1
|
Lin Z, Luo X, Wickman JR, Reddy D, DaCunza JT, Pande R, Tian Y, Kasimoglu EE, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. Brain Behav Immun 2025; 123:422-441. [PMID: 39349284 DOI: 10.1016/j.bbi.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Current treatments for chronic pain have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs), or exosomes, to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can be beneficial or harmful depending on their source and cargo composition. We report a comprehensive multi-modal analysis of different aspects of sEV characterization, miRNAs, and protein markers across sEV sources. To investigate the short- and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model male donor mice were injected intrathecally into naïve male recipient mice. These sEVs transiently increased basal mechanical thresholds, an effect mediated by opioid signaling as this outcome was blocked by naltrexone. Mass spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. sEVs from naïve female mice have higher levels of leu-enkephalin compared to male, matching the analgesic onset of leu-enkephalin in male recipient mice. In investigating the long-term effect of sEVs, we observed that a single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. Our exploratory studies examining immune cell populations in spinal cord and dorsal root ganglion using ChipCytometry suggested alterations in immune cell populations 14 days post-CFA. Flow cytometry confirmed increases in CD206+ macrophages in the spinal cord in sEV-treated mice. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason R Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason T DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Ezgi E Kasimoglu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA.
| |
Collapse
|
2
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
3
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Ege E, Briggi D, Vu P, Cheng J, Lin F, Xu J. Targeting dorsal root ganglia for chemotherapy-induced peripheral neuropathy: from bench to bedside. Ther Adv Neurol Disord 2024; 17:17562864241252718. [PMID: 39318973 PMCID: PMC11421407 DOI: 10.1177/17562864241252718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition affecting an increasing number of cancer survivors worldwide. However, insights into its pathophysiology and availability of effective therapies remain lacking. Dorsal root ganglia (DRG) have been studied as a key component of chemotherapeutic drug toxicity and a potential therapeutic target for CIPN treatment. This comprehensive review aims to synthesize, summarize, and correlate the results of both preclinical and clinical studies relevant to the pathophysiology and management of CIPN in relation to the DRG. Design: Review. A thorough literature search was conducted using the terms 'dorsal root ganglion' and 'chemotherapy-induced peripheral neuropathy', along with appropriate variations. Searched databases included PubMed, EMBASE, Medline, Cochrane Library, Wiley Library, and Web of Science. Inclusion criteria targeted all English language, peer-reviewed original research from the inception of these databases to the present year. Review articles, book chapters, and other nonoriginal publications were excluded. Of 134 relevant studies identified, the majority were preclinical studies elucidating how various chemotherapeutic agents, especially taxanes, disrupt neurotransmission, inflammatory processes, and apoptotic pathways within sensory neurons of DRG. Not only do these effects correlate with the presentation of CIPN, but their disruption has also been shown to reduce CIPN symptoms in preclinical models. However, clinical studies addressing DRG interventions are very limited in number and scope at this time. These results reveal various pathways within DRG that may be effective targets for CIPN treatment. While limited, clinical studies do offer promise in the utility of DRG neuromodulation in managing painful CIPN. In the future, clinical trials are needed to assess interventions aimed at these neuronal and nonneuronal pathological targets to better treat this complex condition.
Collapse
Affiliation(s)
- Eliana Ege
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Briggi
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Peter Vu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Jijun Xu
- Department of Pain Management and Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
7
|
Ma J, Subramaniam P, Yancey JR, Farrington AA, McGlade EC, Renshaw PF, Yurgelun-Todd DA. Elevated circulating soluble interleukin-2 receptor (sCD25) level is associated with prefrontal excitatory-inhibitory imbalance in individuals with chronic pain: A proton MRS study. Brain Behav Immun 2024; 120:1-9. [PMID: 38772429 PMCID: PMC11269041 DOI: 10.1016/j.bbi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/29/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Aberrant neuronal excitability in the anterior cingulate cortex (ACC) is implicated in cognitive and affective pain processing. Such excitability may be amplified by activated circulating immune cells, including T lymphocytes, that interact with the central nervous system. Here, we conducted a study of individuals with chronic pain using magnetic resonance spectroscopy (MRS) to investigate the clinical evidence for the interaction between peripheral immune activation and prefrontal excitatory-inhibitory imbalance. In thirty individuals with chronic musculoskeletal pain, we assessed markers of peripheral immune activation, including soluble interleukin-2 receptor alpha chain (sCD25) levels, as well as brain metabolites, including Glx (glutamate + glutamine) to GABA+ (γ-aminobutyric acid + macromolecules/homocarnosine) ratio in the ACC. We found that the circulating level of sCD25 was associated with prefrontal Glx/GABA+. Greater prefrontal Glx/GABA+ was associated with higher pain catastrophizing, evaluative pain ratings, and anxiodepressive symptoms. Further, the interaction effect of sCD25 and prefrontal Glx/GABA+ on pain catastrophizing was significant, indicating the joint association of these two markers with pain catastrophizing. Our results provide the first evidence suggesting that peripheral T cellular activation, as reflected by elevated circulating sCD25 levels, may be linked to prefrontal excitatory-inhibitory imbalance in individuals with chronic pain. The interaction between these two systems may play a role as a potential mechanism underlying pain catastrophizing. Further prospective and treatment studies are needed to elucidate the specific role of the immune and brain interaction in pain catastrophizing.
Collapse
Affiliation(s)
- Jiyoung Ma
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Punitha Subramaniam
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James R Yancey
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Amy A Farrington
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Erin C McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Deborah A Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Garg K, Thoma A, Avramovic G, Gilbert L, Shawky M, Ray MR, Lambert JS. Biomarker-Based Analysis of Pain in Patients with Tick-Borne Infections before and after Antibiotic Treatment. Antibiotics (Basel) 2024; 13:693. [PMID: 39199993 PMCID: PMC11350843 DOI: 10.3390/antibiotics13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne illnesses (TBIs), especially those caused by Borrelia, are increasingly prevalent worldwide. These diseases progress through stages of initial localization, early spread, and late dissemination. The final stage often leads to post-treatment Lyme disease syndrome (PTLDS) or chronic Lyme disease (CLD), characterized by persistent and non-specific multisystem symptoms affecting multiple systems, lasting over six months after antibiotic therapy. PTLDS significantly reduces functional ability, with 82-96% of patients experiencing pain, including arthritis, arthralgia, and myalgia. Inflammatory markers like CRP and TNF-alpha indicate ongoing inflammation, but the link between chronic pain and other biomarkers is underexplored. This study examined the relationship between pain and biomarkers in TBI patients from an Irish hospital and their response to antibiotic treatment. Pain ratings significantly decreased after antibiotic treatment, with median pain scores dropping from 7 to 5 (U = 27215.50, p < 0.001). This suggests a persistent infection responsive to antibiotics. Age and gender did not influence pain ratings before and after treatment. The study found correlations between pain ratings and biomarkers such as transferrin, CD4%, platelets, and neutrophils. However, variations in these biomarkers did not significantly predict pain changes when considering biomarkers outside the study. These findings imply that included biomarkers do not directly predict pain changes, possibly indicating allostatic load in symptom variability among long-term TBI patients. The study emphasizes the need for appropriate antibiotic treatment for TBIs, highlighting human rights issues related to withholding pain relief.
Collapse
Affiliation(s)
- Kunal Garg
- Te?ted Oy, 40100 Jyväskylä, Finland; (K.G.); (L.G.)
| | - Abbie Thoma
- Department of Infectious Diseases, Catherine Mc Auley Education & Research Centre, Mater Misericordiae University Hospital, 21 Nelson Street, Dublin 7, D07 A8NN Dublin, Ireland; (A.T.); (G.A.)
| | - Gordana Avramovic
- Department of Infectious Diseases, Catherine Mc Auley Education & Research Centre, Mater Misericordiae University Hospital, 21 Nelson Street, Dublin 7, D07 A8NN Dublin, Ireland; (A.T.); (G.A.)
| | | | - Marc Shawky
- Université de Technologie de Compiègne, Costech Laboratory, Alliance Sorbonne Université, Centre de Recherches, 60203 Compiègne, France
| | - Minha Rajput Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perth PH2 8EH, UK;
| | - John Shearer Lambert
- Department of Infectious Diseases, Catherine Mc Auley Education & Research Centre, Mater Misericordiae University Hospital, 21 Nelson Street, Dublin 7, D07 A8NN Dublin, Ireland; (A.T.); (G.A.)
- Catherine Mc Auley Education & Research Centre, University College Dublin, 21 Nelson Street, Dublin 7, D07 A8NN Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| |
Collapse
|
9
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
10
|
Midavaine É, Brouillette RL, Théberge E, Mona CE, Kashem SW, Côté J, Zeugin V, Besserer-Offroy É, Longpré JM, Marsault É, Sarret P. Discovery of a CCR2-targeting pepducin therapy for chronic pain. Pharmacol Res 2024; 205:107242. [PMID: 38823470 DOI: 10.1016/j.phrs.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Rebecca L Brouillette
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Elizabeth Théberge
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine E Mona
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sakeen W Kashem
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jérôme Côté
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Vera Zeugin
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
11
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
13
|
Lin Z, Luo X, Wickman JR, Reddy D, Pande R, Tian Y, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.578759. [PMID: 38405813 PMCID: PMC10888877 DOI: 10.1101/2024.02.16.578759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta, T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
14
|
Waarala ZM, Comins L, Laumet S, Folger JK, Laumet G. Massage-like stroking produces analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100149. [PMID: 38226332 PMCID: PMC10788302 DOI: 10.1016/j.ynpai.2023.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Chronic pain treatment remains a major challenge and pharmacological interventions are associated with important side effects. Manual medicine treatments such as massage, acupuncture, manipulation of the fascial system (MFS), and osteopathic manipulative treatments produce pain relief in humans, but the underlying mechanism is poorly understood limiting leverage and optimization of manual medicine techniques as safe pain therapy. To decipher the physiological mechanisms of manipulative medicine treatments, we have established a preclinical model. Here, we established a murine model of massage-like stroking (MLS)-induced analgesia. We characterized that the analgesia effects were present in both sexes, and were independent of the experimenters, handling, consciousness, and opioid receptors. MLS alleviates thermal pain in naive mice and postoperative pain hypersensitivity. This novel model will allow discovery of the physiological mechanisms involved in MLS-induced analgesia and identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Zachary M.S. Waarala
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Logan Comins
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
16
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
17
|
Mangnus TJP, Bharwani KD, Dik WA, Baart SJ, Dirckx M, Huygen FJPM. Is there an association between serum soluble interleukin-2 receptor levels and syndrome severity in persistent Complex Regional Pain Syndrome? PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1234-1243. [PMID: 37335874 PMCID: PMC10628980 DOI: 10.1093/pm/pnad081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE A potentially useful biomarker for Complex Regional Pain Syndrome (CRPS) is the serum soluble interleukin-2 receptor (sIL-2R) level, which is a marker for T-cell activation. Elevated serum sIL-2R levels have been described in CRPS patients compared to healthy controls. In T-cell mediated inflammatory diseases such as sarcoidosis and rheumatoid arthritis, the serum sIL-2R levels correlate with disease severity. In this study, we investigate whether an association exists between serum sIL-2R levels in CRPS patients and CRPS severity. METHODS A cross-sectional cohort study was conducted in a tertiary pain referral center in the Netherlands. Adult CRPS patients diagnosed by the IASP criteria were included between October 2018 until October 2022. The main study parameters were serum sIL-2R levels and the CRPS severity score. RESULTS Fifty-three CRPS patients were included with a mean syndrome duration of 84 months (Q3 - Q1:180 - 48). The majority had persistent CRPS with a syndrome duration >1 year (n = 52, 98%). The median pain Numerical Rating Score (NRS) was 7 (Q3 - Q1: 8 - 5) and the mean CRPS severity score was 11 (SD ± 2.3). The median serum sIL-2R level was 330 U/mL (Q3 - Q1:451 - 256). No statistically significant correlation was observed between serum sIL-2R levels and the CRPS severity score (rs = 0.15, P = .28). CONCLUSIONS Our findings suggest that serum sIL-2R levels cannot be used as a biomarker for syndrome severity in persistent CRPS (syndrome duration >1 year). Serial measurements of serum sIL-2R from early CRPS to persistent CRPS are needed to investigate whether serum sIL-2R levels can be used to monitor T-cell mediated inflammatory syndrome activity.
Collapse
Affiliation(s)
- Thomas J P Mangnus
- Department of Anesthesiology, Center for Pain Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Krishna D Bharwani
- Department of Anesthesiology, Center for Pain Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sara J Baart
- Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maaike Dirckx
- Department of Anesthesiology, Center for Pain Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frank J P M Huygen
- Department of Anesthesiology, Center for Pain Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Fiore NT, Keating BA, Chen Y, Williams SI, Moalem-Taylor G. Differential Effects of Regulatory T Cells in the Meninges and Spinal Cord of Male and Female Mice with Neuropathic Pain. Cells 2023; 12:2317. [PMID: 37759539 PMCID: PMC10527659 DOI: 10.3390/cells12182317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis. In this study, we utilised intrathecal adoptive transfer of activated Tregs in male and female mice after peripheral nerve injury to investigate Treg migration and whether Treg-mediated suppression of pain behaviours is associated with changes in peripheral immune cell populations in lymphoid and meningeal tissues and spinal microglial and astrocyte reactivity and phenotypes. Treatment with Tregs suppressed mechanical pain hypersensitivity and improved changes in exploratory behaviours after chronic constriction injury (CCI) of the sciatic nerve in both male and female mice. The injected Treg cells were detected in the choroid plexus and the pia mater and in peripheral lymphoid organs in both male and female recipient mice. Nonetheless, Treg treatment resulted in differential changes in meningeal and lymph node immune cell profiles in male and female mice. Moreover, in male mice, adoptive transfer of Tregs ameliorated the CCI-induced increase in microglia reactivity and inflammatory phenotypic shift, increasing M2-like phenotypic markers and attenuating astrocyte reactivity and neurotoxic astrocytes. Contrastingly, in CCI female mice, Treg injection increased astrocyte reactivity and neuroprotective astrocytes. These findings show that the adoptive transfer of Tregs modulates meningeal and peripheral immunity, as well as spinal glial populations, and alleviates neuropathic pain, potentially through different mechanisms in males and females.
Collapse
Affiliation(s)
| | | | | | | | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (N.T.F.); (B.A.K.); (Y.C.); (S.I.W.)
| |
Collapse
|
19
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
20
|
Patel NP, Bates CM, Patel A. Developmental Approaches to Chronic Pain: A Narrative Review. Cureus 2023; 15:e45238. [PMID: 37842431 PMCID: PMC10576536 DOI: 10.7759/cureus.45238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Chronic pain, which can potentially develop from acute pain, subacute pain, or breakthrough pain, is generally defined as pain persisting for greater than three months with minimal relief. Chronic pain can be associated with a myriad of medical conditions. It is also one of the most common causes of disability, physical suffering, depression, and reduced quality of life. Treatment can vary depending on the underlying pathophysiology and can involve physical therapy, non-pharmaceutical approaches, pharmaceutical drugs, and invasive procedures. Currently available pharmaceutical agents have been effective for short-term management of chronic pain conditions, but few options address chronic pain with long-term efficacy. First-line pharmaceutical agents can potentially include over-the-counter (OTC) or prescription-strength non-steroidal anti-inflammatory drugs (NSAIDs), which have been linked to numerous side effects. If chronic pain persists, steroids are frequently used to provide longer relief. For more progressive or resistant chronic pain and/or in conjunction with invasive procedures, opioids have been utilized for acute treatment and for long-term maintenance. While these agents have proven to be effective for both acute and long-term use due to their modulation at various peripheral and central opioid receptors, they can be associated with numerous side effects and tied to the risk of addiction. As such, an unmet need exists to identify treatment modalities that provide opioid-like pain relief without opioid-induced adverse effects and the potential for addiction. This narrative review will provide an overview of the currently available treatment modalities for chronic pain and their adverse event profiles, as well as a review of therapies that are currently in development and/or preclinical trials for the management and treatment of chronic pain.
Collapse
Affiliation(s)
- Nikita P Patel
- College of Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Chad M Bates
- College of Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Aakash Patel
- Anesthesiology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, USA
| |
Collapse
|
21
|
Clemente-Napimoga JT, Mendes V, Trindade-da-Silva CA, Carvalho GD, Paranhos ACGA, Andrade E Silva F, Buarque E Silva WA, Napimoga MH, Abdalla HB. Experimental traumatic occlusion drives immune changes in trigeminal ganglion. Int Immunopharmacol 2023; 122:110674. [PMID: 37481846 DOI: 10.1016/j.intimp.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1β in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.
Collapse
Affiliation(s)
| | - Vagner Mendes
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Gustavo de Carvalho
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Inyang KE, Sim J, Clark KB, Matan G, Monahan K, Evans C, Beng P, Ma JV, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen Y, Folger JK, Laumet G. Tonic Meningeal Interleukin-10 Upregulates Delta Opioid Receptor to Prevent Relapse to Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544200. [PMID: 37333074 PMCID: PMC10274865 DOI: 10.1101/2023.06.08.544200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic pain often alternates between transient remission and relapse of severe pain. While most research on chronic pain has focused on mechanisms maintaining pain, there is a critical unmet need to understand what prevents pain from re-emerging in those who recover from acute pain. We found that interleukin (IL)-10, a pain resolving cytokine, is persistently produced by resident macrophages in the spinal meninges during remission from pain. IL-10 upregulated expression and analgesic activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of IL-10 signaling or δOR triggered relapse to pain in both sexes. These data challenge the widespread assumption that remission of pain is simply a return to the naïve state before pain was induced. Instead, our findings strongly suggest a novel concept that: remission is a state of lasting pain vulnerability that results from a long-lasting neuroimmune interactions in the nociceptive system.
Collapse
|
23
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Hu Y, Chen Y, Liu T, Zhu C, Wan L, Yao W. The bidirectional roles of the cGAS-STING pathway in pain processing: Cellular and molecular mechanisms. Biomed Pharmacother 2023; 163:114869. [PMID: 37182515 DOI: 10.1016/j.biopha.2023.114869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Pain is a common clinical condition. However, the mechanisms underlying pain are not yet fully understood. It is known that the neuroimmune system plays a critical role in the pathogenesis of pain. Recent studies indicated that the cyclic-GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway can activate the innate immune system by sensing both extrinsic and intrinsic double-stranded DNA in the cytoplasm, which is involved in pain processing. In this review, we summarise (1) the roles of the cGAS-STING pathway in different pain models, (2) the effect of the cGAS-STING pathway in different cells during pain regulation, and (3) the downstream molecular mechanisms of the cGAS-STING pathway in pain regulation. This review provides evidence that the cGAS-STING pathway has pro- and anti-nociceptive effects in pain models. It has different functions in neuron, microglia, macrophage, and T cells. Its downstream molecules include IFN-I, NF-κB, NLRP3, and eIF2α. The bidirectional roles of the cGAS-STING pathway in pain processing are mediated by regulating nociceptive neuronal sensitivity and neuroinflammatory responses. However, their effects in special brain regions, activation of astrocytes, and the different phases of pain require further exploration.
Collapse
Affiliation(s)
- Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Wan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
25
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
26
|
Sankaranarayanan I, Tavares-Ferreira D, Mwirigi JM, Mejia GL, Burton MD, Price TJ. Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice. J Neuroinflammation 2023; 20:32. [PMID: 36774519 PMCID: PMC9922469 DOI: 10.1186/s12974-023-02719-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a primary dose-limiting side effect caused by antineoplastic agents, such as paclitaxel. A primary symptom of this neuropathy is pain. Currently, there are no effective treatments for CIPN, which can lead to long-term morbidity in cancer patients and survivors. Neuro-immune interactions occur in CIPN pain and have been implicated both in the development and progression of pain in CIPN and the resolution of pain in CIPN. We investigated the potential role of inducible co-stimulatory molecule (ICOS) in the resolution of CIPN pain-like behaviors in mice. ICOS is an immune checkpoint molecule that is expressed on the surface of activated T cells and promotes proliferation and differentiation of T cells. We found that intrathecal administration of ICOS agonist antibody (ICOSaa) alleviates mechanical hypersensitivity caused by paclitaxel and facilitates the resolution of mechanical hypersensitivity in female mice. Administration of ICOSaa reduced astrogliosis in the spinal cord and satellite cell gliosis in the DRG of mice previously treated with paclitaxel. Mechanistically, ICOSaa intrathecal treatment promoted mechanical hypersensitivity resolution by increasing interleukin 10 (IL-10) expression in the dorsal root ganglion. In line with these observations, blocking IL-10 receptor (IL-10R) activity occluded the effects of ICOSaa treatment on mechanical hypersensitivity in female mice. Suggesting a broader activity in neuropathic pain, ICOSaa also partially resolved mechanical hypersensitivity in the spared nerve injury (SNI) model. Our findings support a model wherein ICOSaa administration induces IL-10 expression to facilitate neuropathic pain relief in female mice. ICOSaa treatment is in clinical development for solid tumors and given our observation of T cells in the human DRG, ICOSaa therapy could be developed for combination chemotherapy-CIPN clinical trials.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Diana Tavares-Ferreira
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Juliet M. Mwirigi
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Galo L. Mejia
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Michael D. Burton
- grid.267323.10000 0001 2151 7939Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| |
Collapse
|
27
|
Lenert ME, Szabo-Pardi TA, Burton MD. Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain. Mol Pain 2023; 19:17448069221110691. [PMID: 35712872 PMCID: PMC9926397 DOI: 10.1177/17448069221110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by TH2-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory Thelper-cells (CD4+ FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8+ T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.
Collapse
Affiliation(s)
| | | | - Michael D Burton
- Michael D Burton, Neuroimmunology and Behavior Lab, Department of Neuroscience, School of Brain and Behavioral Science, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Rd., BSB 10.546, Richardson, TX 75080, USA.
| |
Collapse
|
28
|
Yeh CH, Lukkahatai N, Huang X, Wu H, Wang H, Zhang J, Sun X, Smith TJ. Biological Correlates of the Effects of Auricular Point Acupressure on Pain. Pain Manag Nurs 2023; 24:19-26. [PMID: 36543665 PMCID: PMC9928890 DOI: 10.1016/j.pmn.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND To identify candidate inflammatory biomarkers for the underlying mechanism of auricular point acupressure (APA) on pain relief and examine the correlations among pain intensity, interference, and inflammatory biomarkers. DESIGN This is a secondary data analysis. METHODS Data on inflammatory biomarkers collected via blood samples and patient self-reported pain intensity and interference from three pilot studies (chronic low back pain, n = 61; arthralgia related to aromatase inhibitors, n = 20; and chemotherapy-induced neuropathy, n = 15) were integrated and analyzed. This paper reports the results based on within-subject treatment effects (change in scores from pre- to post-APA intervention) for each study group (chronic low back pain, cancer pain), between-group differences (changes in scores from pre- to post-intervention between targeted-point APA [T-APA] and non-targeted-point APA [NT-APA]), and correlations among pain intensity, interference, and biomarkers. RESULTS Within-group analysis (the change score from pre- to post-APA) revealed statistically significant changes in three biomarkers: TNF-α (cancer pain in the APA group, p = .03), β-endorphin (back pain in the APA group, p = .04), and IL-2 (back pain in the NT-APA group, p = .002). Based on between-group analysis in patients with chronic low back pain (T-APA vs NT-APA), IL-4 had the largest effect size (0.35), followed by TNF-α (0.29). A strong positive monotonic relationship between IL-1β and IL-2 was detected. CONCLUSIONS The current findings further support the potential role of inflammatory biomarkers in the analgesic effects of APA. More work is needed to gain a comprehensive understanding of the underlying mechanisms of APA on chronic pain. Because it is simple, inexpensive, and has no negative side effects, APA can be widely disseminated as an alternative to opioids.
Collapse
Affiliation(s)
- Chao Hsing Yeh
- University of Texas Health Science Center at Houston Cizik School of Nursing.
| | | | - Xinran Huang
- University of Texas Health Science Center Houston School of Public Health
| | - Hulin Wu
- University of Texas Health Science Center Houston School of Public Health
| | - Hongyu Wang
- University of Texas Health Science Center at Houston Cizik School of Nursing; University of Texas Health Science Center at Houston, McGovern Medical School
| | - Jingyu Zhang
- Johns Hopkins University Krieger School of Arts and Sciences
| | - Xinyi Sun
- Johns Hopkins University Krieger School of Arts and Sciences
| | | |
Collapse
|
29
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Lesnak JB, Berardi G, Sluka KA. Influence of routine exercise on the peripheral immune system to prevent and alleviate pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100126. [PMID: 37179769 PMCID: PMC10173010 DOI: 10.1016/j.ynpai.2023.100126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Routine physical activity reduces the onset of pain and exercise is a first line treatment for individuals who develop chronic pain. In both preclinical and clinical research regular exercise (routine exercise sessions) produces pain relief through multiple mechanisms such as alterations in the central and peripheral nervous system. More recently, it has been appreciated that exercise can also alter the peripheral immune system to prevent or reduce pain. In animal models, exercise can alter the immune system at the site of injury or pain model induction, in the dorsal root ganglia, and systemically throughout the body to produce analgesia. Most notably exercise shows the ability to dampen the presence of pro-inflammatory immune cells and cytokines at these locations. Exercise decreases M1 macrophages and the cytokines IL-6, IL-1β, and TFNα, while increasing M2 macrophages and the cytokines IL-10, IL-4, and IL-1ra. In clinical research, a single bout of exercise produces an acute inflammatory response, however repeated training can lead to an anti-inflammatory immune profile leading to symptom relief. Despite the clinical and immune benefits of routine exercise, the direct effect of exercise on immune function in clinical pain populations remains unexplored. This review will discuss in more detail the preclinical and clinical research which demonstrates the numerous ways through which multiple types of exercise alter the peripheral immune system. This review closes with the clinical implications of these findings along with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
- Corresponding author.
| |
Collapse
|
31
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Mukai M, Uchida K, Inoue G, Satoh M, Miyagi M, Yokozeki Y, Hirosawa N, Matsuura Y, Ohtori S, Takaso M. Nerve decompression surgery suppresses TNF-ɑ expression and T cell infiltration in a rat sciatic nerve chronic constriction injury model. J Orthop Res 2022; 40:2537-2545. [PMID: 35072295 DOI: 10.1002/jor.25280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/16/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Decompression surgery (DS) is a standard treatment for chronic nerve compression injuries; however, the mechanisms underlying its effects remain unclear. Here, we investigated the effects of DS on messenger RNA (mRNA) expression of tumor necrosis factor-α (TNF-α) and T cell recruitment in a rat sciatic nerve (SN) chronic constriction injury (CCI) model. Male Wistar rats were subjected to CCI to establish a model of SN injury (CCI group). DS, in which all ligatures were removed, was performed 3 days after CCI surgery (CCI + dec group). Mechanical sensitivity was assessed using the von Frey test 3, 7, and 14 days after the CCI surgery. Gene expression of Tnfa, Cd3, Cxcl10, and immunolocalization of TNF-α and the pan T cell marker, CD3, was evaluated using quantitative polymerase chain reaction (qPCR) and immunohistochemistry, respectively. In addition, the effects of TNF-α on Cxcl10 expression and CXCL10 protein production were evaluated using qPCR and enzyme-linked immunosorbent assay in SN cell culture. Rats that received DS had significantly higher withdrawal threshold levels than those in the CCI group. In addition, Tnfa, Cd3, and Cxcl10 mRNA expression increased following CCI. DS suppressed this elevated expression, with the CCI + dec group showing significantly reduced expression levels compared to the CCI group. Furthermore, TNF-α induced Cxcl10 expression and CXCL10 protein production in SN cell culture. Therefore, DS reduced TNF-α expression and T cell recruitment in the rat SN CCI model. These observations may partly explain the mechanism underlying the therapeutic effects of DS.
Collapse
Affiliation(s)
- Michiaki Mukai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki City, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
33
|
Chow SYA, Nakayama K, Osaki T, Sugiyama M, Yamada M, Takeuchi H, Ikeuchi Y. Human sensory neurons modulate melanocytes through secretion of RGMB. Cell Rep 2022; 40:111366. [PMID: 36130522 DOI: 10.1016/j.celrep.2022.111366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Melanocytes are surrounded by diverse cells, including sensory neurons in our skin, but their interaction and functional importance have been poorly investigated. In this study, we find that melanocytes and nociceptive neurons contact more in human skin color patch tissue than control. Co-culture with human iPSC-derived sensory neurons significantly induces morphogenesis and pigmentation of human melanocytes. To reveal melanocyte-stimulating factors secreted from neurons, we perform proteomic analyses and identify RGMB in the sensory neuron-conditioned medium. RGMB protein induces morphogenesis and melanin production of melanocytes, demonstrating that RGMB is a melanocyte-stimulating factor released from sensory neurons. Transcriptome analysis suggests that the melanosome transport machinery can be controlled by RGMB, leading us to identify the vesicle production response of melanocytes upon RGMB treatment. This study discovers a role of sensory neurons in modulating multiple aspects of human melanocytes through secretion of a key factor: RGMB.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuki Nakayama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Maki Sugiyama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Maiko Yamada
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Hirotaka Takeuchi
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Nees TA, Zhang JA, Platzer H, Walker T, Reiner T, Tripel E, Moradi B, Rosshirt N. Infiltration Profile of Regulatory T Cells in Osteoarthritis-Related Pain and Disability. Biomedicines 2022; 10:2111. [PMID: 36140212 PMCID: PMC9495462 DOI: 10.3390/biomedicines10092111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/15/2023] Open
Abstract
Emerging evidence indicates that regulatory T cells (Treg) intervene in the inflammatory processes that drive osteoarthritis (OA). However, whether polarized Tregs affect clinical features of the disease in the short- or long-term, and if so, what their role in OA-related pain and functional disability really is, remains elusive. Thus, the aim of the current study was to characterize the infiltration profile of Tregs in systemic (peripheral blood) and joint-derived (synovial fluid and synovial membrane) samples from patients with knee OA in relation to OA-induced symptoms. To this end, Treg infiltration (CD4+CD25+/high CD127low/-) was analyzed in matched samples of peripheral blood (PB), synovial fluid (SF) and synovial membrane (SM) from a total of 47 patients undergoing elective knee arthroplasty using flow cytometry. At the same time, knee pain and function were assessed and correlated with Treg proportions in different compartments (PB, SF, SM). Interestingly, matched-pair analysis revealed significantly higher Treg proportions in joint-derived samples than in PB, which was mainly attributed to the high Treg frequency in SF. Moreover, we found significant associations between infiltrating Tregs and OA-related symptoms which indicate that lower Treg proportions-especially in the SM-are related to increased pain and functional disability in knee OA. In conclusion, this study highlights the importance of local cellular inflammatory processes in OA pathology. Intra-articular Treg infiltration might play an important role not only in OA pathogenesis but also in the development of OA-related symptoms.
Collapse
Affiliation(s)
- Timo Albert Nees
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Jiji Alexander Zhang
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Hadrian Platzer
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Tilman Walker
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Tobias Reiner
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Elena Tripel
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Babak Moradi
- Clinic for Orthopedics and Trauma Surgery, University Hospital Kiel, 24105 Kiel, Germany
| | - Nils Rosshirt
- Department of Orthopedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| |
Collapse
|
35
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Guida F, Iannotta M, Misso G, Ricciardi F, Boccella S, Tirino V, Falco M, Desiderio V, Infantino R, Pieretti G, de Novellis V, Papaccio G, Luongo L, Caraglia M, Maione S. Long-term neuropathic pain behaviors correlate with synaptic plasticity and limbic circuit alteration: a comparative observational study in mice. Pain 2022; 163:1590-1602. [PMID: 34862336 PMCID: PMC9341227 DOI: 10.1097/j.pain.0000000000002549] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gorizio Pieretti
- Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | - Livio Luongo
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| | | | - Sabatino Maione
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| |
Collapse
|
37
|
Nair AP, Sethu S, Nagaraj H, Kumar V, Nagaraj S, Fadli Z, Scales C, Chemaly M, Song XY, Ghosh A, Liang B. Ocular Surface Immune Cell Profiles in Contact Lens-Induced Discomfort. Transl Vis Sci Technol 2022; 11:16. [PMID: 35857328 PMCID: PMC9315072 DOI: 10.1167/tvst.11.7.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Contact lens–induced discomfort (CLD) remains a primary factor in discontinuation or prevention of contact lens wear. Thus, we investigated the role of ocular surface immune cells in subjects with CLD. Methods Habitual contact lens (CL) wearers with CLD (n = 19; 38 eyes) and without CLD (n = 21; 42 eyes) as determined by the Contact Lens Dry Eye Questionnaire-8 was included in a trial. Enrolled subjects used either of the two types of CL (designated as CL-A or CL-D). Ocular surface cells from the bulbar conjunctiva were obtained by impression cytology. The collected cells were phenotyped using fluorochrome-conjugated antibodies specific for leukocytes (CD45+), neutrophils (CD66b+,High,Low), macrophages (CD163+), T cells (CD3+CD4+, CD3+CD8+), natural killer (NK) cells (CD56+, High, Low), natural killer T (NKT) cells (CD3+CD56+), and gamma delta T (γδT) cells (CD3+γδTCR+) by flow cytometry. Further, corneal dendritic cell density (cDCD) was also determined using in vivo confocal microscopy. Results Significantly higher proportions of CD45+ cells were observed in subjects with CLD compared to those without CLD. The percentages of CD66bTotal,Low, CD163+, pan T cells, CD4+T cells, CD8+T cells, CD56Total,High,Low (NK) cells, and NKT cells, as well as the CD4/CD8 ratio, were significantly higher in CLD subjects. The proportion of T cells (CD4, CD8, CD4/CD8 ratio, NKT cells) and macrophages exhibited a direct association with discomfort score. The percentages of CD45+, CD66bTotal,Low, CD163+, CD3+, CD56Total,High,Low, and NKT cells and cDCD were significantly higher in CLD subjects wearing CL-D. The percentages of CD66bHigh, CD4+T cells, CD8+T cells, NKT cells, and CD4/CD8 ratio were significantly higher in CLD subjects wearing CL-A. Conclusions Increased proportions of ocular surface immune cells are observed in CLD, and the lens type could impact the immune cells associated with CLD. Translational Relevance The association between the proportion of altered ocular surface immune cell subsets and contact lens–induced discomfort underpins the importance of considering immune-related aspects during contact lens development and in the clinical management of ocular surface pain.
Collapse
Affiliation(s)
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Harsha Nagaraj
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Vijay Kumar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sriharsha Nagaraj
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Zohra Fadli
- Johnson & Johnson Vision, Jacksonville, FL, USA
| | | | | | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | | |
Collapse
|
38
|
Omics approaches to discover pathophysiological pathways contributing to human pain. Pain 2022; 163:S69-S78. [PMID: 35994593 PMCID: PMC9557800 DOI: 10.1097/j.pain.0000000000002726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 10/26/2022]
|
39
|
Gao Y, Mei C, Chen P, Chen X. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord. Int Immunopharmacol 2022; 107:108700. [DOI: 10.1016/j.intimp.2022.108700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
40
|
Deal B, Reynolds LM, Patterson C, Janjic JM, Pollock JA. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep 2022; 12:8472. [PMID: 35637203 PMCID: PMC9151909 DOI: 10.1038/s41598-022-12248-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain affects millions of people worldwide, yet the molecular mechanisms of how it develops and persists are poorly understood. Given that males have historically been utilized as the primary sex in preclinical studies, less is known about the female neuroinflammatory response to injury, formation of pain, or response to pain-relieving therapies. Macrophages contribute to the development of neuroinflammatory pain via the activation of their cyclooxygenase-2 (COX-2) enzyme, which leads to the production of prostaglandin E2 (PGE2). PGE2 activates nociception and influences additional leukocyte infiltration. Attenuation of COX-2 activity decreases inflammatory pain, most commonly achieved by nonsteroidal anti-inflammatory drugs (NSAIDs), yet NSAIDs are considered ineffective for neuropathic pain due to off target toxicity. Using chronic constriction injury of the rat sciatic nerve, we show that males and females exhibit quantitatively the same degree of mechanical allodynia post injury. Furthermore, a low-dose nanotherapeutic containing the NSAID celecoxib is phagocytosed by circulating monocytes that then naturally accumulate at sites of injury as macrophages. Using this nanotherapeutic, we show that treated males exhibit complete reversal of hypersensitivity, while the same dose of nanotherapeutic in females provides an attenuated relief. The difference in behavioral response to the nanotherapy is reflected in the reduction of infiltrating macrophages at the site of injury. The observations contained in this study reinforce the notion that female neuroinflammation is different than males.
Collapse
|
41
|
Santoni A, Santoni M, Arcuri E. Chronic Cancer Pain: Opioids within Tumor Microenvironment Affect Neuroinflammation, Tumor and Pain Evolution. Cancers (Basel) 2022; 14:2253. [PMID: 35565382 PMCID: PMC9104169 DOI: 10.3390/cancers14092253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Pain can be a devastating experience for cancer patients, resulting in decreased quality of life. In the last two decades, immunological and pain research have demonstrated that pain persistence is primarily caused by neuroinflammation leading to central sensitization with brain neuroplastic alterations and changes in pain responsiveness (hyperalgesia, and pain behavior). Cancer pain is markedly affected by the tumor microenvironment (TME), a complex ecosystem consisting of different cell types (cancer cells, endothelial and stromal cells, leukocytes, fibroblasts and neurons) that release soluble mediators triggering neuroinflammation. The TME cellular components express opioid receptors (i.e., MOR) that upon engagement by endogenous or exogenous opioids such as morphine, initiate signaling events leading to neuroinflammation. MOR engagement does not only affect pain features and quality, but also influences directly and/or indirectly tumor growth and metastasis. The opioid effects on chronic cancer pain are also clinically characterized by altered opioid responsiveness (tolerance and hyperalgesia), a hallmark of the problematic long-term treatment of non-cancer pain. The significant progress made in understanding the immune-mediated development of chronic pain suggests its exploitation for novel alternative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Macerata General Hospital, Via Santa Lucia 2, 62100 Macerata, Italy;
| | - Edoardo Arcuri
- IRCCS Regina Elena Cancer Institute, IFO, Via Elio Chianesi 53, 00128 Rome, Italy;
- Ars Medica Pain Clinic, Via Cesare Ferrero da Cambiano 29, 00191 Rome, Italy
| |
Collapse
|
42
|
Singh SK, Krukowski K, Laumet GO, Weis D, Alexander JF, Heijnen CJ, Kavelaars A. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 2022; 7:154194. [PMID: 35260535 PMCID: PMC8983134 DOI: 10.1172/jci.insight.154194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the endogenous mechanisms regulating resolution of pain may identify novel targets for treatment of chronic pain. Resolution of chemotherapy-induced peripheral neuropathy (CIPN) after treatment completion depends on CD8+ T cells and on IL-10 produced by other cells. Using Rag2–/– mice lacking T and B cells and adoptive transfer of Il13–/– CD8+ T cells, we showed that CD8+ T cells producing IL-13 were required for resolution of CIPN. Intrathecal administration of anti–IL-13 delayed resolution of CIPN and reduced IL-10 production by dorsal root ganglion macrophages. Depleting local CD206+ macrophages also delayed resolution of CIPN. In vitro, TIM3+CD8+ T cells cultured with cisplatin, apoptotic cells, or phosphatidylserine liposomes produced IL-13, which induced IL-10 in macrophages. In vivo, resolution of CIPN was delayed by intrathecal administration of anti-TIM3. Resolution was also delayed in Rag2–/– mice reconstituted with Havcr2 (TIM3)–/– CD8+ T cells. Our data indicated that cell damage induced by cisplatin activated TIM3 on CD8+ T cells, leading to increased IL-13 production, which in turn induced macrophage IL-10 production and resolution of CIPN. Development of exogenous activators of the IL-13/IL-10 pain resolution pathway may provide a way to treat the underlying cause of chronic pain.
Collapse
Affiliation(s)
- Susmita K Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Krukowski
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
| | - Geoffroy O Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Drew Weis
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenolyn F Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
43
|
Sandy-Hindmarch O, Bennett DL, Wiberg A, Furniss D, Baskozos G, Schmid AB. Systemic inflammatory markers in neuropathic pain, nerve injury, and recovery. Pain 2022; 163:526-537. [PMID: 34224495 PMCID: PMC7612369 DOI: 10.1097/j.pain.0000000000002386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
ABSTRACT The role that inflammation plays in human nerve injury and neuropathic pain is incompletely understood. Previous studies highlight the role of inflammation in the generation and maintenance of neuropathic pain, but the emerging evidence from the preclinical literature for its role in the resolution of neuropathic pain remains to be explored in humans. Here, we use carpal tunnel syndrome (CTS) as a human model system of nerve injury and neuropathic pain to determine changes in serum cytokine protein levels and gene expression levels before (active stage of disease) and after carpal tunnel decompression surgery (recovery). Fifty-five patients with CTS were studied, and 21 healthy age-matched and gender-matched participants served as controls. In the active stage of the disease (CTS before surgery vs healthy controls), PTGES2 mRNA was decreased in patients (adjusted P = 0.013), while transforming growth factor-β and C-C motif chemokine ligand 5 protein levels were increased (adjusted P = 0.016 and P = 0.047, respectively). In the resolution phase (CTS before surgery vs after surgery), IL-9 mRNA was increased after surgery (adjusted P = 0.014) and expression of IL-6 mRNA and IL-4 protein levels were increased before surgery (adjusted P = 0.034 and P = 0.002, respectively). IL-9 mRNA expression negatively correlated with several (neuropathic) pain scores. By contrast, protein levels of IL-4 positively correlated with pain scores. In conclusion, we demonstrate specific dysregulation of systemic cytokine expression in both the active and resolution phases of nerve injury and neuropathic pain. IL-9 represents an interesting candidate associated with resolution of nerve injury and neuropathic pain.
Collapse
Affiliation(s)
- Oliver Sandy-Hindmarch
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L Bennett
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Georgios Baskozos
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
45
|
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Front Immunol 2021; 12:781310. [PMID: 34795678 PMCID: PMC8593225 DOI: 10.3389/fimmu.2021.781310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
46
|
Galvin DA, C M. The role of T-lymphocytes in neuropathic pain initiation, development of chronicity and treatment. Brain Behav Immun Health 2021; 18:100371. [PMID: 34761242 PMCID: PMC8566770 DOI: 10.1016/j.bbih.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ongoing research has strongly suggested the role the immune system plays in the pathogenesis of neuropathic pain. T cells appear to be one of the main regulators of the immune system with many mediators appearing to promote or suppress pain resolution. Limited effective therapies are available for treatment of neuropathic pain. Treatments available appear to modulate specific T cell with altered ratios present 3 months post treatment and parallels clinical improvement. This further supports the neuro-immune basis for neuropathic pain chronicity. Identification of novel immune mediators involved in pain development may suggest new target areas in treatment. Neuroimmunity plays a significant role in neuropathic pain pathogenesis neuropathic pain. Immune mediators contribute to promotion, suppression or resolution of neuropathic pain. Clinical studies in humans are lacking, most research available is pre-clinical or animal-based. Evidence-based therapies for treatment of neuropathic pain demonstrate alteration in T cell phenotype and behavior post therapy.
Collapse
Affiliation(s)
- D A Galvin
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| | - McCrory C
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| |
Collapse
|
47
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
Epigenetic signature of chronic low back pain in human T cells. Pain Rep 2021; 6:e960. [PMID: 34746619 PMCID: PMC8568391 DOI: 10.1097/pr9.0000000000000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. This study reveals sex-specific DNA methylation signatures in human T cells that discriminate chronic low back pain participants from healthy controls. Objective: Determine if chronic low back pain (LBP) is associated with DNA methylation signatures in human T cells that will reveal novel mechanisms and potential therapeutic targets and explore the feasibility of epigenetic diagnostic markers for pain-related pathophysiology. Methods: Genome-wide DNA methylation analysis of 850,000 CpG sites in women and men with chronic LBP and pain-free controls was performed. T cells were isolated (discovery cohort, n = 32) and used to identify differentially methylated CpG sites, and gene ontologies and molecular pathways were identified. A polygenic DNA methylation score for LBP was generated in both women and men. Validation was performed in an independent cohort (validation cohort, n = 63) of chronic LBP and healthy controls. Results: Analysis with the discovery cohort revealed a total of 2,496 and 419 differentially methylated CpGs in women and men, respectively. In women, most of these sites were hypomethylated and enriched in genes with functions in the extracellular matrix, in the immune system (ie, cytokines), or in epigenetic processes. In men, a unique chronic LBP DNA methylation signature was identified characterized by significant enrichment for genes from the major histocompatibility complex. Sex-specific polygenic DNA methylation scores were generated to estimate the pain status of each individual and confirmed in the validation cohort using pyrosequencing. Conclusion: This study reveals sex-specific DNA methylation signatures in human T cells that discriminates chronic LBP participants from healthy controls.
Collapse
|
49
|
Murray I, Bhanot G, Bhargava A. Neuron-Glia-Immune Triad and Cortico-Limbic System in Pathology of Pain. Cells 2021; 10:cells10061553. [PMID: 34205372 PMCID: PMC8234386 DOI: 10.3390/cells10061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Pain is an unpleasant sensation that alerts one to the presence of obnoxious stimuli or sensations. These stimuli are transferred by sensory neurons to the dorsal root ganglia-spinal cord and finally to the brain. Glial cells in the peripheral nervous system, astrocytes in the brain, dorsal root ganglia, and immune cells all contribute to the development, maintenance, and resolution of pain. Both innate and adaptive immune responses modulate pain perception and behavior. Neutrophils, microglial, and T cell activation, essential components of the innate and adaptive immune responses, can play both excitatory and inhibitory roles and are involved in the transition from acute to chronic pain. Immune responses may also exacerbate pain perception by modulating the function of the cortical-limbic brain regions involved in behavioral and emotional responses. The link between an emotional state and pain perception is larger than what is widely acknowledged. In positive psychological states, perception of pain along with other somatic symptoms decreases, whereas in negative psychological states, these symptoms may worsen. Sex differences in mechanisms of pain perception are not well studied. In this review, we highlight what is known, controversies, and the gaps in this field.
Collapse
Affiliation(s)
- Isabella Murray
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
| | - Gayatri Bhanot
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Eleanor Roosevelt College, University of California San Diego, San Diego, CA 92122, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Correspondence: ; Tel.: +1-415-502-8453
| |
Collapse
|
50
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|