1
|
Kristanto D, Burkhardt M, Thiel C, Debener S, Gießing C, Hildebrandt A. The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Neurosci Biobehav Rev 2024; 165:105846. [PMID: 39117132 DOI: 10.1016/j.neubiorev.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.
Collapse
Affiliation(s)
- Daniel Kristanto
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany.
| | - Micha Burkhardt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Stefan Debener
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Carsten Gießing
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
2
|
Vaidya N, Marquand AF, Nees F, Siehl S, Schumann G. The impact of psychosocial adversity on brain and behaviour: an overview of existing knowledge and directions for future research. Mol Psychiatry 2024; 29:3245-3267. [PMID: 38658773 PMCID: PMC11449794 DOI: 10.1038/s41380-024-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental experiences play a critical role in shaping the structure and function of the brain. Its plasticity in response to different external stimuli has been the focus of research efforts for decades. In this review, we explore the effects of adversity on brain's structure and function and its implications for brain development, adaptation, and the emergence of mental health disorders. We are focusing on adverse events that emerge from the immediate surroundings of an individual, i.e., microenvironment. They include childhood maltreatment, peer victimisation, social isolation, affective loss, domestic conflict, and poverty. We also take into consideration exposure to environmental toxins. Converging evidence suggests that different types of adversity may share common underlying mechanisms while also exhibiting unique pathways. However, they are often studied in isolation, limiting our understanding of their combined effects and the interconnected nature of their impact. The integration of large, deep-phenotyping datasets and collaborative efforts can provide sufficient power to analyse high dimensional environmental profiles and advance the systematic mapping of neuronal mechanisms. This review provides a background for future research, highlighting the importance of understanding the cumulative impact of various adversities, through data-driven approaches and integrative multimodal analysis techniques.
Collapse
Affiliation(s)
- Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| |
Collapse
|
3
|
Song X, Meng J, Li J, Shen B, Li J, Xu M, Wang H, Gu L, Wei Y. Association of plasma metals with resting-state functional connectivity in ischemic stroke. Neurotoxicology 2024; 104:56-65. [PMID: 39059632 DOI: 10.1016/j.neuro.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Metal exposure has long been considered a significant risk factor for ischemic stroke. However, existing data on the effects of metal exposure on brain function in ischemic stroke are limited. Therefore, this study aimed to explore the correlation between exposure to various metals and changes in resting-state functional connectivity (rs-FC) in ischemic stroke patients. METHODS This study included 28 acute ischemic stroke patients with hemiplegia and 28 matched healthy controls (HCs). All participants underwent T1-weighted MRI and 3.0 T resting-state functional magnetic resonance imaging (fMRI). After MRI acquisition, the rs-FC between 137 cortical and subcortical regions was extracted and preprocessed. Plasma levels of 19 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). The Bayesian kernel machine regression (BKMR) model and the weighted quantile sum regression (WQS) model were used to assess the overall effect of metal mixture exposure. The severity of neurological deficits in each acute ischemic stroke patient was evaluated using the National Institutes of Health Stroke Scale (NIHSS). Additionally, the associations between exposure to various metals and modifications in brain functional connectivity were determined using Pearson or Spearman correlation analysis. RESULTS Bilateral brain connectivity was significantly decreased compared to controls and was associated with neurological impairment in ischemic stroke. In patients with ischemic stroke, the plasma concentrations of Cr (p < 0.001), Cu (p = 0.004), As (p = 0.010), Cs (p = 0.046), Rb (p = 0.041), and Sb (p = 0.001) were significantly higher than those in the HCs, whereas the plasma Tl concentrations (p = 0.022) were significantly lower. The results of the BKMR and WQS models showed that combined exposure to metal mixtures was linked to a higher risk of ischemic stroke. Cr was positively correlated with the rs-FC between the left Rolandic_Oper and the left Supp_Motor_Area (r = 0.414, p = 0.029), while negatively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal (r = -0.398, p = 0.037). Cu was negatively correlated with the rs-FC between the left paracentral lobule and the left thalamus (r = -0.409, p = 0.031). Tl was positively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal cortex (r = 0.590, p = 0.001). A negative correlation was observed between Cs and rs-FC between the right Cingulate_Mid and left Occipital_Sup (r = -0.429, p = 0.024). Sb was negatively correlated with the rs-FC between the left Parietal_Inf and the right SupraMarginal (r = -0.384, p = 0.044), the right Parietal_Inf and the left SupraMarginal (r = -0.583, p = 0.001), and the left SupraMarginal and the right SupraMarginal (r = -0.377, p = 0.048). CONCLUSION Plasma levels of Cr, Cu, Tl, Cs, and Sb were associated with altered rs-FC in brain regions related to motor control, sensory integration, executive function, language processing, and emotional regulation in ischemic stroke patients with basal ganglia infarction.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Jianxing Meng
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China
| | - Jiale Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Bing Shen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jinling Li
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Miaomiao Xu
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Honghai Wang
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China.
| | - Yufei Wei
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China.
| |
Collapse
|
4
|
Lin JJY, Kuiper JR, Dickerson AS, Buckley JP, Volk HE, Rohlman DS, Lawrence KG, Braxton Jackson W, Sandler DP, Engel LS, Rule AM. Associations of a toenail metal mixture with attention and memory in the Gulf long-term follow-up (GuLF) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173387. [PMID: 38788945 PMCID: PMC11170656 DOI: 10.1016/j.scitotenv.2024.173387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Research on metal-associated neurodegeneration has largely focused on single metals. Since metal exposures typically co-occur as combinations of both toxic and essential elements, a mixtures framework is important for identifying risk and protective factors. This study examined associations between toenail levels of an eight-metal mixture and attention and memory in men living in US Gulf states. METHODS We measured toenail concentrations of toxic (arsenic, chromium, lead, and mercury) and essential (copper, manganese, selenium, and zinc) metals in 413 non-smoking men (23-69 years, 46 % Black) from the Gulf Long-Term Follow-Up (GuLF) Study. Sustained attention and working memory were assessed at the time of toenail sample collection using the continuous performance test (CPT) and digit span test (DST), respectively. Associations between toenail metal concentrations and performance on neurobehavioral tests were characterized using co-pollutant adjusted general linear models and Bayesian Kernel Machine Regression. RESULTS Adjusting for other metals, one interquartile range (IQR) increase in toenail chromium was associated with a 0.19 (95 % CI: -0.31, -0.07) point reduction in CPT D Prime score (poorer ability to discriminate test signals from noise). One IQR increase in toenail manganese was associated with a 0.20 (95 % CI, -0.41, 0.01) point reduction on the DST Reverse Count (fewer numbers recalled). Attention deficits were greater among Black participants compared to White participants for the same increase in toenail chromium concentrations. No evidence of synergistic interaction between metals or adverse effect of the overall metal mixture was observed for either outcome. CONCLUSIONS Our findings support existing studies of manganese-related memory deficits and are some of the first to show chromium related attention deficits in adults. Longitudinal study of cognitive decline is needed to verify chromium findings. Research into social and chemical co-exposures is also needed to explain racial differences in metal-associated neurobehavioral deficits observed in this study.
Collapse
Affiliation(s)
- Joyce J Y Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Oluyemi K, Rechtman E, Invernizzi A, Gennings C, Renzetti S, Patrono A, Cagna G, Reichenberg A, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK. Sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. ENVIRONMENTAL RESEARCH 2024; 250:118443. [PMID: 38365053 PMCID: PMC11102844 DOI: 10.1016/j.envres.2024.118443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (β = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms.
Collapse
Affiliation(s)
- Kristie Oluyemi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience Icahn School of Medicine at Mount Sinai, New York NY, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Alessandra Patrono
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, USA; Department of Biomedical, Metabolic Sciences and Neurosciences, University of Modena, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-environmental interactions: a time sensitive matter. Front Comput Neurosci 2024; 17:1302010. [PMID: 38260714 PMCID: PMC10800942 DOI: 10.3389/fncom.2023.1302010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
| | | | - Daniele Corbo
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Cheuk Y. Tang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Roberto G. Lucchini
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
8
|
Wang D, Li Y, Duan H, Zhang S, Liu L, He Y, Chen X, Jiang Y, Ma Q, Yu G, Liu S, Yao N, Liang Y, Lin X, Liu L, Wan H, Shen J. Associations between blood essential metal mixture and serum uric acid: a cross-sectional study. Front Public Health 2023; 11:1182127. [PMID: 37670835 PMCID: PMC10476669 DOI: 10.3389/fpubh.2023.1182127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Although several studies have explored the associations between single essential metals and serum uric acid (SUA), the study about the essential metal mixture and the interactions of metals for hyperuricemia remains unclear. Methods We performed a cross-sectional study to explore the association of the SUA levels with the blood essential metal mixture, including magnesium (Mg), calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn) in Chinese community-dwelling adults (n=1039). The multivariable linear regression, the weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were conducted to estimate the associations of blood essential metals with SUA levels and the BKMR model was also conducted to estimate the interactions of the essential metals on SUA. Results In the multivariable linear regression, the association of blood Mg, Mn, and Cu with SUA was statistically significant, both in considering multiple metals and a single metal. In WQS regression [β=13.59 (95%CI: 5.57, 21.60)] and BKMR models, a positive association was found between the mixture of essential metals in blood and SUA. Specifically, blood Mg and Cu showed a positive association with SUA, while blood Mn showed a negative association. Additionally, no interactions between individual metals on SUA were observed. Discussion In conclusion, further attention should be paid to the relationship between the mixture of essential metals in blood and SUA. However, more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Yue Li
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lingling Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Yajun He
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Qintao Ma
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Siyang Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Nanfang Yao
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Lan Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
9
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-Environmental Interactions: a time sensitive matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539456. [PMID: 37205412 PMCID: PMC10187306 DOI: 10.1101/2023.05.04.539456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
|