1
|
Long Z, Ge C, Zhao Y, Liu Y, Zeng Q, Tang Q, Dong Z, He G. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. Neural Regen Res 2025; 20:2633-2644. [PMID: 38993141 DOI: 10.4103/nrr.nrr-d-23-01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Chuanhua Ge
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qinghua Zeng
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qing Tang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Yashaswini C, Kiran NS, Chatterjee A. Zebrafish navigating the metabolic maze: insights into human disease - assets, challenges and future implications. J Diabetes Metab Disord 2025; 24:3. [PMID: 39697864 PMCID: PMC11649609 DOI: 10.1007/s40200-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Zebrafish (Danio rerio) have become indispensable models for advancing our understanding of multiple metabolic disorders such as obesity, diabetes mellitus, dyslipidemia, and metabolic syndrome. This review provides a comprehensive analysis of zebrafish as a powerful tool for dissecting the genetic and molecular mechanisms of these diseases, focusing on key genes, like pparγ, lepr, ins, and srebp. Zebrafish offer distinct advantages, including genetic tractability, optical transparency in early development, and the conservation of key metabolic pathways with humans. Studies have successfully used zebrafish to uncover conserved metabolic mechanisms, identify novel disease pathways, and facilitate high-throughput screening of potential therapeutic compounds. The review also highlights the novelty of using zebrafish to model multifactorial metabolic disorders, addressing challenges such as interspecies differences in metabolism and the complexity of human metabolic disease etiology. Moving forward, future research will benefit from integrating advanced omics technologies to map disease-specific molecular signatures, applying personalized medicine approaches to optimize treatments, and utilizing computational models to predict therapeutic outcomes. By embracing these innovative strategies, zebrafish research has the potential to revolutionize the diagnosis, treatment, and prevention of metabolic disorders, offering new avenues for translational applications. Continued interdisciplinary collaboration and investment in zebrafish-based studies will be crucial to fully harnessing their potential for advancing therapeutic development.
Collapse
Affiliation(s)
- Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | | | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| |
Collapse
|
3
|
P K, Wilson H, Silswal A, Mishra L, Bhattacharya D, Mishra M, Koner AL. Morpholine Anchored Fluorogenic Toolkit: Unveiled Disease Allied Protein Fibrillation in Lysosomal Compartment of Live-Cell and Drosophila Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404008. [PMID: 39690871 DOI: 10.1002/smll.202404008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/30/2024] [Indexed: 12/19/2024]
Abstract
The aberrant accumulation of cytotoxic protein aggregates is a hallmark of various neurodegenerative and non-neurodegenerative ailments, necessitating the development of sensitive and selective tools for their detection. Herein, we report a series of morpholine-anchored fluorescent probes, denoted as SC-nmor (n = 2, 4, 6), designed for facile visualization of protein aggregates. These probes display notable changes in their photophysical properties upon binding with protein aggregates, owing to their high sensitivity to the fibrillar microenvironment. Specifically, the SC-4mor probe demonstrates strong selectivity for aggregated insulin proteins over native insulin, accompanied by a significant enhancement in fluorescence lifetime. Live-cell imaging reveals an exclusive localization at the lysosomal compartment. This feature enables the visualization of lysosomal accumulated protein fibrils induced with pepstatin A. Additionally, in vivo assessments on genetically mutated and dietary-modified Drosophila melanogaster, representing neurodegenerative and non-neurodegenerative disease models, demonstrate staining of protein aggregates. The enhanced emission from the eye lobes of Aβ-mutated and HSD brain samples, suggesting that SC-4mor can exhibit adequate retention in the brain with minimal biological toxicity. SC-4mor also shows its capability to cross the blood-brain barrier in mice model. Consequently, SC-4mor emerges as a promising marker for detecting and monitoring neurotoxic protein fibrillation in live cells and animal models, offering potential insights into the pathogenesis and progression of protein aggregation.
Collapse
Affiliation(s)
- Kavyashree P
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Harry Wilson
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Akshay Silswal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Lopamudra Mishra
- Neural Developmental Biology Laboratory, Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Debapriya Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Monalisa Mishra
- Neural Developmental Biology Laboratory, Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Gallagher ER, Oloko PT, Fitch TC, Brown EM, Spruce LA, Holzbaur ELF. Lysosomal damage triggers a p38 MAPK-dependent phosphorylation cascade to promote lysophagy via the small heat shock protein HSP27. Curr Biol 2024; 34:5739-5757.e8. [PMID: 39541976 DOI: 10.1016/j.cub.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Maintenance of lysosomal integrity is essential for cell viability. Upon injury, lysosomes may be targeted for degradation via a selective form of autophagy known as lysophagy. The engulfment of a damaged lysosome by an autophagosome is mediated by the recruitment of adaptor proteins, including SQSTM1/p62. p62 promotes lysophagy via the formation of phase-separated condensates in a mechanism that is regulated by the heat shock protein HSP27. Here, we demonstrate a direct interaction between HSP27 and p62. We used structural modeling to predict the binding interface between HSP27 and p62 and identify several disease-associated mutations that map to this interface. We used proteomics to identify post-translational modifications of HSP27 that regulate HSP27 recruitment to stressed lysosomes, finding robust phosphorylation at several serine residues. Next, we characterized the upstream signaling mechanism leading to HSP27 phosphorylation and found that p38 mitogen-activated protein kinase (MAPK) and its effector kinase MAP kinase-activated protein kinase 2 (MK2) are activated upon lysosomal damage by the kinase mTOR and the production of intracellular reactive oxygen species (ROS). Increased ROS activates p38 MAPK, which in turn allows MK2-dependent phosphorylation of HSP27. Depletion of HSP27 or the inhibition of HSP27 phosphorylation alters the dynamics of p62 condensates on stressed lysosomes, significantly inhibiting p62-dependent lysophagy. Thus, we define a novel lysosomal quality control mechanism in which lysosomal injury triggers a p38 MAPK/MK2 signaling cascade promoting p62-dependent lysophagy. Further, this signaling cascade is activated by many cellular stressors, including oxidative and heat stress, suggesting that other forms of selective autophagy may be regulated by p38 MAPK/MK2/HSP27.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peace T Oloko
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tessa C Fitch
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth M Brown
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Lotfi A, Abroodi Z, Khazaei M. Biological activities of astaxanthin in the treatment of neurodegenerative diseases. Neurodegener Dis Manag 2024:1-16. [PMID: 39648516 DOI: 10.1080/17582024.2024.2433932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) develop with the gradual advancement of neuronal damage and dysfunction in the central nervous system (CNS). These disorders are mostly the outcomes of the improper sedimentation and accumulation of proteins, such as amyloid-β (Aβ), α-synuclein, and prions. Astaxanthin (AST) exists in different types of living organisms and displays antioxidant and anti-inflammatory functions. This review has concentrated on the therapeutic characteristics of AST on NDs. METHODS Data was collected by searching Scopus, PubMed, and Google Scholar databases. Articles selected for this review reported results on the neuroprotective properties of AST on NDs of studies conducted during the years 2000 to 2024. RESULTS AST decreases soluble Aβ levels by stimulating the Aβ degradation enzyme. It also reduces inflammation in the substantia nigra (SN) by decreasing IBA1 expression, thereby lessening microglia activity. This carotenoid reduces demyelination by increasing the survival of oligodendrocytes cells and increasing the number of their progenitor cells. AST has antioxidant, anti-inflammatory, and anti-apoptotic properties and can play a role in the treatment of many NDs. CONCLUSION There is no definitive treatment for some NDs. The use of AST and natural compounds can be an optimal method for preventing and treating NDs with few side effects.
Collapse
Affiliation(s)
- Alireza Lotfi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abroodi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Tissue Engineering Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Bayati A, Ayoubi R, Aguila A, Zorca CE, Deyab G, Han C, Recinto SJ, Nguyen-Renou E, Rocha C, Maussion G, Luo W, Shlaifer I, Banks E, McDowell I, Del Cid Pellitero E, Ding XE, Sharif B, Séguéla P, Yaqubi M, Chen CXQ, You Z, Abdian N, McBride HM, Fon EA, Stratton JA, Durcan TM, Nahirney PC, McPherson PS. Modeling Parkinson's disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines. Nat Neurosci 2024; 27:2401-2416. [PMID: 39379564 DOI: 10.1038/s41593-024-01775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson's disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chanshuai Han
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Wen Luo
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xue Er Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carol X-Q Chen
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Narges Abdian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Giaccio M, Monaco A, Galiano L, Parente A, Borzacchiello L, Rubino R, Klärner FG, Killa D, Perna C, Piccolo P, Marotta M, Pan X, Khijniak M, Siddique I, Schrader T, Pshezhetsky AV, Sorrentino NC, Bitan G, Fraldi A. Anti-amyloid treatment is broadly effective in neuronopathic mucopolysaccharidoses and synergizes with gene therapy in MPS-IIIA. Mol Ther 2024; 32:4108-4121. [PMID: 39342429 PMCID: PMC11573617 DOI: 10.1016/j.ymthe.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
Collapse
Affiliation(s)
- Marianna Giaccio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Antonio Monaco
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Laura Galiano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Andrea Parente
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Luigi Borzacchiello
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Riccardo Rubino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Frank-Gerrit Klärner
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Dennis Killa
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Claudia Perna
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Marcello Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Marie Khijniak
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Fraldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy.
| |
Collapse
|
8
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
9
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Nan Y, Chen W, Chen F, Wei L, Zeng A, Lin X, Zhou W, Yang Y, Li Q. Endosome mediated nucleocytoplasmic trafficking and endomembrane allocation is crucial to polyglutamine toxicity. Cell Biol Toxicol 2024; 40:48. [PMID: 38900277 PMCID: PMC11189978 DOI: 10.1007/s10565-024-09891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.
Collapse
Affiliation(s)
- Yuyu Nan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Lili Wei
- Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi, 541001, China
| | - Aiyuan Zeng
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China
| | - Xiaohui Lin
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China.
| | - Qinghua Li
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China.
| |
Collapse
|
11
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
12
|
Abidi SMS, Shukla AK, Randhawa S, Bathla M, Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Biol Macromol 2024; 266:131108. [PMID: 38531523 DOI: 10.1016/j.ijbiomac.2024.131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
14
|
Hippman RS, Snead AM, Petros ZA, Korkmaz-Vaisys MA, Patel S, Sotelo D, Dobria A, Salkovski M, Nguyen TTA, Linares R, Cologna SM, Gowrishankar S, Aldrich LN. Discovery of a Small-Molecule Modulator of the Autophagy-Lysosome Pathway That Targets Lamin A/C and LAMP1, Induces Autophagic Flux, and Affects Lysosome Positioning in Neurons. ACS Chem Neurosci 2023; 14:4363-4382. [PMID: 38069806 PMCID: PMC10739612 DOI: 10.1021/acschemneuro.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Autophagy is a major catabolic degradation and recycling process that maintains homeostasis in cells and is especially important in postmitotic neurons. We implemented a high-content phenotypic assay to discover small molecules that promote autophagic flux and completed target identification and validation studies to identify protein targets that modulate the autophagy pathway and promote neuronal health and survival. Efficient syntheses of the prioritized compounds were developed to readily access analogues of the initial hits, enabling initial structure-activity relationship studies to improve potency and preparation of a biotin-tagged pulldown probe that retains activity. This probe facilitated target identification and validation studies through pulldown and competition experiments using both an unbiased proteomics approach and western blotting to reveal Lamin A/C and LAMP1 as the protein targets of compound RH1115. Evaluation of RH1115 in neurons revealed that this compound induces changes to LAMP1 vesicle properties and alters lysosome positioning. Dysfunction of the autophagy-lysosome pathway has been implicated in a variety of neurodegenerative diseases, including Alzheimer's disease, highlighting the value of new strategies for therapeutic modulation and the importance of small-molecule probes to facilitate the study of autophagy regulation in cultured neurons and in vivo.
Collapse
Affiliation(s)
- Ryan S. Hippman
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Amanda M. Snead
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Zoe A. Petros
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Melissa A. Korkmaz-Vaisys
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Sruchi Patel
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Daniel Sotelo
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Andrew Dobria
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Maryna Salkovski
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Thu T. A. Nguyen
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ricardo Linares
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Stephanie M. Cologna
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Swetha Gowrishankar
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Leslie N. Aldrich
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
15
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Piovesana E, Magrin C, Ciccaldo M, Sola M, Bellotto M, Molinari M, Papin S, Paganetti P. Tau accumulation in degradative organelles is associated to lysosomal stress. Sci Rep 2023; 13:18024. [PMID: 37865674 PMCID: PMC10590387 DOI: 10.1038/s41598-023-44979-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
Neurodegenerative disorders are characterized by the brain deposition of insoluble amyloidogenic proteins, such as α-synuclein or Tau, and the concomitant deterioration of cell functions such as the autophagy-lysosomal pathway (ALP). The ALP is involved in the degradation of intracellular macromolecules including protein aggregates. ALP dysfunction due to inherited defects in lysosomal or non-lysosomal proteins causes a group of diseases called lysosomal storage disorders (LSD) because of abnormal accumulation of lysosomal degradation substrates. Supporting the contribution of ALP defects in neurodegenerative diseases, deposition of amyloidogenic proteins occurs in LSD. Moreover, heterozygous mutations of several ALP genes represent risk factors for Parkinson's disease. The reciprocal contribution of α-synuclein accumulation and lysosomal dysfunction have been extensively studied. However, whether this adverse crosstalk also embraces Tau pathology needs more investigation. Here, we show in human primary fibroblasts that Tau seeds isolated from the brain of Alzheimer's disease induce Tau accumulation in acidic degradative organelles and lysosomal stress. Furthermore, inhibition of glucocerebrosidase, a lysosomal enzyme mutated in Gaucher's disease and a main risk for Parkinson's disease, causes lysosomal dysfunction in primary fibroblasts and contributes to the accumulation of Tau. Considering the presence of Tau lesions in Parkinson's disease as well as in multiple neurodegenerative disorders including Alzheimer's disease, our data call for further studies on strategies to alleviate ALP dysfunction as new therapeutic opportunity for neurodegenerative diseases and LSD.
Collapse
Affiliation(s)
- Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Matteo Ciccaldo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | | | - Maurizio Molinari
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Neurocentro della Svizzera Italiana, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
17
|
Alvarez-Mora MI, Garrabou G, Molina-Porcel L, Grillo-Risco R, Garcia-Garcia F, Barcos T, Cantó-Santos J, Rodriguez-Revenga L. Exploration of SUMO2/3 Expression Levels and Autophagy Process in Fragile X-Associated Tremor/Ataxia Syndrome: Addressing Study Limitations and Insights for Future Research. Cells 2023; 12:2364. [PMID: 37830578 PMCID: PMC10571773 DOI: 10.3390/cells12192364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
| | - Glòria Garrabou
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Inherited Metabolic Diseases and Muscle Disorders’ Research Laboratory (U722), Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Department––Hospital Clínic Clinic of Barcelona, 08036 Barcelona, Spain
| | - Laura Molina-Porcel
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036 Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-FCRB-IDIBAPS, 08036 Barcelona, Spain
| | - Ruben Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (R.G.-R.); (F.G.-G.)
| | - Francisco Garcia-Garcia
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (R.G.-R.); (F.G.-G.)
| | - Tamara Barcos
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
| | - Judith Cantó-Santos
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Inherited Metabolic Diseases and Muscle Disorders’ Research Laboratory (U722), Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Department––Hospital Clínic Clinic of Barcelona, 08036 Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
| |
Collapse
|
18
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
19
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Costa-Laparra I, Juárez-Escoto E, Vicario C, Moratalla R, García-Sanz P. APOE ε4 allele, along with G206D- PSEN1 mutation, alters mitochondrial networks and their degradation in Alzheimer's disease. Front Aging Neurosci 2023; 15:1087072. [PMID: 37455931 PMCID: PMC10340123 DOI: 10.3389/fnagi.2023.1087072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease remains the most common neurodegenerative disorder, depicted mainly by memory loss and the presence in the brain of senile plaques and neurofibrillary tangles. This disease is related to several cellular alterations like the loss of synapses, neuronal death, disruption of lipid homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably, changes in the autophagic pathway have turned out to be a key factor in the early development of the disease. The aim of this research is to determine the impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms of Alzheimer's disease. Methods Fibroblasts from Alzheimer's patients with APOE 3/4 + G206D-PSEN1 mutation and homozygous APOE ε4 were used to study the effects of APOE polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial network fragmentation, superoxide anion levels, lysosome clustering, and p62/SQSTM1 levels. Results We observed that the APOE allele ε4 in homozygosis induces mitochondrial network fragmentation that correlates with an increased colocalization with p62/SQSTM1, probably due to an inefficient autophagy. Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of mitochondrial networks, triggering high superoxide anion levels and thus making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of lysosomes that, along with an increase of global p62/SQSTM1, could compromise lysosomal function and, ultimately, its degradation. Conclusion The findings suggest that all these modifications could eventually contribute to the neuronal degeneration that underlies the pathogenesis of Alzheimer's disease. Further research in this area may help to develop targeted therapies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Costa-Laparra
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Juárez-Escoto
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Vicario
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Stem Cells, Neurogenesis and Neurodegeneration Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
22
|
Chen X, Hutchinson RB, Cavagnero S. Distribution and solvent exposure of Hsp70 chaperone binding sites across the Escherichia coli proteome. Proteins 2023; 91:665-678. [PMID: 36539330 PMCID: PMC10073276 DOI: 10.1002/prot.26456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/02/2023]
Abstract
Many proteins must interact with molecular chaperones to achieve their native state in the cell. Yet, how chaperone binding-site characteristics affect the folding process is poorly understood. The ubiquitous Hsp70 chaperone system prevents client-protein aggregation by holding unfolded conformations and by unfolding misfolded states. Hsp70 binding sites of client proteins comprise a nonpolar core surrounded by positively charged residues. However, a detailed analysis of Hsp70 binding sites on a proteome-wide scale is still lacking. Further, it is not known whether proteins undergo some degree of folding while chaperone bound. Here, we begin to address the above questions by identifying Hsp70 binding sites in 2258 Escherichia coli (E. coli) proteins. We find that most proteins bear at least one Hsp70 binding site and that the number of Hsp70 binding sites is directly proportional to protein size. Aggregation propensity upon release from the ribosome correlates with number of Hsp70 binding sites only in the case of large proteins. Interestingly, Hsp70 binding sites are more solvent-exposed than other nonpolar sites, in protein native states. Our findings show that the majority of E. coli proteins are systematically enabled to interact with Hsp70 even if this interaction only takes place during a fraction of the protein lifetime. In addition, our data suggest that some conformational sampling may take place within Hsp70-bound states, due to the solvent exposure of some chaperone binding sites in native proteins. In all, we propose that Hsp70-chaperone-binding traits have evolved to favor Hsp70-assisted protein folding devoid of aggregation.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biophysics and Physiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
24
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Gallagher ER, Holzbaur ELF. The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Cell Rep 2023; 42:112037. [PMID: 36701233 PMCID: PMC10366342 DOI: 10.1016/j.celrep.2023.112037] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
In response to lysosomal damage, cells engage several quality-control mechanisms, including the selective isolation and degradation of damaged lysosomes by lysophagy. Here, we report that the selective autophagy adaptor SQSTM1/p62 is recruited to damaged lysosomes in both HeLa cells and neurons and is required for lysophagic flux. The Phox and Bem1p (PB1) domain of p62 mediates oligomerization and is specifically required for lysophagy. Consistent with this observation, we find that p62 forms condensates on damaged lysosomes. These condensates are precisely tuned by the small heat shock protein HSP27, which is phosphorylated in response to lysosomal injury and maintains the liquidity of p62 condensates, facilitating autophagosome formation. Mutations in p62 have been identified in patients with amyotrophic lateral sclerosis (ALS); ALS-associated mutations in p62 impair lysophagy, suggesting that deficits in this pathway may contribute to neurodegeneration. Thus, p62 condensates regulated by HSP27 promote lysophagy by forming platforms for autophagosome biogenesis at damaged lysosomes.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Li Y, Lian Z, Li Q, Ding W, Wang W, Zhang L, Muhataer X, Zhou Y, Yang X, Wu C. Molecular mechanism by which the Notch signaling pathway regulates autophagy in a rat model of pulmonary fibrosis in pigeon breeder's lung. Open Med (Wars) 2023; 18:20230629. [PMID: 36785767 PMCID: PMC9921914 DOI: 10.1515/med-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
This study investigated the molecular mechanisms underlying the involvement of the Notch signaling pathway and autophagy in the development of pulmonary fibrosis in pigeon breeder's lung (PBL). Rats were divided into control (Ctrl), PBL model (M), M + D (Notch signaling inhibition), M + W (autophagy inhibition), and M + R (autophagy induction) groups. Lyophilized protein powder from pigeon shedding materials was used as an allergen to construct a fibrotic PBL rat model. The mechanism by which Notch signaling regulated autophagy in the pulmonary fibrosis of PBL was investigated by inhibiting the Notch pathway and interfering with autophagy. Pulmonary interstitial fibrosis was significantly greater in the M group and the M + W group than in the M + D and M + R groups. The expression of α-smooth muscle actin was significantly higher in the M, M + D, and M + W groups than in the Ctrl group (P < 0.05). The expression of the cell autophagy markers Beclin1 and LC3 was lower in the M, M + D, and M + W groups than in the Ctrl group (P < 0.05), whereas Beclin1 and LC3 expressions were higher in the M + D and M + R groups than in the M group. The levels of reactive oxygen species in serum and lung tissues were higher in the M, M + D, M + W, and M + R groups than in the Ctrl group (P < 0.05). The Notch signaling pathway is involved in the pathological process of pulmonary fibrosis in the rat model of PBL by regulating autophagy.
Collapse
Affiliation(s)
- Yafang Li
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| | - Zhichuang Lian
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Qifeng Li
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Wei Ding
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Wenyi Wang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Xirennayi Muhataer
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Yuan Zhou
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| |
Collapse
|
27
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
28
|
Sinha Ray S, Dutta D, Dennys C, Powers S, Roussel F, Lisowski P, Glažar P, Zhang X, Biswas P, Caporale JR, Rajewsky N, Bickle M, Wein N, Bellen HJ, Likhite S, Marcogliese PC, Meyer KC. Mechanisms of IRF2BPL-related disorders and identification of a potential therapeutic strategy. Cell Rep 2022; 41:111751. [PMID: 36476864 DOI: 10.1016/j.celrep.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.
Collapse
Affiliation(s)
- Shrestha Sinha Ray
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cassandra Dennys
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Samantha Powers
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Florence Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pawel Lisowski
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Psychiatry, Charité - Universitätmedizin Berlin, Berlin, Germany; Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | - Petar Glažar
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pipasha Biswas
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nikolaus Rajewsky
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Basel, Switzerland
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Tang Q, Li X, Wang J. Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases. Bioessays 2022; 44:e2200110. [PMID: 36135988 PMCID: PMC9829454 DOI: 10.1002/bies.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Perneel J, Rademakers R. Identification of TMEM106B amyloid fibrils provides an updated view of TMEM106B biology in health and disease. Acta Neuropathol 2022; 144:807-819. [PMID: 36056242 PMCID: PMC9547799 DOI: 10.1007/s00401-022-02486-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Since the initial identification of TMEM106B as a risk factor for frontotemporal lobar degeneration (FTLD), multiple genetic studies have found TMEM106B variants to modulate disease risk in a variety of brain disorders and healthy aging. Neurodegenerative disorders are typically characterized by inclusions of misfolded proteins and since lysosomes are an important site for cellular debris clearance, lysosomal dysfunction has been closely linked to neurodegeneration. Consequently, many causal mutations or genetic risk variants implicated in neurodegenerative diseases encode proteins involved in endosomal-lysosomal function. As an integral lysosomal transmembrane protein, TMEM106B regulates several aspects of lysosomal function and multiple studies have shown that proper TMEM106B protein levels are crucial for maintaining lysosomal health. Yet, the precise function of TMEM106B at the lysosomal membrane is undetermined and it remains unclear how TMEM106B modulates disease risk. Unexpectedly, several independent groups recently showed that the C-terminal domain (AA120-254) of TMEM106B forms amyloid fibrils in the brain of patients with a diverse set of neurodegenerative conditions. The recognition that TMEM106B can form amyloid fibrils and is present across neurodegenerative diseases sheds new light on TMEM106B as a central player in neurodegeneration and brain health, but also raises important new questions. In this review, we summarize current knowledge and place a decade's worth of TMEM106B research into an exciting new perspective.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
31
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
32
|
Magdy A, Farrag EAE, Hamed SM, Abdallah Z, El Nashar EM, Alghamdi MA, Ali AAH, Abd El-kader M. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front Cell Neurosci 2022; 16:967813. [PMID: 36187296 PMCID: PMC9522903 DOI: 10.3389/fncel.2022.967813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Treatment of PD is challenging, as current treatment strategies are only symptomatic and do not stop disease development. Recent studies reported neuroprotective effects of calcitriol in PD through its antioxidant and anti-inflammatory properties. The exact pathomechanisms of PD are not yet fully understood. So, investigation of different molecular pathways is challenging. Sirtuin-1 (Sirt1) modulates multiple physiological processes, including programmed cell death, DNA repair, and inflammation. Furthermore, defective autophagy is considered a key pathomechanism in PD as it eliminates protein aggregation and dysfunctional cell organelles. The present study investigated the involvement of autophagy and Sirt1/NF-κB molecular pathway in rotenone-induced PD and explored the protective and restorative effects of calcitriol through these mechanisms. Therefore, behavioral tests were used to test the effect of calcitriol on motor disability and equilibrium. Furthermore, the histological and neuronal architecture was assessed. The expression of genes encoding neuroinflammation and autophagy markers was determined by qPCR while their protein levels were determined by Western blot analysis and immune-histochemical staining. Our results indicate that behavioral impairments and dopaminergic neuron depletion in the rotenone-induced PD model were improved by calcitriol administration. Furthermore, calcitriol attenuated rotenone-induced neuroinflammation and autophagy dysfunction in PD rats through up-regulation of Sirt1 and LC3 and down-regulation of P62 and NF-κB expression levels. Thus, calcitriol could induce a neuro-protective and restorative effect in the rotenone-induced PD model by modulating autophagy and Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Alshimaa Magdy,
| | - Eman A. E. Farrag
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Mohamed Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amira A. H. Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Institute of Anatomy ll, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marwa Abd El-kader
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Bioenergetic and Autophagic Characterization of Skin Fibroblasts from C9orf72 Patients. Antioxidants (Basel) 2022; 11:antiox11061129. [PMID: 35740026 PMCID: PMC9219955 DOI: 10.3390/antiox11061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.
Collapse
|
34
|
Machine learning predicts translation initiation sites in neurologic diseases with nucleotide repeat expansions. PLoS One 2022; 17:e0256411. [PMID: 35648796 PMCID: PMC9159584 DOI: 10.1371/journal.pone.0256411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
A number of neurologic diseases associated with expanded nucleotide repeats, including an inherited form of amyotrophic lateral sclerosis, have an unconventional form of translation called repeat-associated non-AUG (RAN) translation. It has been speculated that the repeat regions in the RNA fold into secondary structures in a length-dependent manner, promoting RAN translation. Repeat protein products are translated, accumulate, and may contribute to disease pathogenesis. Nucleotides that flank the repeat region, especially ones closest to the initiation site, are believed to enhance translation initiation. A machine learning model has been published to help identify ATG and near-cognate translation initiation sites; however, this model has diminished predictive power due to its extensive feature selection and limited training data. Here, we overcome this limitation and increase prediction accuracy by the following: a) capture the effect of nucleotides most critical for translation initiation via feature reduction, b) implement an alternative machine learning algorithm better suited for limited data, c) build comprehensive and balanced training data (via sampling without replacement) that includes previously unavailable sequences, and d) split ATG and near-cognate translation initiation codon data to train two separate models. We also design a supplementary scoring system to provide an additional prognostic assessment of model predictions. The resultant models have high performance, with ~85-88% accuracy, exceeding that of the previously published model by >18%. The models presented here are used to identify translation initiation sites in genes associated with a number of neurologic repeat expansion disorders. The results confirm a number of sites of translation initiation upstream of the expanded repeats that have been found experimentally, and predict sites that are not yet established.
Collapse
|
35
|
Chin M, Ang KH, Davies J, Alquezar C, Garda VG, Rooney B, Leng K, Kampmann M, Arkin MR, Kao AW. Phenotypic Screening Using High-Content Imaging to Identify Lysosomal pH Modulators in a Neuronal Cell Model. ACS Chem Neurosci 2022; 13:1505-1516. [PMID: 35522480 PMCID: PMC9121341 DOI: 10.1021/acschemneuro.1c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lysosomes are intracellular organelles responsible for the degradation of diverse macromolecules in a cell. A highly acidic pH is required for the optimal functioning of lysosomal enzymes. Loss of lysosomal intralumenal acidity can disrupt cellular protein homeostasis and is linked to age-related diseases such as neurodegeneration. Using a new robust lysosomal pH biosensor (FIRE-pHLy), we developed a cell-based fluorescence assay for high-throughput screening (HTS) and applied it to differentiated SH-SY5Y neuroblastoma cells. The goal of this study was twofold: (1) to screen for small molecules that acidify lysosomal pH and (2) to identify molecular targets and pathways that regulate lysosomal pH. We conducted a screen of 1835 bioactive compounds with annotated target information to identify lysosomal pH modulators (both acidifiers and alkalinizers). Forty-five compounds passed the initial hit selection criteria, using a combined analysis approach of population-based and object-based data. Twenty-three compounds were retested in dose-response assays and two compounds, OSI-027 and PP242, were identified as top acidifying hits. Overall, data from this phenotypic HTS screen may be used to explore novel regulatory pathways of lysosomal pH regulation. Additionally, OSI-027 and PP242 may serve as useful tool compounds to enable mechanistic studies of autophagy activation and lysosomal acidification as potential therapeutic pathways for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marcus
Y. Chin
- Memory
and Aging Center, Department of Neurology, University of California, San
Francisco, California, California 94158, United States
- Small
Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Kean-Hooi Ang
- Small
Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Julia Davies
- Small
Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Carolina Alquezar
- Memory
and Aging Center, Department of Neurology, University of California, San
Francisco, California, California 94158, United States
| | - Virginia G. Garda
- Memory
and Aging Center, Department of Neurology, University of California, San
Francisco, California, California 94158, United States
- Small
Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Brendan Rooney
- Institute
for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Kun Leng
- Institute
for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
- Biomedical
Sciences Graduate Program, University of
California, San Francisco, California 94158, United States
- Medical
Scientist Training Program, University of
California, San Francisco, California 94158, United States
| | - Martin Kampmann
- Institute
for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Michelle R. Arkin
- Small
Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Aimee W. Kao
- Memory
and Aging Center, Department of Neurology, University of California, San
Francisco, California, California 94158, United States
| |
Collapse
|
36
|
Chang A, Xiang X, Wang J, Lee C, Arakhamia T, Simjanoska M, Wang C, Carlomagno Y, Zhang G, Dhingra S, Thierry M, Perneel J, Heeman B, Forgrave LM, DeTure M, DeMarco ML, Cook CN, Rademakers R, Dickson DW, Petrucelli L, Stowell MHB, Mackenzie IRA, Fitzpatrick AWP. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 2022; 185:1346-1355.e15. [PMID: 35247328 PMCID: PMC9018563 DOI: 10.1016/j.cell.2022.02.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.
Collapse
Affiliation(s)
- Andrew Chang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Xinyu Xiang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Wang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Carolyn Lee
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Microbiology & Immunology, Columbia University, New York, NY 10032, USA
| | - Tamta Arakhamia
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Chi Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Shikhar Dhingra
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Manon Thierry
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Jolien Perneel
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bavo Heeman
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lauren M Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Anthony W P Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
37
|
Liu S, Ma W, Feng Y, Zhang Y, Jia X, Tang C, Tang F, Wu X, Huang Y. AAV9-coGLB1 Improves Lysosomal Storage and Rescues Central Nervous System Inflammation in a Mutant Mouse Model of GM1 Gangliosidosis. Curr Gene Ther 2022; 22:352-365. [PMID: 35249485 DOI: 10.2174/1566523222666220304092732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GM1 gangliosidosis (GM1) is an autosomal recessive disorder characterized by deficiency of beta-galactosidase (β-gal), a ubiquitous lysosomal enzyme that catalyzes the hydrolysis of GM1 ganglioside. OBJECTIVE To explore the application of the AAV9-coGLB1 for effective treatment in a GM1 gangliosidosis mutant mouse model. METHODS We designed a novel adeno-associated virus 9 (AAV9) vector expressing β-gal (AAV9-coGLB1) to treat GM1 gangliosidosis. The vector, injected via the caudal vein at 4 weeks of age, drove the widespread and sustained expression of β-gal for up to 32 weeks in the Glb1G455R/G455R mutant mice (GM1 mice). RESULTS The increased levels of β-gal reduced the pathological damage occurring in GM1 mice. Histological analyses showed that myelin deficits and neuron-specific pathology were reduced in cerebral cortex region of AAV9-coGLB1-treated mice. Immunohistochemical staining showed that the accumulation of GM1 ganglioside was also reduced after gene therapy. The reduction of the storage in these regions was accompanied by a decrease in activated microglia. In addition, AAV9 treatment reversed the blockade of autophagic flux in GM1 mice. CONCLUSION These results show that AAV9-coGLB1 reduces the pathological signs of GM1 gangliosidosis in a mouse model.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Wenhao Ma
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yuyu Feng
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Yan Zhang
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Xuefang Jia
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Fang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xiaobing Wu
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| |
Collapse
|
38
|
Padhi P, Worth C, Zenitsky G, Jin H, Sambamurti K, Anantharam V, Kanthasamy A, Kanthasamy AG. Mechanistic Insights Into Gut Microbiome Dysbiosis-Mediated Neuroimmune Dysregulation and Protein Misfolding and Clearance in the Pathogenesis of Chronic Neurodegenerative Disorders. Front Neurosci 2022; 16:836605. [PMID: 35281490 PMCID: PMC8914070 DOI: 10.3389/fnins.2022.836605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The human gut microbiota is a complex, dynamic, and highly diverse community of microorganisms. Beginning as early as in utero fetal development and continuing through birth to late-stage adulthood, the crosstalk between the gut microbiome and brain is essential for modulating various metabolic, neurodevelopmental, and immune-related pathways. Conversely, microbial dysbiosis - defined as alterations in richness and relative abundances - of the gut is implicated in the pathogenesis of several chronic neurological and neurodegenerative disorders. Evidence from large-population cohort studies suggests that individuals with neurodegenerative conditions have an altered gut microbial composition as well as microbial and serum metabolomic profiles distinct from those in the healthy population. Dysbiosis is also linked to psychiatric and gastrointestinal complications - comorbidities often associated with the prodromal phase of Parkinson's disease (PD) and Alzheimer's disease (AD). Studies have identified potential mediators that link gut dysbiosis and neurological disorders. Recent findings have also elucidated the potential mechanisms of disease pathology in the enteric nervous system prior to the onset of neurodegeneration. This review highlights the functional pathways and mechanisms, particularly gut microbe-induced chronic inflammation, protein misfolding, propagation of disease-specific pathology, defective protein clearance, and autoimmune dysregulation, linking gut microbial dysbiosis and neurodegeneration. In addition, we also discuss how pathogenic transformation of microbial composition leads to increased endotoxin production and fewer beneficial metabolites, both of which could trigger immune cell activation and enteric neuronal dysfunction. These can further disrupt intestinal barrier permeability, aggravate the systemic pro-inflammatory state, impair blood-brain barrier permeability and recruit immune mediators leading to neuroinflammation and neurodegeneration. Continued biomedical advances in understanding the microbiota-gut-brain axis will extend the frontier of neurodegenerative disorders and enable the utilization of novel diagnostic and therapeutic strategies to mitigate the pathological burden of these diseases.
Collapse
Affiliation(s)
- Piyush Padhi
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Carter Worth
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
39
|
Mandolfo O, Parker H, Bigger B. Innate Immunity in Mucopolysaccharide Diseases. Int J Mol Sci 2022; 23:1999. [PMID: 35216110 PMCID: PMC8879755 DOI: 10.3390/ijms23041999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mucopolysaccharidoses are rare paediatric lysosomal storage disorders, characterised by accumulation of glycosaminoglycans within lysosomes. This is caused by deficiencies in lysosomal enzymes involved in degradation of these molecules. Dependent on disease, progressive build-up of sugars may lead to musculoskeletal abnormalities and multi-organ failure, and in others, to cognitive decline, which is still a challenge for current therapies. The worsening of neuropathology, observed in patients following recovery from flu-like infections, suggests that inflammation is highly implicated in disease progression. This review provides an overview of the pathological features associated with the mucopolysaccharidoses and summarises current knowledge regarding the inflammatory responses observed in the central nervous system and periphery. We propose a model whereby progressive accumulation of glycosaminoglycans elicits an innate immune response, initiated by the Toll-like receptor 4 pathway, but also precipitated by secondary storage components. Its activation induces cells of the immune system to release pro-inflammatory cytokines, such as TNF-α and IL-1, which induce progression through chronic neuroinflammation. While TNF-α is mostly associated with bone and joint disease in mucopolysaccharidoses, increasing evidence implicates IL-1 as a main effector of innate immunity in the central nervous system. The (NOD)-like receptor protein 3 inflammasome is therefore implicated in chronic neuroinflammation and should be investigated further to identify novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| | - Helen Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Brian Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| |
Collapse
|
40
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
41
|
The complex interplay between autophagy and cell death pathways. Biochem J 2022; 479:75-90. [PMID: 35029627 DOI: 10.1042/bcj20210450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a universal cellular homeostatic process, required for the clearance of dysfunctional macromolecules or organelles. This self-digestion mechanism modulates cell survival, either directly by targeting cell death players, or indirectly by maintaining cellular balance and bioenergetics. Nevertheless, under acute or accumulated stress, autophagy can also contribute to promote different modes of cell death, either through highly regulated signalling events, or in a more uncontrolled inflammatory manner. Conversely, apoptotic or necroptotic factors have also been implicated in the regulation of autophagy, while specific factors regulate both processes. Here, we survey both earlier and recent findings, highlighting the intricate interaction of autophagic and cell death pathways. We, Furthermore, discuss paradigms, where this cross-talk is disrupted, in the context of disease.
Collapse
|
42
|
Nieto-Torres JL, Hansen M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82:101020. [PMID: 34507801 PMCID: PMC8671213 DOI: 10.1016/j.mam.2021.101020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Aging is associated with many deleterious changes at the cellular level, including the accumulation of potentially toxic components that can have devastating effects on health. A key protective mechanism to this end is the cellular recycling process called autophagy. During autophagy, damaged or surplus cellular components are delivered to acidic vesicles called lysosomes, that secure degradation and recycling of the components. Numerous links between autophagy and aging exist. Autophagy declines with age, and increasing evidence suggests that this reduction plays important roles in both physiological aging and the development of age-associated disorders. Studies in pharmacologically and genetically manipulated model organisms indicate that defects in autophagy promote age-related diseases, and conversely, that enhancement of autophagy has beneficial effects on both healthspan and lifespan. Here, we review our current understanding of the role of autophagy in different physiological processes and their molecular links with aging and age-related diseases. We also highlight some recent advances in the field that could accelerate the development of autophagy-based therapeutic interventions.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|
43
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|
44
|
Li Z, Siddique I, Hadrović I, Kirupakaran A, Li J, Zhang Y, Klärner FG, Schrader T, Bitan G. Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes. Commun Biol 2021; 4:1076. [PMID: 34521989 PMCID: PMC8440717 DOI: 10.1038/s42003-021-02603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.
Collapse
Affiliation(s)
- Zizheng Li
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Inesa Hadrović
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Abbna Kirupakaran
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Schrader
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Ovcherenko SS, Chinak OA, Chechushkov AV, Dobrynin SA, Kirilyuk IA, Krumkacheva OA, Richter VA, Bagryanskaya EG. Uptake of Cell-Penetrating Peptide RL2 by Human Lung Cancer Cells: Monitoring by Electron Paramagnetic Resonance and Confocal Laser Scanning Microscopy. Molecules 2021; 26:5442. [PMID: 34576913 PMCID: PMC8470091 DOI: 10.3390/molecules26185442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
RL2 is a recombinant analogue of a human κ-casein fragment, capable of penetrating cells and inducing apoptosis of cancer cells with no toxicity to normal cells. The exact mechanism of RL2 penetration into cells remains unknown. In this study, we investigated the mechanism of RL2 penetration into human lung cancer A549 cells by a combination of electron paramagnetic resonance (EPR) spectroscopy and confocal laser scanning microscopy. EPR spectra of A549 cells incubated with RL2 (sRL2) spin-labeled by a highly stable 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl radical were found to contain three components, with their contributions changing with time. The combined EPR and confocal-microscopy data allowed us to assign these three forms of sRL2 to the spin-labeled protein sticking to the membrane of the cell and endosomes, to the spin-labeled protein in the cell interior, and to spin labeled short peptides formed in the cell because of protein digestion. EPR spectroscopy enabled us to follow the kinetics of transformations between different forms of the spin-labeled protein at a minimal spin concentration (3-16 μM) in the cell. The prospects of applications of spin-labeled cell-penetrating peptides to EPR imaging, DNP, and magnetic resonance imaging are discussed, as is possible research on an intrinsically disordered protein in the cell by pulsed dipolar EPR spectroscopy.
Collapse
Affiliation(s)
- Sergey S. Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | - Olga A. Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Anton V. Chechushkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Sergey A. Dobrynin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| | | | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (O.A.C.); (A.V.C.); (V.A.R.)
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (S.S.O.); (S.A.D.); (I.A.K.)
| |
Collapse
|
46
|
Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest 2021; 131:e143775. [PMID: 34196307 DOI: 10.1172/jci143775] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) affect essential functions not only in the CNS, but also cause persistent gut dysfunctions, suggesting that they have an impact on both CNS and gut-innervating neurons. Although the CNS biology of NDs continues to be well studied, how gut-innervating neurons, including those that connect the gut to the brain, are affected by or involved in the etiology of these debilitating and progressive disorders has been understudied. Studies in recent years have shown how CNS and gut biology, aided by the gut-brain connecting neurons, modulate each other's functions. These studies underscore the importance of exploring the gut-innervating and gut-brain connecting neurons of the CNS and gut function in health, as well as the etiology and progression of dysfunction in NDs. In this Review, we discuss our current understanding of how the various gut-innervating neurons and gut physiology are involved in the etiology of NDs, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, to cause progressive CNS and persistent gut dysfunction.
Collapse
Affiliation(s)
- Alpana Singh
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering.,Department of Neurology.,Solomon H. Snyder Department of Neuroscience, and.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| |
Collapse
|
47
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
48
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
49
|
Direito I, Monteiro L, Melo T, Figueira D, Lobo J, Enes V, Moura G, Henrique R, Santos MAS, Jerónimo C, Amado F, Fardilha M, Helguero LA. Protein Aggregation Patterns Inform about Breast Cancer Response to Antiestrogens and Reveal the RNA Ligase RTCB as Mediator of Acquired Tamoxifen Resistance. Cancers (Basel) 2021; 13:cancers13133195. [PMID: 34206811 PMCID: PMC8269126 DOI: 10.3390/cancers13133195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Acquired resistance to antiestrogenic therapy remains the major obstacle to curing luminal subtype breast cancer. While current treatment in acquired endocrine-resistant settings includes combined therapy with receptor tyrosine kinase or cyclin-dependent kinase inhibitors, progression to incurable disease remains possible. In recent years, the antioxidant system and the protein quality control network have been associated with the enhanced resistance of breast cancer cells to hormonal therapy. In this work, we raise the hypothesis that antiestrogen treatment induces the accumulation of protein aggregates in sensitive cells, which in turn could hinder the activation of survival pathways. We present evidence concerning a novel way to identify antiestrogen response and disclose a novel protein, RTBC, that controls acquired antiestrogen resistance. This work opens a new avenue for research towards finding breast cancer prognostic markers and therapeutic targets, where the identification of proteins prone to aggregate could help to identify antiestrogen response and understand mechanisms of disease. Abstract The protein quality control network, including autophagy, the proteasome and the unfolded protein response (UPR), is triggered by stress and is overactive in acquired antiestrogen therapy resistance. We show for the first time that the aggresome load correlates with apoptosis and is increased in antiestrogen-sensitive cells compared to endocrine-resistant variants. LC-MS/MS analysis of the aggregated proteins obtained after 4OH-tamoxifen and Fulvestrant treatment identified proteins with essential function in protein quality control in antiestrogen-sensitive cells, but not in resistant variants. These include the UPR modulators RTCB and PDIA6, as well as many proteasome proteins such as PSMC2 and PSMD11. RTCB is a tRNA and XBP1 ligase and its aggregation induced by antiestrogens correlated with impaired XBP1s expression in sensitive cells. Knock down of RTCB was sufficient to restore sensitivity to tamoxifen in endocrine-resistant cells and increased the formation of aggresomes, leading to apoptotic cell death. Analysis of primary human breast cancer samples and their metastases appearing after endocrine treatment showed that RTCB is only localized to aggresomes in the primary tumors, while total aggresomes, including aggregated RTCB, were significantly reduced in the metastases. Therefore, different protein aggregation patterns may indicate loss of function of essential proteins resulting in enhanced protein aggregation that can be used to identify antiestrogen-resistant breast cancer cells and improve the response to antiestrogenic therapy.
Collapse
Affiliation(s)
- Inês Direito
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Liliana Monteiro
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Tânia Melo
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Daniela Figueira
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Enes
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Gabriela Moura
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Manuel A. S. Santos
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Carmen Jerónimo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Francisco Amado
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
- Correspondence:
| |
Collapse
|
50
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|