in reducing disease pathology and improving clinical outcomes. However, we also acknowledge these agents' limitations, variability in treatment response, and potential side effects. Furthermore, we explore emerging therapeutic targets and novel approaches, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, insulin sensitizer drugs, neuroinflammation-targeted therapies, and precision medicine approaches. The review concludes by emphasizing the need for further research, including large-scale clinical trials, to validate the efficacy and safety of antidiabetic agents in treating Alzheimer's and Parkinson's disease. The collaboration between researchers, clinicians, and pharmaceutical companies is essential in advancing the field and effectively treating patients affected by these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahima Koshatwar
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash B Taksande
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Ishibashi A, Udono M, Sato M, Katakura Y. Molecular Mechanisms for the Carnosine-Induced Activation of Muscle-Brain Interaction. Nutrients 2023; 15:nu15061479. [PMID: 36986209 PMCID: PMC10057344 DOI: 10.3390/nu15061479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Carnosine is known to improve brain function. The molecular basis for the carnosine-mediated interaction between intestinal cells and neuronal cells is that carnosine acts on intestinal cells and stimulates exosome secretion, which can induce neurite outgrowth in neuronal cells. This study aimed to infer the carnosine-mediated interaction between muscle cells and neuronal cells. The results revealed that carnosine induces muscle cell differentiation, as well as the secretion of exosomes and myokines that can act on neuronal cells. Carnosine acts not only on intestinal cells but also on muscle cells, stimulating the secretion of secretory factors including exosomes that induce neurite outgrowth in neuronal cells, as well as myokines known to be involved in neuronal cell activation. As the miRNAs in exosomes secreted from intestinal cells and muscle cells upon carnosine treatment are different, it could be assumed that carnosine acts on each cell to interact with neuronal cell through separate factors and mechanisms.
Collapse
Affiliation(s)
- Asuka Ishibashi
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyako Udono
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mikako Sato
- R&D Center, NH Foods, Ltd., Tsukuba 300-2626, Japan
| | - Yoshinori Katakura
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|