1
|
Zharikova AA, Andrianova NV, Silachev DN, Nebogatikov VO, Pevzner IB, Makievskaya CI, Zorova LD, Maleev GV, Baydakova GV, Chistyakov DV, Goriainov SV, Sergeeva MG, Burakova IY, Gureev AP, Popkov VA, Ustyugov AA, Plotnikov EY. Analysis of the brain transcriptome, microbiome and metabolome in ketogenic diet and experimental stroke. Brain Behav Immun 2024; 123:571-585. [PMID: 39378970 DOI: 10.1016/j.bbi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in treating various brain pathologies. In this study, we conducted detailed transcriptomic and metabolomic profiling of rat brains after KD and ischemic stroke in order to investigate the effects of KD and its underlying mechanisms. We evaluated the effect of a two-month KD on gene expression in intact brain tissue and after middle cerebral artery occlusion (MCAO). We analyzed the effects of KD on gut microbiome composition and blood metabolic profile as well as investigated the correlation between severity of neurological deficits and KD-induced changes. We found transcriptional reprogramming in the brain after stroke and KD treatment. The KD altered the expression of genes involved in the regulation of glucose and fatty acid metabolism, mitochondrial function, the immune response, Wnt-associated signaling, stem cell development, and neurotransmission, both in intact rats and after MCAO. The KD led to a significant change in the composition of gut microbiome and the levels of amino acids, acylcarnitines, polyunsaturated fatty acids, and oxylipins in the blood. However, the KD slightly worsened the neurological functions after MCAO, so that the therapeutic effect of the diet remained unproven.
Collapse
Affiliation(s)
- Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | | | - Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Y Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
2
|
Zhu L, Li J, Yang S, Deng X, Wang Z, Cao C. Fumonisin B 1 induces endoplasmic reticulum damage and inflammation by activating the NXR response and disrupting the normal CYP450 system, leading to liver damage in juvenile quail. J Food Sci 2024; 89:5967-5979. [PMID: 39086057 DOI: 10.1111/1750-3841.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin affecting animal health through the food chain and has been closely associated with several diseases such as pulmonary edema in pigs and diarrhea in poultry. FB1 is mainly metabolized in the liver. Although a few studies have shown that FB1 causes liver damage, the molecular mechanism of liver damage is unclear. This study aimed to evaluate the role of liver damage, nuclear xenobiotic receptor (NXR) response and cytochrome P450 (CYP450)-mediated defense response during FB1 exposure. A total of 120 young quails were equally divided into two groups (control and FB1 groups). The quails in the control group were fed on a normal diet, while those in the FB1 group were fed on a quail diet containing 30 mg/kg for 42 days. Histopathological and ultrastructural changes in the liver, biochemical parameters, inflammatory factors, endoplasmic reticulum (ER) factors, NXR response and CYP450 cluster system and other related genes were examined at 14 days, 28 days and 42 days. The results showed that FB1 exposure impaired the metabolic function and caused liver injury. FB1 caused ER stress and decreased adenosine triphosphatease activity, induced the expression of inflammation-related genes such as interleukin 6 and nuclear factor kappa-B, and promoted inflammation. In addition, FB1 disrupted the expression of multiple CYP450 isoforms by activating nuclear xenobiotic receptors (NXRs). The present study confirms that FB1 exposure disturbs the homeostasis of cytochrome P450 systems (CYP450s) in quail liver by activating NXR responses and thereby causing liver damage. This study's findings provide insight into the molecular mechanisms of FB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lingxin Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Shuang Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Xiaoqi Deng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Zhenchao Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, P. R. China
| |
Collapse
|
3
|
Feng G, Wu Z, Yang L, Wang K, Wang H. β-hydroxybutyrate and ischemic stroke: roles and mechanisms. Mol Brain 2024; 17:48. [PMID: 39075604 PMCID: PMC11287974 DOI: 10.1186/s13041-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Stroke is a significant global burden, causing extensive morbidity and mortality. In metabolic states where glucose is limited, ketone bodies, predominantly β-hydroxybutyrate (BHB), act as alternative fuel sources. Elevated levels of BHB have been found in the ischemic hemispheres of animal models of stroke, supporting its role in the pathophysiology of cerebral ischemia. Clinically, higher serum and urinary BHB concentrations have been associated with adverse outcomes in ischemic stroke, highlighting its potential utility as a prognostic biomarker. In both animal and cellular models, exogenous BHB administration has exhibited neuroprotective effects, reduction of infarct size, and improvement of neurological outcomes. In this review, we focus on the role of BHB before and after ischemic stroke, with an emphasis on the therapeutic potential and mechanisms of ketone administration after ischemic stroke.
Collapse
Affiliation(s)
- Ge Feng
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Leyi Yang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Kaimeng Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Plourde G, Roumes H, Suissa L, Hirt L, Doche É, Pellerin L, Bouzier-Sore AK, Quintard H. Neuroprotective effects of lactate and ketone bodies in acute brain injury. J Cereb Blood Flow Metab 2024; 44:1078-1088. [PMID: 38603600 PMCID: PMC11179615 DOI: 10.1177/0271678x241245486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage. They are now viewed as integral parts of brain metabolism. In addition to their energetic role, experimental evidence also supports their neuroprotective properties after acute brain injury, regulating in particular intracranial pressure control, decreasing ischemic volume, and leading to an improvement in cognitive functions as well as survival. In this review, we present preclinical and clinical evidence exploring the mechanisms underlying their neuroprotective effects and identify research priorities for promoting lactate and ketone bodies use in brain injury.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre hospitalier de l’Université de Montréal, Montréal, Canada
| | - Hélène Roumes
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | | | - Lorenz Hirt
- Division of Neurology, Department of Clinical Neuroscience, Centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - Émilie Doche
- Neurovascular Unit, CHU de Marseille, Marseille, France
| | - Luc Pellerin
- IRMETIST Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Hôpitaux universitaires de Genéve, Genéve, Suisse
| |
Collapse
|
5
|
Li R, Liu Y, Wu J, Chen X, Lu Q, Xia K, Liu C, Sui X, Liu Y, Wang Y, Qiu Y, Chen J, Wang Y, Li R, Ba Y, Fang J, Huang W, Lu Z, Li Y, Liao X, Xiang AP, Huang Y. Adaptive Metabolic Responses Facilitate Blood-Brain Barrier Repair in Ischemic Stroke via BHB-Mediated Epigenetic Modification of ZO-1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400426. [PMID: 38666466 PMCID: PMC11220715 DOI: 10.1002/advs.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local β-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.
Collapse
|
6
|
Shirian FI, Karimi M, Alipour M, Salami S, Nourbakhsh M, Nekufar S, Safari-Alighiarloo N, Tavakoli-Yaraki M. Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition. Mol Biol Rep 2024; 51:567. [PMID: 38656394 DOI: 10.1007/s11033-024-09501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.
Collapse
Affiliation(s)
- Farzad Izak Shirian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Alipour
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
7
|
Qiao Q, Tian S, Zhang Y, Che L, Li Q, Qu Z, Wang W. A Ketogenic Diet may Improve Cognitive Function in Rats with Temporal Lobe Epilepsy by Regulating Endoplasmic Reticulum Stress and Synaptic Plasticity. Mol Neurobiol 2024; 61:2249-2264. [PMID: 37870676 DOI: 10.1007/s12035-023-03659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
A ketogenic diet (KD) is often used in the treatment of refractory epilepsy. Many studies have found that it also has a positive impact on cognitive comorbidities, but the specific mechanism remains unclear. In many disease models, endoplasmic reticulum stress (ERS) and synaptic plasticity is considered a new therapeutic target for improving cognitive impairment, and it has become a research focus in recent years. Recently, studies have found that a KD has a certain regulatory effect on both ERS and synaptic plasticity, but this result has not been confirmed in epilepsy. To investigate the effect of a KD on ERS and synaptic plasticity. In this study, a rat model of temporal lobe epilepsy (TLE) induced by lithium chloride-pilocarpine was used. After the model was successfully established, the rats in each group were fed a normal diet or a KD for 28 days, and the effect of a KD on the latency and seizure frequency of spontaneous recurrent seizures (SRSs) was observed via video monitoring. Subsequently, a Morris water maze was used to evaluate the spatial learning and memory abilities of the rats in each group; the ultrastructure of the ER and the synapses of the hippocampus were observed by transmission electron microscopy, and the dendritic spine density of the hippocampus was analysed by Golgi staining. Long-term potentiation (LTP) was used to detect the synaptic plasticity of the rats' hippocampi, and the expression of ERS-related proteins and synapse-related proteins was detected by Western blotting. A KD effectively reduced the frequency of SRSs in rats with TLE and improved their learning and memory impairment. Further investigations found that a KD inhibited the up-regulation of glucose-regulated protein 78, phospho-protein kinase-like ER kinase, phosphorylated α subunit of eukaryotic initiation factor 2, activating transcription factor 4 and C/EBP homologous protein expression in the hippocampi of rats with TLE and protected the ultrastructure of the neuronal ER, suggesting that a KD suppressed excessive ERS induced by epilepsy. Concurrently, we also found that a KD not only improved the synaptic ultrastructure and increased the density of dendritic spines in rats with TLE but also reversed the epilepsy-induced LTP deficit to some extent. More importantly, the expression of postsynaptic density protein 95, synaptotagmin-1 and synaptosomal-associated protein 25 in the hippocampi of rats with epilepsy was significantly increased after KD intervention. The study findings indicate that a KD improves learning and memory impairment in rats with epilepsy, possibly by regulating ERS and synaptic plasticity.
Collapse
Affiliation(s)
- Qi Qiao
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Shuang Tian
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Yuan Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Liqin Che
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Qing Li
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Zhenzhen Qu
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China.
| | - Weiping Wang
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
8
|
Gong F, Wei Y. LncRNA PVT1 promotes neuroinflammation after intracerebral hemorrhage by regulating the miR-128-3p/TXNIP axis. Int J Neurosci 2024:1-15. [PMID: 38294729 DOI: 10.1080/00207454.2024.2312998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) has significant morbidity and mortality. TXNIP and the competing endogenous RNA (ceRNA) regulatory mechanism involved in long non-coding RNA (lncRNA) play roles in ICH. We probed the upstream microRNAs (miRNAs)/lncRNAs that regulated TXNIP expression in the ceRNA mechanism. METHODS ICH mouse model was established, and ICH secondary injury was simulated in BV2 microglia by hemin treatment. TXNIP was silenced 48 h before ICH modeling. The ICH mouse brain water content (BWC) and brain lesion volume after ICH were recorded. Neuronal apoptosis and neurological deficits were evaluated by double staining of NeuN and TUNEL/modified Garcia/corner turn/forelimb placement tests. Iba1 + microglia number and tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/IL-10/TXNIP/PVT1/miR-128-3p levels were assessed by immunohistochemistry, Western blot, ELISA, and RT-qPCR. Cell viability/death of BV2 cells conditioned medium-treated neuron HT22 cells were assessed by CCK-8/LDH assays. miRNA that had a targeted binding relationship with TXNIP was screened. The targeted bindings of miR-128-3p to TXNIP/PVT1 to miR-128-3p were verified by dual-luciferase reporter gene assay. RESULTS TXNIP knockdown reduced post-ICH microglial activation/release of pro-inflammatory factors/brain edema/brain lesion volume/neurological deficits in mice and increased releases of anti-inflammatory factors. TXNIP/PVT1 knockdown inhibited hemin-induced inflammatory responses in BV2 cells and protected in vitro co-cultured HT22 cells. PVT1 was a sponge of miR-128-3p to repress TXNIP expression. miR-128-3p knockdown diminished PVT1 knockdown-inhibited hemin-induced BV2 cell inflammatory responses/neurotoxicity. CONCLUSIONS PVT1 silencing reduced hemin-induced neuroinflammation and had a protective effect on neurons by increasing the targeted inhibition of TXNIP by miR-128-3p.
Collapse
Affiliation(s)
- Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
10
|
Neudorf H, Little JP. Impact of fasting & ketogenic interventions on the NLRP3 inflammasome: A narrative review. Biomed J 2024; 47:100677. [PMID: 37940045 PMCID: PMC10821592 DOI: 10.1016/j.bj.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Overactivation of the NLRP3 inflammasome is implicated in chronic low-grade inflammation associated with various disease states, including obesity, type 2 diabetes, atherosclerosis, Alzheimer's disease, and Parkinson's disease. Emerging evidence, mostly from cell and animal models of disease, supports a role for ketosis in general, and the main circulating ketone body beta-hydroxybutyrate (BHB) in particular, in reducing NLRP3 inflammasome activation to improve chronic inflammation. As a result, interventions that can induce ketosis (e.g., fasting, intermittent fasting, time-restricted feeding/eating, very low-carbohydrate high-fat ketogenic diets) and/or increase circulating BHB (e.g., exogenous ketone supplementation) have garnered increasing interest for their therapeutic potential. The purpose of the present review is to summarize our current understanding of the literature on how ketogenic interventions impact the NLRP3 inflammasome across human, rodent and cell models. Overall, there is convincing evidence that ketogenic interventions, likely acting through multiple interacting mechanisms in a cell-, disease- and context-specific manner, can reduce NLRP3 inflammasome activation. The evidence supports a direct effect of BHB, although it is important to consider the myriad of other metabolic responses to fasting or ketogenic diet interventions (e.g., elevated lipolysis, low insulin, stable glucose, negative energy balance) that may also impact innate immune responses. Future research is needed to translate promising findings from discovery science to clinical application.
Collapse
Affiliation(s)
- Helena Neudorf
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Jonathan P Little
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
11
|
Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S, Liu Y. The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2024:nuad175. [PMID: 38219223 DOI: 10.1093/nutrit/nuad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT Despite the important role of inflammation-related factors on the occurrence of chronic diseases, there is still conflicting evidence about the effects of the ketogenic diet (KD) on these factors. OBJECTIVE In order to obtain a better viewpoint, this study aimed to comprehensively investigate the effects of a KD on inflammation-related markers. DATA SOURCES To find pertinent randomized controlled trials up to August 2023, databases including PubMed/Medline, Web of Science, Scopus, Cochrane Library, and Embase were searched. DATA EXTRACTION This study included all randomized controlled trials investigating the effects of a KD on C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, and IL-10 levels. Pooled weighted mean difference (WMD) and 95% confidence intervals (CIs) were achieved by random-effects model analysis for the best estimation of outcomes. DATA ANALYSIS Forty-four studies were included in this article. The pooled findings showed that a KD has an effect on lowering TNF-α (WMD: -0.32 pg/mL; 95% CI: -0.55, -0.09; P = 0.007) and IL-6 (WMD: -0.27 pg/mL; 95% CI: -0.52, -0.02; P = 0.036) compared with control groups. However, no significant effect was reported for others inflammation marker-related levels. The results of the subgroup analysis showed that, in trials following the KD for ≤8 weeks and in people aged ≤50 years, the reduction in TNF-α levels was significantly higher than in other groups. In addition, in people with a body mass index greater than 30 kg/m2 compared to a body mass index ≤30 kg/m2, IL-6 levels decreased to a greater extent after receiving the KD. CONCLUSIONS Consequently, adherence to a KD appears to improve some markers associated with inflammation, including TNF-α and IL-6.
Collapse
Affiliation(s)
- Jiawei Ji
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt Ltd, Nagapattinam, Tamil Nadu, India
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
12
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
14
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
15
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
17
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
18
|
Yao Y, Cao Y, Xu Y, Chen G, Liu Y, Jiang H, Fan R, Qin W, Wang X, Chai H, Chen X, Qiu Z, Chen W. CARMA3 Deficiency Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysm Development Interacting Between Endoplasmic Reticulum and Mitochondria. Can J Cardiol 2023; 39:1449-1462. [PMID: 37030515 DOI: 10.1016/j.cjca.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is life threatening and associated with vascular walls' chronic inflammation. However, a detailed understanding of the underlying mechanisms is yet to be elucidated. CARMA3 assembles the CARMA3-BCL10-MALT1 (CBM) complex in inflammatory diseases and is proven to mediate angiotensin II (Ang II) response to inflammatory signals by modulating DNA damage-induced cell pyroptosis. In addition, interaction between endoplasmic reticulum (ER) stress and mitochondrial damage is one of the main causes of cell pyroptosis. METHODS Male wild type (WT) or CARMA3-/- mice aged 8 to 10 weeks were subcutaneously implanted with osmotic minipumps, delivering saline or Ang II at the rate of 1 μg/kg/min for 1, 2, and 4 weeks. RESULTS We discovered that CARMA3 knockout promoted formation of AAA and prominently increased diameter and severity of the mice abdominal aorta infused with Ang II. Moreover, a significant increase in the excretion of inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs) and cell death was found in the aneurysmal aortic wall of CARMA3-/- mice infused with Ang II compared with WT mice. Further studies found that the degree of ER stress and mitochondrial damage in the abdominal aorta of CARMA3-/- mice was more severe than that in WT mice. Mechanistically, CARMA3 deficiency exacerbates the interaction between ER stress and mitochondrial damage by activating the p38MAPK pathway, ultimately contributing to the pyroptosis of vascular smooth muscle cells (VSMCs). CONCLUSIONS CARMA3 appears to play a key role in AAA formation and might be a potential target for therapeutic interventions of AAA.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Fan
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Qin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodi Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Bima A, Eldakhakhny B, Alamoudi AA, Awan Z, Alnami A, Abo-Elkhair SM, Sakr H, Ghoneim FM, Elsamanoudy A. Molecular Study of the Protective Effect of a Low-Carbohydrate, High-Fat Diet against Brain Insulin Resistance in an Animal Model of Metabolic Syndrome. Brain Sci 2023; 13:1383. [PMID: 37891752 PMCID: PMC10605073 DOI: 10.3390/brainsci13101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate, high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to investigate the brain insulin resistance markers in a rat animal model of MetS and the protective effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was fed a regular diet. Groups II-IV were injected with dexamethasone (DEX) to induce MetS. Group II received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF, S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation. Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated biochemical and molecular parameters.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Aliaa A. Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Zuhier Awan
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Abrar Alnami
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma Mohamed Ghoneim
- Faculty Development Unit, Physiological Science and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia;
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
20
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
21
|
García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci 2023; 16:1214092. [PMID: 37575967 PMCID: PMC10413579 DOI: 10.3389/fnmol.2023.1214092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
A growing body of evidence supports the beneficial effects of the ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (BHB), on diverse physiological processes and diseases. Hence, KBs have been suggested as therapeutic tools for neurodegenerative diseases. KBs are an alternative fuel during fasting and starvation as they can be converted to Ac-CoA to produce ATP. A ketogenic diet (KD), enriched in fats and low in carbohydrates, induces KB production in the liver and favors their use in the brain. BHB is the most abundant KB in the circulation; in addition to its role as energy fuel, it exerts many actions that impact the set of proteins in the cell and tissue. BHB can covalently bind to proteins in lysine residues as a new post-translational modification (PTM) named β-hydroxybutyrylation (Kbhb). Kbhb has been identified in many proteins where Kbhb sites can be critical for binding to other proteins or cofactors. Kbhb is mostly found in proteins involved in chromatin structure, DNA repair, regulation of spliceosome, transcription, and oxidative phosphorylation. Histones are the most studied family of proteins with this PTM, and H3K9bhb is the best studied histone mark. Their target genes are mainly related to cell metabolism, chromatin remodeling and the control of circadian rhythms. The role of Kbhb on physiological processes is poorly known, but it might link KB metabolism to cell signaling and genome regulation. BHB also impacts the proteome by influencing proteostasis. This KB can modulate the Unfolded Protein Response (UPR) and autophagy, two processes involved in the maintenance of protein homeostasis through the clearance of accumulated unfolded and damaged proteins. BHB can support proteostasis and regulate the UPR to promote metabolism adaptation in the liver and prevent cell damage in the brain. Also, BHB stimulates autophagy aiding to the degradation of accumulated proteins. Protein aggregation is common to proteinopathies like Alzheimer's (AD) and Parkinson's (PD) diseases, where the KD and BHB treatment have shown favorable effects. In the present review, the current literature supporting the effects of KBs on proteome conformation and proteostasis is discussed, as well as its possible impact on AD and PD.
Collapse
Affiliation(s)
| | - Lourdes Massieu
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| |
Collapse
|
22
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Montiel T, Gómora-García JC, Gerónimo-Olvera C, Heras-Romero Y, Bernal-Vicente BN, Pérez-Martínez X, Tovar-Y-Romo LB, Massieu L. Modulation of the autophagy-lysosomal pathway and endoplasmic reticulum stress by ketone bodies in experimental models of stroke. J Neurochem 2023; 166:87-106. [PMID: 37328918 DOI: 10.1111/jnc.15852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body β-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.
Collapse
Affiliation(s)
- Teresa Montiel
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan Carlos Gómora-García
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristian Gerónimo-Olvera
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yessica Heras-Romero
- Departamento de Psicobiología y Neurociencias, División de Estudios de Posgrado e Investigación, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice N Bernal-Vicente
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, División de Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis B Tovar-Y-Romo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
24
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
25
|
Gureev AP, Silachev DN, Sadovnikova IS, Krutskikh EP, Chernyshova EV, Volodina DE, Samoylova NA, Potanina DV, Burakova IY, Smirnova YD, Popov VN, Plotnikov EY. The Ketogenic Diet but not Hydroxycitric Acid Keeps Brain Mitochondria Quality Control and mtDNA Integrity Under Focal Stroke. Mol Neurobiol 2023:10.1007/s12035-023-03325-8. [PMID: 37074549 DOI: 10.1007/s12035-023-03325-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney. The ketogenic diet changed the bacterial composition of the gut microbiome, which via the gut-brain axis may affect the increase in anxiety behavior and reduce mice mobility. The hydroxycitric acid causes mortality and suppresses mitochondrial biogenesis in the liver. Focal stroke modelling caused a significant decrease in the mtDNA copy number in both ipsilateral and contralateral brain cortex and increased the levels of mtDNA damage in the ipsilateral hemisphere. These alterations were accompanied by a decrease in the expression of some of the genes involved in maintaining mitochondrial quality control. The ketogenic diet consumption before stroke protects mtDNA in the ipsilateral cortex, probably via activation of the Nrf2 signaling. The hydroxycitric acid, on the contrary, increased stroke-induced injury. Thus, the ketogenic diet is the most preferred variant of dietetic intervention for stroke protection compared with the hydroxycitric acid supplementation. Our data confirm some reports about hydroxycitric acid toxicity, not only for the liver but also for the brain under stroke condition.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina P Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina V Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Natalia A Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria V Potanina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Inna Yu Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Yuliya D Smirnova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
26
|
Grande de França NA, Rolland Y, Guyonnet S, de Souto Barreto P. The role of dietary strategies in the modulation of hallmarks of aging. Ageing Res Rev 2023; 87:101908. [PMID: 36905962 DOI: 10.1016/j.arr.2023.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The hallmarks of aging constitute an interconnected network of basic mechanisms that modulate aging and can be modulated by lifestyle factors, including dietary strategies. This narrative review aimed to summarize the evidence on promoting dietary restriction or adherence to specific dietary patterns on hallmarks of aging. Studies with preclinical models or humans were considered. Dietary restriction (DR), usually operationalized as a reduction in caloric intake, is the main strategy applied to study the axis diet-hallmarks of aging. DR has been shown to modulate mainly genomic instability, loss of proteostasis, deregulating nutrient sensing, cellular senescence, and altered intercellular communication. Much less evidence exists on the role of dietary patterns, with most of the studies evaluating the Mediterranean Diet and other similar plant-based diets, and the ketogenic diet. Potential benefits are described in genomic instability, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, and altered intercellular communication. Given the predominant place of food in human life, it is imperative to determine the impact of nutritional strategies on the modulation of lifespan and healthspan, considering applicability, long-term adherence, and side effects.
Collapse
Affiliation(s)
- Natasha A Grande de França
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France.
| | - Yves Rolland
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
27
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
28
|
Wang Y, Zhang J, Zhang Y, Yao J. Bibliometric analysis of global research profile on ketogenic diet therapies in neurological diseases: Beneficial diet therapies deserve more attention. Front Endocrinol (Lausanne) 2023; 13:1066785. [PMID: 36686482 PMCID: PMC9846225 DOI: 10.3389/fendo.2022.1066785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background The protective effects of Ketogenic Diet Therapies (KDTs) on neurological diseases have been extensively studied over the past two decades. The purpose of this study was to quantitatively and qualitatively analyze the publication of KDTs in the neurological field from 2000 to 2021. Methods A literature search was performed on June 7th, 2022, using the search terms: (("ketone" OR "ketogenic" OR "*hydroxybuty*") AND ("neuro*")) in the WoSCC database. Collected data were further analyzed using VOSviewer, CiteSpace and other online bibliometric websites. The annual publication volume and citation trends were summarized. The collaborations among highly cited countries, institutions, authors and journals were visualized. The co-citation analysis of highly cited references and journals were also visualized. Moreover, the research focuses and fronts were revealed by co-occurrence analysis and burst keywords detection. Results A total of 2808 publications with 88,119 citations were identified. From 2000-2021, the number of publications and citations presented rising trends. The United States was the country with an overwhelming number of publications and cited times. Johns Hopkins University was the most contributory institution. Kossoff Eric H was the author with the largest number of publications. And Epilepsia was both the largest publisher and the most frequently cited journal. The keywords of intense interest involved "Modified Atkins Diet", "Temporal Lobe Epilepsy", "Alzheimer's Disease", "Parkinson's Disease", "Cerebral Blood Flow", "Neuroinflammation", "Oxidative Stress", "Metabolism" and "Mitochondria". Conclusion We presented the global trend of KDTs in neurological diseases and provided important information for relevant researchers in a bibliometric way. This bibliometric study revealed that treating epilepsy, neuroprotection and functional effects of KDTs on mitochondria and oxidative stress have been the spotlight from 2000 to 2021. These have emerged as the basis for transformation from basic research to clinical application of KDTs.
Collapse
Affiliation(s)
| | | | | | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Heo J, Noble EE, Call JA. The role of exerkines on brain mitochondria: a mini-review. J Appl Physiol (1985) 2023; 134:28-35. [PMID: 36417200 PMCID: PMC9799148 DOI: 10.1152/japplphysiol.00565.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Exercise benefits many organ systems, including having a panacea-like effect on the brain. For example, aerobic exercise improves cognition and attention and reduces the risk of brain-related diseases, such as dementia, stress, and depression. Recent advances suggest that endocrine signaling from peripheral systems, such as skeletal muscle, mediates the effects of exercise on the brain. Consequently, it has been proposed that factors secreted by all organs in response to physical exercise should be more broadly termed the "exerkines." Accumulating findings suggest that exerkines derived from skeletal muscle, liver, and adipose tissues directly impact brain mitochondrial function. Mitochondria play a pivotal role in regulating neuronal energy metabolism, neurotransmission, cell repair, and maintenance in the brain, and therefore exerkines may act via impacting brain mitochondria to improve brain function and disease resistance. Therefore, herein we review studies investigating the impact of muscle-, liver-, and adipose tissue-derived exerkines on brain cognitive and metabolic function via modulating mitochondrial bioenergetics, content, and dynamics under healthy and/or disease conditions.
Collapse
Affiliation(s)
- Junwon Heo
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Emily E Noble
- Department of Nutritional Science, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia
| | - Jarrod A Call
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Long JX, Tian MZ, Chen XY, Yu HH, Ding H, Liu F, Du K. The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine. Front Pharmacol 2023; 14:1151196. [PMID: 37153784 PMCID: PMC10160381 DOI: 10.3389/fphar.2023.1151196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Ischemic stroke (IS) is the second leading cause of death and disability in the world. Pyroptosis, a form of programmed cell death initiated by caspases, participates in the occurrence and development of IS. Because it can increase cell membrane permeability, mediate the release of inflammatory factors, and aggravate inflammation, inhibiting this process can significantly reduce the pathological injury of IS. The nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3) is a multiprotein complex whose activation is the core link of pyroptosis. In recent years, studies have reported that traditional Chinese medicine (TCM) could regulate pyroptosis mediated by NLRP3 inflammasome through multi-channel and multi-target networks and thus exert the effect against IS. This article reviews 107 papers published in recent years in PubMed, Chinese National Knowledge Infrastructure (CNKI), and WanFang Data in recent years. It has found that the activation factors of NLRP3 inflammasome include ROS, mitochondrial dysfunction, K+, Ca2+, lysosome rupture, and trans-Golgi breakdown. TLR4/NF-κB/NLRP3, ROS/TXNIP/NLRP3, AMPK/Nrf2/NLRP3, DRP1/NLRP3, TAK1/JNK/NLRP3 signaling pathways regulate the initiation and assembly of the NLRP3 inflammasome, subsequently induce pyroptosis, affecting the occurrence and development of IS. TCM can affect the above signaling pathways and regulate the pyroptosis mediated by NLRP3 inflammasome, so as to play a protective role against IS, which provides a new entry point for discussing the pathological mechanism of IS and a theoretical basis for developing TCM treasure house.
Collapse
Affiliation(s)
- Jia-Xin Long
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meng-Zhi Tian
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Yi Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huang-He Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Ke Du,
| |
Collapse
|
31
|
Nuwaylati D, Eldakhakhny B, Bima A, Sakr H, Elsamanoudy A. Low-Carbohydrate High-Fat Diet: A SWOC Analysis. Metabolites 2022; 12:1126. [PMID: 36422267 PMCID: PMC9695571 DOI: 10.3390/metabo12111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Insulin resistance (IR) plays a role in the pathogenesis of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, obesity, and neurodegenerative diseases, including Alzheimer's disease. The ketogenic diet (KD) is a low-carbohydrate/high-fat diet that arose in the 1920s as an effective treatment for seizure control. Since then, the KD has been studied as a therapeutic approach for various IR-related disorders with successful results. To date, the use of the KD is still debatable regarding its safety. Some studies have acknowledged its usefulness, while others do not recommend its long-term implementation. In this review, we applied a SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis that revealed the positive, constructive strengths of the KD, its potential complications, different conditions that can make used for it, and the challenges faced by both physicians and subjects throughout a KD. This SWOC analysis showed that the KD works on the pathophysiological mechanism of IR-related disorders such as chronic inflammation, oxidative stress and mitochondrial stress. Furthermore, the implementation of the KD as a potential adjuvant therapy for many diseases, including cancer, neurodegenerative disorders, polycystic ovary syndrome, and pain management was proven. On the other hand, the short and long-term possible undesirable KD-related effects, including nutritional deficiencies, growth retardation and nephrolithiasis, should be considered and strictly monitored. Conclusively, this review provides a context for decision-makers, physicians, researchers, and the general population to focus on this dietary intervention in preventing and treating diseases. Moreover, it draws the attention of scientists and physicians towards the opportunities and challenges associated with the KD that requires attention before KD initiation.
Collapse
Affiliation(s)
- Dena Nuwaylati
- Clinical Biochemistry Department, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
32
|
Kumar A, Kumari S, Singh D. Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2022; 20:2034-2049. [PMID: 35450526 PMCID: PMC9886834 DOI: 10.2174/1570159x20666220420130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD's breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India,Address correspondence to this author at the Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Tel: +91-9417923132; E-mails: ;
| |
Collapse
|
33
|
The Evolution of Ketosis: Potential Impact on Clinical Conditions. Nutrients 2022; 14:nu14173613. [PMID: 36079870 PMCID: PMC9459968 DOI: 10.3390/nu14173613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.
Collapse
|
34
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
35
|
Li X, Cheng Z, Chen X, Yang D, Li H, Deng Y. Purpurogallin improves neurological functions of cerebral ischemia and reperfusion mice by inhibiting endoplasmic reticulum stress and neuroinflammation. Int Immunopharmacol 2022; 111:109057. [PMID: 35964408 DOI: 10.1016/j.intimp.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Purpurogallin (PPG) has been testified to have neuroprotective effects. This study intends to probe the neuroprotection of PPG on cerebral ischemia/reperfusion (I/R) injury and its potential mechanism. METHODS C57/B6 mice, BV2 microglia and HT22 hippocampal neurons were used for in-vivo and in-vitro experiments. I/R injury models were constructed using middle cerebral artery occlusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. The expression of apoptosis and inflammatory proteins, and endoplasmic reticulum (ER) stress proteins were gauged by Western blotting (WB). The contents of inflammatory cytokines in OGD/R-induced BV2 microglia were testified by enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8), TUNEL assay and flow cytometry (FCM) were utilized to examine the viability and apoptosis of cells. The neurological, learning and memory functions were evaluated by the modified neurological severity score (mNSS) and water maze experiment. 2, 3, 5-triphenyltetrazole chloride (TTC) staining was utilized to calculate the volume of cerebral infarction and cerebral edema in the peri-infarct area. Apoptosis-related proteins, inflammation-related proteins and ER stress proteins were gauged by WB. ELISA was conducted to verify inflammatory cytokines. RESULTS PPG treatment notably abated the expression of ER stress proteins and inflammatory factors in OGD/R-induced BV2 microglia and boosted HT22 neuron's viability and eased their apoptosis in comparison to the control group. In vivo, PPG treatment signally lessened cerebral infarct area, cerebral edema, and neurological deficit scores in MCAO/R mice. Additionally, PPG caused a dramatic decline in neuronal apoptosis and levels of ER stress proteins and inflammatory factors in the brain's peri-infarct region of MCAO/R mice. Mechanically, PPG blocked the TLR4/NF-κB pathway in OGD/R-induced BV2, HT22 neurons, and the MCAO/R mice. CONCLUSION PPG attenuates brain I/R damage probably by suppressing ER stress and neuroinflammation via inactivation of the TLR4/NF-κB pathway, suggesting that PPG may be a candidate drug for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Xinming Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China.
| | - Zongxin Cheng
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Xiaohong Chen
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Dejiang Yang
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Huanhuan Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| | - Youqing Deng
- Department of Neurology, The First Hospital of Nanchang, Nanchang, Jiangxi 330006, China
| |
Collapse
|
36
|
Zhang Y, Song Y, Wang C, Jiang J, Liu S, Bai Q, Li L, Jin H, Jin Y, Yan G. Panax notoginseng saponin R1 attenuates allergic rhinitis through AMPK/Drp1 mediated mitochondrial fission. Biochem Pharmacol 2022; 202:115106. [DOI: 10.1016/j.bcp.2022.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
37
|
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H, Yang S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia–Reperfusion Injury. Front Mol Neurosci 2022; 15:847440. [PMID: 35600078 PMCID: PMC9122020 DOI: 10.3389/fnmol.2022.847440] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.
Collapse
Affiliation(s)
- Lixia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingjuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianzhu Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhou
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Houping Xu
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang
| |
Collapse
|
38
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
39
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
40
|
Zhao B, Jiang X. hsa-miR-518-5p/hsa-miR-3135b Regulates the REL/SOD2 Pathway in Ischemic Cerebral Infarction. Front Neurol 2022; 13:852013. [PMID: 35481271 PMCID: PMC9038098 DOI: 10.3389/fneur.2022.852013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
ObjectivesIschemic cerebral infarction (ICI) is a fatal neurovascular disorder. A bioinformatics approach based on single-cell and bulk RNA-seq analyses was applied to investigate the pathways and genes involved in ICI and study the expression profile of these genes.MethodsFirst, the aberrantly regulated “small-molecule ribonucleic acids” [microRNA (miRNAs)] and messenger RNAs (mRNAs) were analyzed using transcriptome data from the ischemic brain infarction dataset of the Gene Expression Omnibus (GEO) database. In mouse cerebrovascular monocytes, the single-cell regulatory network inference and clustering (SCENIC) workflow was used to identify key transcription factors (TFs). Then, the two miRNA-TF-mRNA interaction networks were constructed. Moreover, the molecular complex detection (MCODE) extracted the core sub-networks and identified the important TFs within these sub-networks. Finally, whole blood samples were collected for validation of the expression of critical molecules in ICI.ResultsWe identified four cell types and 266 regulons in mouse cerebrovascular monocytes using SCENIC analysis. Moreover, 112 differently expressed miRNAs and 3,780 differentially expressed mRNAs were identified. We discovered potential biomarkers in ICI by building a miRNA-TF-mRNA interaction network. The hsa-miR-518-5p/hsa-miR-3135b/REL/SOD2 was found to play a potential role in ICI progression. The expression of REL and superoxide dismutase 2 (SOD2) was significantly elevated in the ICI group in the clinical cohort (P < 0.05). Furthermore, a REL expression was elevated in endothelial cells and fibroblasts at the single-cell level, indicating that REL is a cell-specific regulon. Functional enrichment analyses revealed that REL is primarily engaged in neurotransmitter activity and oxidative phosphorylation.ConclusionsOur research uncovered novel biomarkers for ICI of neurovascular disease. The hsa-miR-518-5p/hsa-miR-3135b may regulate the REL/SOD2 pathway in ICI progression.
Collapse
|
41
|
Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L. AGE-TXNIP axis drives inflammation in Alzheimer's by targeting Aβ to mitochondria in microglia. Cell Death Dis 2022; 13:302. [PMID: 35379773 PMCID: PMC8980056 DOI: 10.1038/s41419-022-04758-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE-TXNIP axis in neuroinflammation in relation to amyloid-beta (Aβ) burden in both in vivo and in vitro models. In the hippocampus of 5xFAD mice microglial activation, cytokine secretion, and glial fibrillary acidic protein-enhanced expression are paralleled with increased TXNIP expression. TXNIP silencing or its pharmacological inhibition prevents neuroinflammation in those mice. TXNIP is also associated with RAGE and Aβ. In particular, RAGE-TXNIP axis is required for targeting Aβ in mitochondria, leading to mitochondrial dysfunction and oxidative stress. Silencing of TXNIP or inhibition of RAGE activation reduces Aβ transport from the cellular surface to mitochondria, restores mitochondrial functionality, and mitigates Aβ toxicity. Furthermore, Aβ shuttling into mitochondria promotes Drp1 activation and exacerbates mitochondrial dysfunction, which induces NLRP3 inflammasome activation, leading to secretion of IL-1β and activation of the pyroptosis-associated protein Gasdermin D (GSDMD). Downregulation of RAGE-TXNIP axis inhibits Aβ-induced mitochondria dysfunction, inflammation, and induction of GSDMD. Herein we unveil a new pathway driven by TXNIP that links the mitochondrial transport of Aβ to the activation of Drp1 and the NLRP3 inflammasome, promoting the secretion of IL-1β and the pyroptosis pathway associated with GSDMD cleavage. Altogether these data shed new light on a novel mechanism of action of RAGE-TXNIP axis in microglia, which is intertwined with Aβ and ultimately causes mitochondria dysfunction and NLRP3 inflammasome cascade activation, suggesting TXNIP as a druggable target to be better deepened for AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Caminnov sas, Montpellier, France
- University Aix-Marseille, Marseille, France
| | | | - Antonia Auletta
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy.
| | - L Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.
- DKFZ, Department of Functional and Structural Genomics, Heidelberg, Germany.
- University of Poitiers, Poitiers, France.
| |
Collapse
|
42
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
43
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
44
|
Yang M, He Y, Deng S, Xiao L, Tian M, Xin Y, Lu C, Zhao F, Gong Y. Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke. Front Mol Neurosci 2022; 14:786099. [PMID: 35153669 PMCID: PMC8832032 DOI: 10.3389/fnmol.2021.786099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke is a devastating disease with high mortality and disability rates. Previous research has established that mitochondria, as major regulators, are both influenced by stroke, and further regulated the development of poststroke injury. Mitochondria are involved in several biological processes such as energy generation, calcium homeostasis, immune response, apoptosis regulation, and reactive oxygen species (ROS) generation. Meanwhile, mitochondria can evolve into various quality control systems, including mitochondrial dynamics (fission and fusion) and mitophagy, to maintain the homeostasis of the mitochondrial network. Various activities of mitochondrial fission and fusion are associated with mitochondrial integrity and neurological injury after stroke. Additionally, proper mitophagy seems to be neuroprotective for its effect on eliminating the damaged mitochondria, while excessive mitophagy disturbs energy generation and mitochondria-associated signal pathways. The balance between mitochondrial dynamics and mitophagy is more crucial than the absolute level of each process. A neurovascular unit (NVU) is a multidimensional system by which cells release multiple mediators and regulate diverse signaling pathways across the whole neurovascular network in a way with a high dynamic interaction. The turbulence of mitochondrial quality control (MQC) could lead to NVU dysfunctions, including neuron death, neuroglial activation, blood–brain barrier (BBB) disruption, and neuroinflammation. However, the exact changes and effects of MQC on the NVU after stroke have yet to be fully illustrated. In this review, we will discuss the updated mechanisms of MQC and the pathophysiology of mitochondrial dynamics and mitophagy after stroke. We highlight the regulation of MQC as a potential therapeutic target for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaocheng Lu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng Zhao,
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Ye Gong,
| |
Collapse
|
45
|
Rojas-Morales P, León-Contreras JC, Sánchez-Tapia M, Silva-Palacios A, Cano-Martínez A, González-Reyes S, Jiménez-Osorio AS, Hernández-Pando R, Osorio-Alonso H, Sánchez-Lozada LG, Tovar AR, Pedraza-Chaverri J, Tapia E. A ketogenic diet attenuates acute and chronic ischemic kidney injury and reduces markers of oxidative stress and inflammation. Life Sci 2022; 289:120227. [PMID: 34921866 DOI: 10.1016/j.lfs.2021.120227] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.
Collapse
Affiliation(s)
- Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Susana González-Reyes
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico.
| |
Collapse
|
46
|
Poff AM, Moss S, Soliven M, D'Agostino DP. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front Nutr 2022; 8:783659. [PMID: 35004814 PMCID: PMC8734638 DOI: 10.3389/fnut.2021.783659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Diverse neurological disorders are associated with a deficit in brain energy metabolism, often characterized by acute or chronic glucose hypometabolism. Ketones serve as the brain's only significant alternative fuel and can even become the primary fuel in conditions of limited glucose availability. Thus, dietary supplementation with exogenous ketones represents a promising novel therapeutic strategy to help meet the energetic needs of the brain in an energy crisis. Preliminary evidence suggests ketosis induced by exogenous ketones may attenuate damage or improve cognitive and motor performance in neurological conditions such as seizure disorders, mild cognitive impairment, Alzheimer's disease, and neurotrauma.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sara Moss
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maricel Soliven
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
47
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
48
|
Ketogenic Diet as a potential treatment for traumatic brain injury in mice. Sci Rep 2021; 11:23559. [PMID: 34876621 PMCID: PMC8651717 DOI: 10.1038/s41598-021-02849-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a brain dysfunction without present treatment. Previous studies have shown that animals fed ketogenic diet (KD) perform better in learning tasks than those fed standard diet (SD) following brain injury. The goal of this study was to examine whether KD is a neuroprotective in TBI mouse model. We utilized a closed head injury model to induce TBI in mice, followed by up to 30 days of KD/SD. Elevated levels of ketone bodies were confirmed in the blood following KD. Cognitive and behavioral performance was assessed post injury and molecular and cellular changes were assessed within the temporal cortex and hippocampus. Y-maze and Novel Object Recognition tasks indicated that mTBI mice maintained on KD displayed better cognitive abilities than mTBI mice maintained on SD. Mice maintained on SD post-injury demonstrated SIRT1 reduction when compared with uninjured and KD groups. In addition, KD management attenuated mTBI-induced astrocyte reactivity in the dentate gyrus and decreased degeneration of neurons in the dentate gyrus and in the cortex. These results support accumulating evidence that KD may be an effective approach to increase the brain’s resistance to damage and suggest a potential new therapeutic strategy for treating TBI.
Collapse
|
49
|
Ko A, Kwon HE, Kim HD. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed J 2021; 45:19-26. [PMID: 34808422 PMCID: PMC9133260 DOI: 10.1016/j.bj.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat, instead of glucose, acts as a major energy source through the production of ketone bodies. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. Recent clinical and scientific knowledge supports the use of the KD in drug-resistant epilepsy patients for its anti-seizure efficacy, safety, and tolerability. The KD is also receiving growing attention as a potential treatment option for other neurological disorders. This article will review on the recent updates on the KD, focusing on its mechanisms of action, its alternatives, expansion on its use in terms of age groups and different regions in the world, and future issues.
Collapse
Affiliation(s)
- Ara Ko
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hye Eun Kwon
- Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
50
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|