1
|
Corciovă A, Mircea C, Fifere A, Turin-Moleavin IA, Roşca I, Macovei I, Ivănescu B, Vlase AM, Hăncianu M, Burlec AF. Biogenic Synthesis of Silver Nanoparticles Mediated by Aronia melanocarpa and Their Biological Evaluation. Life (Basel) 2024; 14:1211. [PMID: 39337993 PMCID: PMC11433241 DOI: 10.3390/life14091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, two A. melanocarpa berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated. The ideal synthesis conditions were represented by a 3 mM AgNO3 concentration, 1:9 extract:AgNO3 volume ratio, alkaline medium, and stirring at 40 °C for 120 min. The synthesis was confirmed by the surface plasmon resonance (SPR) peak at 403 nm, and the strong signal at 3 keV from the EDX spectra. FTIR analysis indicated that polyphenols, polysaccharides, and amino acids could be the compounds responsible for synthesis. Stability tests and the negative zeta potential values showed that phytocompounds also play a role in the stabilization and capping of AgNPs. The preliminary phytotoxicity studies on T. aestivum showed that both the extracts and their corresponding AgNPs had an impact on the growth of roots and shoots as well as on the microscopic structure of leaves. The synthesized AgNPs presented antimicrobial activity against S. aureus, E. coli, and C. albicans. Moreover, considering the results obtained in the lipoxygenase inhibition, the DPPH and hydroxyl scavenging activities, and the ferrous ion chelating assay, AgNPs exhibit promising antioxidant activity.
Collapse
Affiliation(s)
- Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Roşca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Bianca Ivănescu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| |
Collapse
|
2
|
Baz MM, El-Tabakh MAM, Selim A, Alasmari SM, Alkhaibari AM, Alruhaili MH, Gattan HS, Abdelkhalek HF. Chemical composition and bio-efficacy of agro-waste plant extracts and their potential as bioinsecticides against Culex pipiens mosquitoes. Parasitol Int 2024; 104:102968. [PMID: 39271003 DOI: 10.1016/j.parint.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Mosquitoes are considered one of the most lethal creatures on the planet and are responsible for millions of fatalities annually through the transmission of several diseases to humans. Green trash is commonly employed in agricultural fertilizer manufacturing and microbial bioprocesses for energy production. However, there is limited information available on the conversion of green waste into biocides. This study investigates the viability of utilizing green waste as a new biopesticide against Culex pipiens mosquito larvae. The current study found that plant extracts from Punica granatum (98.4 % mortality), Citrus sinensis (92 % mortality), Brassica oleracea (88 % mortality), Oryza sativa (81.6 % mortality), and Colocasia esculenta (53.6 % mortality) were very good at killing Cx. pipiens larvae 24 h post-treatment. The LC50 values were 314.43, 370.72, 465.59, 666.67, and 1798.03 ppm for P. granatum, C. sinensis, B. oleracea, O. sativa, and C. esculenta, respectively. All plant extracts, particularly P. granatum extract (14.93 and 41.87 U/g), showed a significant reduction in acid and alkaline phosphate activity. Additionally, pomegranate extract showed a significant decrease (90 %) in field larval density, with a stability of up to five days post-treatment. GC-MS results showed more chemical classes, such as terpenes, esters, fatty acids, alkanes, and phenolic compounds. HPLC analysis revealed that the analyzed extracts had a high concentration of phenolic and flavonoid components. Moreover, there are many variations among these plants in the amount of each compound. The docking interaction showed a simulation of the atomic-level interaction between a protein and a small molecule through the binding site of target proteins, explaining the most critical elements influencing the enzyme's activity or inhibitions. The study's findings showed that the various phytochemicals found in agro-waste plants had high larvicidal activity and provide a safe and efficient substitute to conventional pesticides for pest management, as well as a potential future in biotechnology.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| | | | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988 Najran, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Heba F Abdelkhalek
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
3
|
Gutiérrez-Cuevas J, López-Cifuentes D, Sandoval-Rodriguez A, García-Bañuelos J, Armendariz-Borunda J. Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:967. [PMID: 39065815 PMCID: PMC11280341 DOI: 10.3390/ph17070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Doctorate in Sciences in Molecular Biology in Medicine, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud (EMCS), Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
4
|
Zima K, Khaidakov B, Banaszkiewicz L, Lemke K, Kowalczyk PK. Exploring the Potential of Ribes nigrum L., Aronia melanocarpa (Michx.) Elliott, and Sambucus nigra L. Fruit Polyphenol-Rich Composition and Metformin Synergy in Type 2 Diabetes Management. J Diabetes Res 2024; 2024:1092462. [PMID: 38919261 PMCID: PMC11199064 DOI: 10.1155/2024/1092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes, characterized by insulin resistance and impaired glucose homeostasis, is commonly managed through lifestyle interventions and medications such as metformin. Although metformin is generally well-tolerated, it may cause gastrointestinal adverse effects and, in rare cases, precipitate lactic acidosis, necessitating cautious use in individuals with renal dysfunction. Additionally, concerns regarding its impact on hepatic function have led to its discontinuation in cirrhotic patients. This study explores the potential synergistic benefits of a polyphenol-rich blend containing black currant, chokeberry, and black elderberry extracts alongside metformin in managing type 2 diabetes. In vitro results highlighted distinct effects of AMPK pathway modulation, showcasing reductions in cholesterol and triglyceride levels alongside a notable enhancement in glucose uptake. The blend, when combined with metformin, significantly reduced insulin levels and fasting glucose concentrations in an in vivo model. Furthermore, hepatic analyses unveiled a modulation in cellular pathways, suggesting a potential influence on lipid metabolism, attenuation of inflammatory pathways, a decrease in cellular stress response, and antioxidant defense mechanisms, collectively implying a potential reduction in liver fat accumulation. The findings suggest a potential complementary role of polyphenols in enhancing the efficacy of metformin, possibly allowing for reduced metformin dosage and mitigating its side effects. Further clinical studies are warranted to validate these findings and establish the safety and efficacy of this nutraceutical approach in managing type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Zima
- Department of PhysiologyMedical University of GdańskDębinki 1 80-211, Gdańsk, Poland
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | - Barbara Khaidakov
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | | - Krzysztof Lemke
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | |
Collapse
|
5
|
Wal P. Phytochemicals and their Potential Mechanisms against Insulin Resistance. Curr Diabetes Rev 2024; 20:e081123223322. [PMID: 37946350 DOI: 10.2174/0115733998262924231020083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (PHARMACY), NH19 Kanpur, Agra Highway, Bhauti Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
6
|
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients 2023; 15:5094. [PMID: 38140354 PMCID: PMC10745664 DOI: 10.3390/nu15245094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aronia berries contain antioxidants that may be health-promoting, e.g., demonstrated positive effects on hypertension and dyslipidaemia. There is a close link between cardiovascular diseases and hypertension and dyslipidaemia, and cardiovascular events are the leading cause of death among subjects with type 2 diabetes (T2D). Thus, we investigated the effect of an 8-week supplementation with fermented aronia extract (FAE), non-fermented aronia extract (AE), and placebo on cardiovascular risk factors. Snack bars were produced containing 34 g (37%) aronia extract, or 17 g (21%) wheat bran for placebo, as well as raisins and coconut oil. The study was randomized and blinded with a triple-crossover design. We examined the effects of aronia extracts on blood pressure, adiponectin, and high-sensitive C-reactive protein, and found no effects. After supplementation with placebo, there were significantly higher blood concentrations of total cholesterol, LDL-cholesterol, and HDL-cholesterol, with the placebo group showing significantly higher increases in total cholesterol and LDL-cholesterol than the AE group. Furthermore, we observed an increase in HDL-cholesterol in the FAE group and an increase in triglyceride in the AE group. Thus, we assume that the raisins may have increased the participants' cholesterol levels, with both AE and FAE having the potential to prevent this increase.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Steno Diabetes Center Aarhus, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
7
|
Kuzmanović Nedeljković S, Radan M, Ćujić Nikolić N, Mutavski Z, Krgović N, Marković S, Stević T, Živković J, Šavikin K. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3979. [PMID: 38068615 PMCID: PMC10707773 DOI: 10.3390/plants12233979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024]
Abstract
The aim of the research was to develop microencapsulated powders of bilberry and chokeberry extracts via the spray drying technique. Two biopolymers, pectin alone and in combination with HP-β-CD, were used to preserve the antioxidant, hypoglycemic, photoprotective, and antimicrobial bioactivity of the berry leaf extracts. Moreover, the formed powders were characterized in terms of technological, chemical, and several biological properties. The obtained micro-sized powders (mean average particle diameter from 3.83 to 5.94 µm) demonstrated a process yield of up to 73%. The added biopolymers improved the flowability and cohesive properties of the powders and increased their thermal stability to 170 °C. The total content of polyphenolics in the powders ranged from 323.35 to 367.76 mg GAE/g DW for bilberry and from 186.85 to 227.59 mg GAE/g DW for chokeberry powders; meanwhile, chlorogenic acid was the predominant compound in powders. All samples showed stronger α-glucosidase inhibitory activity (IC50 values ranged from 5.00 to 19.59 µg/mL) compared with the reference standard. The study confirmed that spray drying is a suitable method for the preservation of the polyphenolic-rich extracts, while the addition of carriers has a positive effect on the improvement of microencapsulated powders' properties.
Collapse
Affiliation(s)
| | - Milica Radan
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Zorana Mutavski
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Tatjana Stević
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
9
|
Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, Masud MM. Phytochemical and Biological Investigation of an Indigenous Plant of Bangladesh, Gynura procumbens (Lour.) Merr.: Drug Discovery from Nature. Molecules 2023; 28:molecules28104186. [PMID: 37241926 DOI: 10.3390/molecules28104186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
Collapse
Affiliation(s)
- Md Abu Jobaer
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sania Ashrafi
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Monira Ahsan
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Choudhury Mahmood Hasan
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Abdur Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Mehedi Masud
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
10
|
Doma AO, Cristina RT, Dumitrescu E, Degi D, Moruzi RF, Brezovan D, Petroman I, Muselin F. The antioxidant effect of Aronia melanocarpa extract in rats oxidative stress induced by cisplatin administration. J Trace Elem Med Biol 2023; 79:127205. [PMID: 37257333 DOI: 10.1016/j.jtemb.2023.127205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The reactive oxygen species generated by numerous xenobiotic substances has as consequences the impairment of different organs normal function. Many plants pose antioxidant activity to counteract oxidative stress, among them being the chokeberry (Aronia melanocarpa). The purpose of present study was to determine if the use of A. melanocarpa extract can counteract the oxidative stress induced by cisplatin administration in rats. MATERIAL AND METHODS The study was made on forty Wistar rats divided in four groups as follows: C (control): receiving i.p. 1 mL of saline solution; E1: receiving cisplatin 20 mg/kg bw, i.p.; E2: receiving cisplatin 20 mg/kg bw, i.p and A. melanocarpa berry 6 % aqueous extract as drinking water, and CB (control blank): i.p 1 mL saline solution and A. melanocarpa 6 % aqueous extract for four weeks. RESULTS Administration of Cisplatin was followed by the increase of serum superoxide dismutase (+21.18 %, P < 0.05), catalase (+25.44 %, P < 0.001), glutathione peroxidase (+17.88 %, P < 0.05) and thiobarbituric reactive substances (+28.17 %, P < 0.01) but significantly decreased glutathione reductase (-22.35 %, P < 0.001) level comparative to control, pointing out that administration of cisplatin induced oxidative stress in rats. In groups that received A. melanocarpa extract as drinking water, we noted that the levels of the oxidative stress biomarkers tended to be restored almost to normal levels, which could be a possible good antioxidant used in condition to cisplatin use. Also, we noted a significant (P < 0.001) decrease of total antioxidant capacity in liver and kidney of rats exposed to cisplatin, recovered in those that received chokeberry. Studied trace elements important for the stress oxidative enzymes (Cu, Zn, Fe and Mn) were decreased in cisplatin exposed groups compared to control and mainly all were almost to normal level in groups receiving A. melanocarpa. CONCLUSION A. melanocarpa extract due to its antioxidants content could offer protection against free radicals produced as a consequence of cisplatin use.
Collapse
Affiliation(s)
- Alexandru O Doma
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Romeo T Cristina
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Eugenia Dumitrescu
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Diana Degi
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Razvan F Moruzi
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Diana Brezovan
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania
| | - Ioan Petroman
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Agricultural Management, Romania
| | - Florin Muselin
- University of Life Sciences" King Michael I" from Timisoara, Faculty of Veterinary Medicine, Romania; Working Group for Xenobiochemistry, Romanian Academy-Branch Timisoara, Romania.
| |
Collapse
|
11
|
Lee JH, Lim JY, Jeon YD, Yun DH, Lee YM, Kim DK. Extract of Wheatgrass and Aronia Mixture Ameliorates Atopic Dermatitis-Related Symptoms by Suppressing Inflammatory Response and Oxidative Stress In Vitro and In Vivo. Antioxidants (Basel) 2022; 12:antiox12010027. [PMID: 36670888 PMCID: PMC9854678 DOI: 10.3390/antiox12010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Atopic dermatitis is regulated by the production of pro-inflammatory cytokines and chemokines via the nuclear factor kappa B or mitogen-activated protein kinase signaling pathways, as well as, the release of oxidative stress-related factors via the NF-E2 p45-related factor 2 signaling pathway. Both wheatgrass (Triticum aestivum L., TA) and aronia (Aronia melanocarpa, AR) are known for their anti-inflammatory and antioxidant properties, however, the anti-inflammatory and antioxidant effects of TA and AR (TAAR) mixture extract have not been elucidated in an atopic dermatitis model. In this study, we assessed the inhibitory effects and underlying molecular mechanism of TAAR extract against lipopolysaccharide-induced inflammation and tumor necrosis factor-α/interferon-γ-induced inflammation and oxidative stress in vitro. We also investigated the alleviating effect of TAAR extract on DNCB-induced atopic dermatitis-like skin lesions in mice in vivo. We found that TAAR extract treatment inhibited inflammatory mediators in both RAW 264.7 cells and HaCaT cells, and increased the expression of oxidative stress defense enzymes in HaCaT cells. Furthermore, treatment of the DNCB-induced mouse model with TAAR extract ameliorated the overall symptoms of atopic dermatitis. Therefore, TAAR extract as a novel natural therapeutic agent may be used for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| | - Ji-Ye Lim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| | - Yong-Deok Jeon
- Department of Korean Pharmacy, Woosuk University, Wanju-gun 55338, Republic of Korea
| | - Dae-Ho Yun
- Department of Health Administration, Kwangju Women’s University, Kwangju 62396, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
- Correspondence: ; Tel.: +82-10-4510-3080
| |
Collapse
|
12
|
Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, Malik NA, Majid SA. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 2022; 173:105854. [DOI: 10.1016/j.micpath.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
13
|
Ren Y, Frank T, Meyer G, Lei J, Grebenc JR, Slaughter R, Gao YG, Kinghorn AD. Potential Benefits of Black Chokeberry ( Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. Molecules 2022; 27:molecules27227823. [PMID: 36431924 PMCID: PMC9696386 DOI: 10.3390/molecules27227823] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| | - Tyler Frank
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jizhou Lei
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica R. Grebenc
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan Slaughter
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yu G. Gao
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| |
Collapse
|
14
|
Gawałek J. Spray Drying of Chokeberry Juice-Antioxidant Phytochemicals Retention in the Obtained Powders versus Energy Consumption of the Process. Foods 2022; 11:foods11182898. [PMID: 36141026 PMCID: PMC9498438 DOI: 10.3390/foods11182898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
The production of chokeberry powder, an important functional additive in food, should exhibit both maximization of bioactive properties retention and minimization of energy consumption. The process of spray drying chokeberry juice on a maltodextrin carrier was tested on a semi-technical scale. The research scope included the variability of the inlet air temperature in the range of T = 150–185 °C and concentration of the feed solution in the range of Ud.m = 15–45% d.m. The powder yield, energy consumption and bioactive properties of the obtained powders were determined. The highest levels of bioactive properties retention were expressed in total polyphenol content (TPC) and anthocyanin content (AC) and obtained at T = 150 °C and Ud.m = 25–30% d.m. However, the most advantageous process parameters in terms of specific energy consumption (SEC) minimization were T = 160–170 °C and Ud.m = 30–35% d.m. Analysis of the dependence on SEC versus TPC and SEC versus AC showed that the most favorable drying parameters for chokeberry juice were as follows: inlet air temperature T = 170 °C and feed solution concentration Ud.m = 35%. Hence, under such process conditions, chokeberry powders were produced with approx. 3% lower bioactive properties retention (in relation to the maximum values), but with 20.5% lower SEC.
Collapse
Affiliation(s)
- Jolanta Gawałek
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
15
|
Qasem A, Assaggaf H, Montesano D, Khalil Z, Al-Mijalli SH, Baaboua AEL, El Omari N, El Menyiy N, Bakrim S, Sheikh RA, Alshahrani MM, Awadh AAA, Zengin G, Bouyahya A, Mrabti HN. Determination of Chemical Compounds and Investigation of Biological Properties of Matricaria chamomilla Essential Oils, Honey, and Their Mixture. Molecules 2022; 27:5850. [PMID: 36144586 PMCID: PMC9505312 DOI: 10.3390/molecules27185850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography-mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and β-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), β-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 μg/mL) and α-amylase (121.44 ± 0.05 μg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.
Collapse
Affiliation(s)
- Ahmed Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Zineb Khalil
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aicha EL Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Taounate 34025, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| |
Collapse
|
16
|
Li C, Wen R, Liu D, Yan L, Gong Q, Yu H. Assessment of the Potential of Sarcandra glabra (Thunb.) Nakai. in Treating Ethanol-Induced Gastric Ulcer in Rats Based on Metabolomics and Network Analysis. Front Pharmacol 2022; 13:810344. [PMID: 35903344 PMCID: PMC9315220 DOI: 10.3389/fphar.2022.810344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric ulcer (GU) is one of the most commonly diagnosed diseases worldwide, threatening human health and seriously affecting quality of life. Reports have shown that the Chinese herbal medicine Sarcandra glabra (Thunb.) Nakai (SGN) can treat GU. However, its pharmacological effects deserve further validation; in addition, its mechanism of action is unclear. An acute gastric ulcer (AGU) rat model induced by alcohol was used to evaluate the gastroprotective effect of SGN by analysis of the histopathological changes in stomach tissue and related cytokine levels; the potential mechanisms of action of SGN were investigated via serum metabolomics and network pharmacology. Differential metabolites of rat serum were identified by metabolomics and the metabolic pathways of the identified metabolites were enriched via MetaboAnalyst. Furthermore, the critical ingredients and candidate targets of SGN anti-AGU were elucidated. A compound-reaction-enzyme-gene network was established using Cytoscape version 3.8.2 based on integrated analysis of metabolomics and network pharmacology. Finally, molecular docking was applied to verify the acquired key targets. The results showed that SGN exerted a certain gastroprotective effect via multiple pathways and targets. The effects of SGN were mainly caused by the key active ingredients isofraxidin, rosmarinic, and caffeic acid, which regulate hub targets, such as PTGS2, MAPK1, and KDR, which maintain the homeostasis of related metabolites. Signal pathways involved energy metabolism as well as immune and amino acid metabolism. Overall, the multi-omics techniques were proven to be promising tools in illuminating the mechanism of action of SGN in protecting against diseases. This integrated strategy provides a basis for further research and clinical application of SGN.
Collapse
Affiliation(s)
- Chao Li
- School of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rou Wen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - DeWen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - LiPing Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| |
Collapse
|
17
|
Li Y, Nguepi Tsopmejio IS, Diao Z, Xiao H, Wang X, Jin Z, Song H. Aronia melanocarpa (Michx.) Elliott. attenuates dextran sulfate sodium-induced Inflammatory Bowel Disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115190. [PMID: 35306040 DOI: 10.1016/j.jep.2022.115190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aronia melanocarpa (Michx.) Elliott. Is one of the most functional berries usually used in the preparation of juice and jams, but it has revealed its ethnopharmacological properties due to their richness in biologically active molecules with pharmaceutical and physiological effects. AIMS OF THE STUDY The aim of this study was to assess the antioxidant and anti-inflammatory effects of Aronia melanocarpa ethanol-extract as well as the possible mechanisms of action involved and the modulation of gut microbiota in Dextran Sulfate Sodium (DSS)-induced Inflammatory bowel disease in mice. MATERIALS AND METHODS Inflammatory bowel disease (IBD) were induced by DSS in drinking water for 7 days to evaluate the properties of A. melanocarpa ethanol-extract (AME) on the intestinal microflora. AME was administered orally to DSS-induced IBD mice for 21 days. Clinical, inflammatory, histopathological parameters, and different mRNA and proteins involved in its possible mechanism of action were determined as well as gut microbiota analysis via 16S high throughput sequencing. RESULTS AME improved clinical symptoms and regulated histopathological parameters, pro- and anti-inflammatory cytokines and oxidative stress factors as well as mRNA and protein expressions of transcription factors involved in maintaining the intestinal barrier integrity. In addition, AME also reversed the DSS-induced intestinal dysbiosis effects promoting the production of cecal short chain fatty acids linked to signaling pathways inhibiting IBD. CONCLUSION AME improved intestinal lesions induced by DSS suggesting that A. melanocarpa berries could have significant therapeutic potential against IBD due to their antioxidant and anti-inflammatory capacities as well as their ability to restore the gut microbiota balance.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Ivan Stève Nguepi Tsopmejio
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Department of Animal Biology and Physiology, University of Yaoundé I, Cameroon
| | - Zipeng Diao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Huanwei Xiao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Xueqi Wang
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, PR China.
| |
Collapse
|
18
|
The Beneficial Impact of the Black Chokeberry Extract against the Oxidative Stress in the Sublingual Salivary Gland of Rats Intoxicated with Cadmium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:6622245. [PMID: 35003519 PMCID: PMC8741350 DOI: 10.1155/2021/6622245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is one of the most harmful xenobiotics to which humans are exposed, mainly by the oral route, throughout life. Preventive strategies are searched as low intoxication with this element, among others due to its prooxidative properties, can be deleterious to health and the exposure to it is continuously increasing. Recently, interest has been paid to plant raw materials with a high antioxidative potential to oppose the prooxidative properties of cadmium, such as black chokeberry (Aronia melanocarpa L. fruit), which is rich in polyphenolic compounds. The study was aimed at assessing whether the chokeberry extract may counteract the prooxidative impact of low-level and moderate repeated intoxication with cadmium on the sublingual salivary gland. The investigation was performed on 96 Wistar rats (females), which were treated with a 0.1% aqueous extract from chokeberries or/and a diet containing 1 or 5 mg Cd/kg for 3 and 10 months, and control animals. The intoxication with cadmium, in a dose- and time-dependent manner, attenuated the enzymatic and nonenzymatic antioxidative potential and increased the concentration of hydrogen peroxide and total oxidative status of the sublingual salivary gland resulting in an occurrence of oxidative stress, enhancement of lipid peroxidation, and oxidative injuries of proteins in this salivary gland. The treatment with the black chokeberry extract during the intoxication with cadmium prevented this xenobiotic-caused oxidative/reductive imbalance and oxidative modifications of proteins and lipids in the salivary gland. The above results allow the conclusion that the consumption of black chokeberry products during intoxication with cadmium can prevent oxidative stress and its consequences in the sublingual salivary gland and thus counteract the unfavourable impact of this xenobiotic on the oral cavity.
Collapse
|
19
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
20
|
Schreck K, Melzig MF. Traditionally Used Plants in the Treatment of Diabetes Mellitus: Screening for Uptake Inhibition of Glucose and Fructose in the Caco2-Cell Model. Front Pharmacol 2021; 12:692566. [PMID: 34489694 PMCID: PMC8417609 DOI: 10.3389/fphar.2021.692566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The traditional use of plants and their preparations in the treatment of diseases as a first medication in the past centuries indicates the presence of active components for specific targets in the natural material. Many of the tested plants in this study have been traditionally used in the treatment of Diabetes mellitus type 2 and associated symptoms in different cultural areas. Additionally, hypoglycemic effects, such as a decrease in blood glucose concentration, have been demonstrated in vivo for these plants. In order to determine the mode of action, the plants were prepared as methanolic and aqueous extracts and tested for their effects on intestinal glucose and fructose absorption in Caco2 cells. The results of this screening showed significant and reproducible inhibition of glucose uptake between 40 and 80% by methanolic extracts made from the fruits of Aronia melanocarpa, Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the leaves of Brassica oleracea, Juglans regia, and Peumus boldus; and the roots of Adenophora triphylla. Furthermore, glucose uptake was inhibited between 50 and 70% by aqueous extracts made from the bark of Eucommia ulmoides and the fruit skin of Malus domestica. The methanolic extracts of Juglans regia and Peumus boldus inhibited the fructose transport between 30 and 40% in Caco2 cells as well. These findings can be considered as fundamental work for further research regarding the treatment of obesity-correlated diseases, such as Diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Matthias F. Melzig
- Pharmaceutical Biology, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
21
|
Milosavljevic I, Jakovljevic V, Petrovic D, Draginic N, Jeremic J, Mitrovic M, Zivkovic V, Srejovic I, Stojic V, Bolevich S, Andjelkovic N. Standardized Aronia melanocarpa extract regulates redox status in patients receiving hemodialysis with anemia. Mol Cell Biochem 2021; 476:4167-4175. [PMID: 34327604 DOI: 10.1007/s11010-021-04225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
The aim of our study was to investigate the effects of one-month consumption of polyphenol-rich standardized Aronia melanocarpa extract (SAE) on redox status in anemic hemodialysis patients. The study included 30 patients (Hb < 110 g/l, hemodialysis or hemodiafiltration > 3 months; > 3 times week). Patients were treated with commercially available SAE in a dose of 30 ml/day, for 30 days. After finishing the treatment blood samples were taken to evaluate the effects of SAE on redox status. Several parameters of anemia and inflammation were also followed. After the completion of the treatment, the levels of superoxide anion radical and nitrites significantly dropped, while the antioxidant capacity improved via elevation of catalase and reduced glutathione. Proven antioxidant effect was followed by beneficial effects on anemia parameters (increased hemoglobin and haptoglobin concentration, decreased ferritin and lactate dehydrogenase concentration), but SAE consumption didn't improve inflammatory status, except for minor decrease in C-reactive protein. The consumption of SAE regulates redox status (reduce the productions of pro-oxidative molecules and increase antioxidant defense) and has beneficial effects on anemia parameters. SAE could be considered as supportive therapy in patients receiving hemodialysis which are prone to oxidative stress caused by both chronic kidney disease and hemodialysis procedure. Additionally, it could potentially be a good choice for supplementation of anemic hemodialysis patients. TRN: NCT04208451 December 23, 2019 "retrospectively registered".
Collapse
Affiliation(s)
- Isidora Milosavljevic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000, Kragujevac, Serbia. .,Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russia.
| | - Dejan Petrovic
- Faculty of Medical Sciences, Department of Internal Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladimir Zivkovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000, Kragujevac, Serbia
| | - Ivan Srejovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000, Kragujevac, Serbia
| | - Vladislava Stojic
- Faculty of Medical Sciences, Department of Medical Statistics and Informatics, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russia
| | - Nebojsa Andjelkovic
- Faculty of Medical Sciences, Department of Internal Medicine, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
22
|
Oyarzún P, Cornejo P, Gómez-Alonso S, Ruiz A. Influence of Profiles and Concentrations of Phenolic Compounds in the Coloration and Antioxidant Properties of Gaultheria poeppigii Fruits from Southern Chile. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:532-539. [PMID: 32783148 DOI: 10.1007/s11130-020-00843-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chaura (Gaultheria poeppigii) is a plant species native from Southern Chile, which produces a berry fruit with potential beneficial health effects due to its content of phenolic compounds. The qualitative and quantitative determination of the phenolic compounds from fruits of different colored genotypes (white-, pink- and red-colored) collected from the Osorno volcano and the Conguillío National Park (CNP) in southern Chile were analyzed by mass spectrometry (HPLC-DAD-ESI-MS/MS) and HPLC-DAD, respectively. The total content of phenolic compounds was evaluated by the Folin-Ciocalteu method, and its antioxidant activity by the CUPRAC, TEAC and DPPH methods. Four anthocyanins were detected, with glycosylated derivatives of delphinidin and cyanidin being the most abundant. Fruits with more coloration had higher anthocyanin concentrations. Six flavonols were detected, with quercetin derivatives being the most abundant. The highest concentration of total flavonols reached 0.41 mg g-1 in red colored fruits. The profiles of phenolic compounds showed differences between fruits depending on both the color and the area of collection. Finally, it would be interesting to evaluate the genetic profiles of chaura to determine whether this variation in phenolics and colorations is dependent on the geographical location or dependent on the genotype of the plant.
Collapse
Affiliation(s)
- Paulina Oyarzún
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Sergio Gómez-Alonso
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
23
|
Her Y, Lee TK, Kim JD, Kim B, Sim H, Lee JC, Ahn JH, Park JH, Lee JW, Hong J, Kim SS, Won MH. Topical Application of Aronia melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020; 25:E4577. [PMID: 33036412 PMCID: PMC7582310 DOI: 10.3390/molecules25194577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Junkee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| |
Collapse
|
24
|
Gajić D, Saksida T, Koprivica I, Šenerović L, Morić I, Šavikin K, Menković N, Pejnović N, Stojanović I. Immunomodulatory activity and protective effects of chokeberry fruit extract on Listeria monocytogenes infection in mice. Food Funct 2020; 11:7793-7803. [PMID: 32808624 DOI: 10.1039/d0fo00946f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chokeberry (Aronia melanocarpa) fruit extracts (CE) are rich in polyphenols and usually exhibit immunomodulatory, anti-viral and anti-bacterial effects. We have previously shown that the CE used in this study activated macrophages and stimulated effector T cell differentiation in vitro. When applied orally to healthy mice, CE increased the proportion of CD11c+ dendritic cells in the gut-associated lymphoid tissue. CE-pretreated BALB/c mice readily eradicated orally ingested Listeria monocytogenes as evidenced by a slighter decrease in body weight and number of bacteria recovered from the spleen and reduced spleen size compared to the control infected mice. CE pretreatment in infected mice resulted in higher proportions of CD11b+ macrophages and CD8+ cytotoxic T cells both in the gut and the spleen. Phagocytosis, reactive oxygen species production and the proportions of activated CD86+ macrophages (CD11b+) and dendritic cells (CD11c+) were also enhanced in CE-pretreated infected mice. Furthermore, the expression of inducible nitric oxide synthase and IL-6 was increased in CE-pretreated infected mice and similar results were obtained in peritoneal macrophages in vitro. This effect of CE was associated with increased phosphorylation of IκB and Notch1 production. Finally, CE pretreatment elevated the proportion of perforin-producing cells in the spleen compared to control infected mice. This study demonstrates that prophylactic treatment with CE leads to more rapid eradication of bacterial infection with L. monocytogenes predominantly through increased activity of myeloid cells in the gut and in the spleen.
Collapse
Affiliation(s)
- Dragica Gajić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Lidija Šenerović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ivana Morić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nebojša Menković
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
25
|
Hawkins J, Hires C, Baker C, Keenan L, Bush M. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: a meta analysis of controlled clinical trials. J Diet Suppl 2020; 18:517-530. [PMID: 32794414 DOI: 10.1080/19390211.2020.1800887] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND & OBJECTIVES Cardiovascular disease is a leading cause of morbidity and mortality in the United States. Dietary supplements, such as those rich in antioxidants, have the potential to improve markers of cardiovascular health, but little is known about the total effect of these supplements. The purpose of this analysis is to identify the effect size of supplementation with aronia berry extracts and to evaluate how age may influence these effects. METHODS This analysis included a literature review of controlled trials evaluating the effects of daily aronia berry supplementation for an average of 6-8 weeks on the outcomes of total cholesterol and blood pressure. Three distinct analyses were conducted: systolic blood pressure, diastolic blood pressure, and total cholesterol. The moderator of age was evaluated for each of the three outcome measures. RESULTS & CONCLUSION Daily supplementation with aronia berry extracts for 6-8 weeks significantly reduces systolic blood pressure, which is a key risk factor for cardiovascular disease, as well as total cholesterol. These effects are most significant in adults over the age of 50 years. Supplementation with aronia berry is a safe and effective way to reduce total cholesterol and systolic blood pressure, with even larger effects among adults over the age of 50 years.
Collapse
Affiliation(s)
- Jessie Hawkins
- Integrative Health, Franklin School of Integrative Health Sciences, Franklin, TN, USA
| | - Christy Hires
- Integrative Health, Franklin School of Integrative Health Sciences, Franklin, TN, USA
| | - Colby Baker
- Integrative Health, Franklin School of Integrative Health Sciences, Franklin, TN, USA
| | - Lindsey Keenan
- Integrative Health, Franklin School of Integrative Health Sciences, Franklin, TN, USA
| | | |
Collapse
|
26
|
Zhu Y, Zhang JY, Wei YL, Hao JY, Lei YQ, Zhao WB, Xiao YH, Sun AD. The polyphenol-rich extract from chokeberry ( Aronia melanocarpa L .) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats. Nutr Metab (Lond) 2020; 17:54. [PMID: 32655675 PMCID: PMC7339576 DOI: 10.1186/s12986-020-00473-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota plays a critical role in obesity and lipid metabolism disorder. Chokeberry (Aronia melanocarpa L.) are rich in polyphenols with various physiological and pharmacological activities. We determined serum physiological parameters and fecal microbial components by using related kits, liquid chromatography-mass spectrometry (LC-MS) and 16S rRNA gene sequencing every 10 days. Real-time PCR analysis was used to measure gene expression of bile acids (BAs) and lipid metabolism in liver and adipose tissues. We analyzed the effects of different Chokeberry polyphenol (CBPs) treatment time on obesity and lipid metabolism in high fat diet (HFD)-fed rats. The results indicated that CBPs treatment prevents obesity, liver steatosis and improves dyslipidemia in HFD-fed rats. CBPs modulated the composition of the gut microbiota with the extended treatment time, reducing the Firmicutes/Bacteroidetes ratio (F/B ratio) and increasing the relative abundance of Bacteroides, Prevotella, Akkermansia and other bacterial species associated with anti-obesity properties. We found that CBPs treatment gradually decreased the total BAs pool and particularly reduced the relative content of cholic acid (CA), deoxycholic acid (DCA) and enhanced the relative content of chenodeoxycholic acid (CDCA). These changes were positively correlated Bacteroides, Prevotella and negatively correlated with Clostridium, Eubacterium, Ruminococcaceae. In liver and white adipose tissues, the gene expression of lipogenesis, lipolysis and BAs metabolism were regulated after CBPs treatment in HFD-fed rats, which was most likely mediated through FXR and TGR-5 signaling pathway to improve lipid metabolism. In addition, the mRNA expression of PPARγ, UCP1 and PGC-1α were upregulated markedly in interscapular brown adipose tissue (iBAT) after CBPs treatment. We confirmed that CBPs could reduce the body weight of HFD-fed rats by accelerating energy homeostasis and thermogenesis in iBAT. Finally, the fecal microbiota transplantation (FMT) experiment results demonstrated that FMT from CBPs-treated rats failed to reduce the weight of HFD-fed rats. However, FMT from CBPs-treated rats improved dyslipidemia and reshaped gut microbiota in HFD-fed rats. In conclusion, CBPs treatment improved obesity and complications by regulating gut microbiota in HFD-fed rats. The gut microbiota plays an important role in BAs metabolism after CBPs treatment, and BAs have therefore emerged as major effectors in microbe-host signaling events that influence host lipid metabolism, energy metabolism and thermogenesis.
Collapse
Affiliation(s)
- Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Jia-ying Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yu-long Wei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Jing-yi Hao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yu-qing Lei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Wan-bin Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yu-hang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Ai-dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
27
|
Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase IV and α-glucosidase activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Vinogradova Y, Vergun O, Grygorieva O, Ivanišová E, Brindza J. Comparative analysis of antioxidant activity and phenolic compounds in the fruits of Aronia spp. POTRAVINARSTVO 2020. [DOI: 10.5219/1360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chokeberry (Aronia Medik.) is a non-traditional fruit plant known as a rich source of biologically active compounds and inhibits the numerous biological activities. We compared the antioxidant activity and phenolic compounds of fruits between widely cultivated Aronia mitschurinii (AM-TCH, from Tchekhov district; AM-D, from Dmitrov district; AM-OZ, from Orekhovo-Zuevsky district of Moscow region, Russia) and introduced North American Aronia species (Aronia arbutifolia (AA-M), A. melanocarpa (AML-M), A. × prunifolia (AP-M), which have not been planted yet in the arboretum of Main Botanical Garden of the Russian Academy of Sciences (Moscow). Studying samples were collected in their secondary distribution range. Ethanolic extracts were determined for antioxidant capacity (antioxidant activity by DPPH and phosphomolybdenum methods, the total content of polyphenols, flavonoids, phenolic acids) and measured spectrophotometrically. As standards were used Trolox (TE) for antioxidant activities, gallic acid (GAE) for polyphenol content, quercetin (QE) for flavonoid content, caffeic acid (CAE) for phenolic acid content. The antioxidant activity by DPPH method in ethanol extracts of investigated plants was from 6.96 (AM-D) to 8.89 (AM-OZ) mg TE.g-1 DW. Reducing the power of investigated extracts exhibited activity from 151.47 (AM-OZ) to 297.8 (AA-M) mg TE.g-1 DW. The content of polyphenol compounds determined from 25.98 (AM-TCH) to 54.39 (AA-M) mg GAE.g-1 DW, phenolic acids content was from 7.76 (AP-M) to 11.87 (AM-D) mg CAE.g-1 DW and the content of flavonoids detected from 8.12 (AM-OZ) to 16.62 (AM-D) mg QE.-1 DW. Obtained data showed a strong correlation between the content of polyphenol compounds and reducing the power of extracts (r = 0.700), between flavonoids and phenolic acids (r = 0.771) and also between phenolic acids and reducing power (r = 0.753) in Aronia ethanol extracts. Fruits of investigated species of Aronia can be propagated as a source of polyphenol compounds with antioxidant activity and obtained results may use for farther pharmacological study.
Collapse
|
29
|
Mu J, Xin G, Zhang B, Wang Y, Ning C, Meng X. Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats. J Food Sci 2020; 85:1307-1318. [PMID: 32249934 DOI: 10.1111/1750-3841.15109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
We aimed to investigate) the effects of Aronia melanocarpa berry extract (AMBE) on hepatic insulin resistance and its mechanism at the molecular level in high-fat diet (HFD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were supplemented with AMBE at doses of 100 and 400 mg/kg body weight (bw) daily for 8 weeks. AMBE significantly reduced blood glucose and serum insulin levels and the homeostatic model assessment for insulin resistance score; improved glucose tolerance; increased hepatic glycogen content; and regulated glucose metabolism enzyme activity, including glucokinase, pyruvate kinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in the liver. AMBE also reduced lipid accumulation and oxidative stress along with inflammation in the hepatic tissue of T2DM rats and improved hepatic function. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated by AMBE through the elevation of insulin receptor substrate-2, PI3K, Akt, and glycogen synthase kinase-3β phosphorylation and glucose transporter 2, which might contribute to the promotion of glycogen synthesis and improvement of hepatic insulin resistance. AMBE shows promise as an ingredient of functional foods for alleviating hepatic insulin resistance in T2DM. PRACTICAL APPLICATION: The extract from the berries of Aronia melanocarpa (Michx.) Elliott (AMBE), with its relatively high content of polyphenolic compounds, has been shown to exert hypoglycemic effects in animal models of diabetes. Our findings support the use of A. melanocarpa as a functional food additive for the alleviation of hepatic insulin resistance and the management of glucose homeostasis in T2DM.
Collapse
Affiliation(s)
- Jingjing Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Bo Zhang
- College of Chemistry and Life Science, Anshan Normal College, Anshan, Liaoning, 114007, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Chong Ning
- College of Light Industry, Liaoning University, Shenyang, Liaoning, 110136, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
30
|
Vidović S, Ramić M, Ambrus R, Vladić J, Szabó-Révész P, Gavarić A. Aronia Berry Processing by Spray Drying: From Byproduct to High Quality Functional Powder. Food Technol Biotechnol 2020; 57:513-524. [PMID: 32123513 PMCID: PMC7029385 DOI: 10.17113/ftb.57.04.19.6369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main aim of this study is to analyze the solid-liquid extraction followed by spray drying as a technological pathway for utilization of aronia fruit dust, a byproduct of filter tea factory. In the current study, ultrasound-assisted extraction was applied for the production of aronia liquid feed and maltodextrin was used as a carrier and encapsulating agent. In spray drying, the influence of inlet temperature and maltodextrin type and mass fraction on process efficiency and powder properties were observed. The physical and chemical properties of the obtained powders were characterized. It was determined that the powder produced using inlet temperature 140 °C and 40% maltodextrin with dextrose equivalent (DE) 19.7 had the most desirable characteristics. It was observed that the increase in maltodextrin mass fraction decreases the powder moisture content, hygroscopicity and the content of bioactive compounds, but increases water solubility index and particle size. The increase in dextrose equivalent of maltodextrin increases the powder hygroscopicity and water solubility index, while the increase of inlet temperature causes a decrease in moisture content of aronia powders.
Collapse
Affiliation(s)
- Senka Vidović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Milica Ramić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Rita Ambrus
- Department of Pharmaceutical Technology, Eotvos 6, University of Szeged, 6720 Szeged, Hungary
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Piroska Szabó-Révész
- Department of Pharmaceutical Technology, Eotvos 6, University of Szeged, 6720 Szeged, Hungary
| | - Aleksandra Gavarić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
31
|
Burdejova L, Tobolkova B, Polovka M. Effects of Different Factors on Concentration of Functional Components of Aronia and Saskatoon Berries. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:83-88. [PMID: 31848855 DOI: 10.1007/s11130-019-00780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effects of different factors on the content of phenolics, anthocyanins, antioxidants and colour parameters in two varieties of Aronia and three varieties of Saskatoon berries were evaluated. The berries were extracted by dynamic solvent extraction using three different solvents (water, 50% ethanol (v/v) and dimethyl sulfoxide) and subsequently analysed by ultraviolet visible near infrared spectroscopy and electron paramagnetic resonance followed by chemometric analysis. The results obtained show that, dimethyl sulfoxide was the most appropriate for berries functional components isolation, and among the studied berries, Aronia exhibited the highest contents of phenolics. Besides that, varieties of Aronia melanocarpa Viking and of Amelanchier lamarckii Ballerina were selected as the cultivars with high contents of functional components. Satisfactory differentiation of berries was achieved according to extraction solvent, fruit type, variety and production years. The results obtained reveal that, phytochemical composition of Aronia and Saskatoon berries may vary depending on genotypic factors, climate, growing conditions as well as on extraction method used for their assessment. Sample processing, genotypic and seasonal factors had significant effect on the concentration of naturally occurring compounds in berries.
Collapse
Affiliation(s)
- Lenka Burdejova
- Department of Fluid Phase Separations, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 967/97, 602 00, Brno, Czech Republic.
| | - Blanka Tobolkova
- Department of Chemistry and Food Analysis, Food Research Institute, National Agricultural and Food Centre, Priemyselna 4, P. O. Box 25, 824 75, Bratislava, Slovakia
| | - Martin Polovka
- Department of Chemistry and Food Analysis, Food Research Institute, National Agricultural and Food Centre, Priemyselna 4, P. O. Box 25, 824 75, Bratislava, Slovakia
| |
Collapse
|
32
|
Gajic D, Saksida T, Koprivica I, Vujicic M, Despotovic S, Savikin K, Jankovic T, Stojanovic I. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Development of an Enriched Polyphenol (Natural Antioxidant) Extract from Orange Juice ( Citrus sinensis) by Adsorption on Macroporous Resins. J FOOD QUALITY 2020. [DOI: 10.1155/2020/1251957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Orange (Citrus sinensis) juice contains a high amount of antioxidant compounds, such as polyphenols and vitamins. The aim of this work was to develop an adsorption procedure for the quantitative recovery of polyphenols from fresh orange juice. Different macroporous resins have been selected to evaluate their affinity for phenolic compound in order to purify the antioxidant compounds from the orange juice. The main compounds of orange juice were firstly characterized using an UPLC-UV-HRMS to define the metabolite profile, and subsequently three different types of adsorbent (XAD-2, XAD-4, and XAD-16N) were tested to concentrate these bioactive compounds. The time of contact was selected based on kinetic studies, and subsequently the adsorption and elution conditions were optimized in order to maximize the recovery of phenolic compounds to obtain an extract rich of bioactive compounds. Lastly, antioxidant capacity of the orange juice extract of selected macroporous resin, obtained under optimized conditions, was determined by in vitro antioxidant assays.
Collapse
|
34
|
Milutinovic M, Velickovic Radovanovic R, Savikin K, Radenkovic S, Arvandi M, Pesic M, Kostic M, Miladinovic B, Brankovic S, Kitic D. Chokeberry juice supplementation in type 2 diabetic patients - impact on health status. J Appl Biomed 2019; 17:218-224. [PMID: 34907720 DOI: 10.32725/jab.2019.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recent literature evidence indicates the potential use of chokeberry preparations in the prevention and treatment of some chronic noncommunicable diseases. The aim of the present study was to evaluate the effects of the three months oral chokeberry juice supplementation in type 2 diabetic patients, as well as its influence on hematological parameters and certain parameters of the renal dysfunction. The study was designed as an open-label trial, which included 35 patients who have received the herbal supplement, polyphenol-rich chokeberry juice (150 ml/day, three times a day for 50 ml), in addition to their standard therapy. Chokeberry juice as a rich source of polyphenol compounds could be an effective preventive and therapeutic agent in diabetes mellitus type 2. Hematological and biochemical parameters were measured at baseline, after 3 months with the chokeberry juice supplementation and after the next 3 months without the chokeberry juice supplementation (follow-up period). Significant difference was noticed in the levels of LDL-cholesterol, glycated hemoglobin and serum creatinine (p < 0.05), as well as in the levels of some hematological parameters, such as white blood cell and lymphocyte count (p < 0.01), hematocrit, blood hemoglobin, mean corpuscular volume, hemoglobin and hemoglobin concentration and red blood cell count (p < 0.05). The daily consumption of the chokeberry juice could improve the health status in patients with type 2 diabetes mellitus, in combination with their standard therapy.
Collapse
Affiliation(s)
- Milica Milutinovic
- University of Nis, Faculty of Medicine, Department of Pharmacy, Nis, Serbia
| | - Radmila Velickovic Radovanovic
- University of Nis, Faculty of Medicine, Department of Pharmacology, Nis, Serbia.,Clinical Center Nis, Clinic of Nephrology, Nis, Serbia
| | - Katarina Savikin
- Institute for Medicinal Plants Research "Dr. Josif Pancic", Belgrade, Serbia
| | - Sasa Radenkovic
- University of Nis, Faculty of Medicine, Department of Internal Medicine, Nis, Serbia.,Clinical Center Nis, Clinic of Endocrinology, Diabetes and Metabolic Disorders, Nis, Serbia
| | - Marjan Arvandi
- Institute of Public Health, Medical Decision Making, and Health Technology Assessment, UMIT, Hall in Tirol, Austria
| | - Milica Pesic
- University of Nis, Faculty of Medicine, Department of Internal Medicine, Nis, Serbia.,Clinical Center Nis, Clinic of Endocrinology, Diabetes and Metabolic Disorders, Nis, Serbia
| | - Milica Kostic
- University of Nis, Faculty of Medicine, Department of Pharmacy, Nis, Serbia
| | - Bojana Miladinovic
- University of Nis, Faculty of Medicine, Department of Pharmacy, Nis, Serbia
| | - Suzana Brankovic
- University of Nis, Faculty of Medicine, Department of Physiology, Nis, Serbia
| | | |
Collapse
|
35
|
Rahmani J, Clark C, Kord Varkaneh H, Lakiang T, Vasanthan LT, Onyeche V, Mousavi SM, Zhang Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33:1981-1990. [PMID: 31237052 DOI: 10.1002/ptr.6398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 11/08/2022]
Abstract
Plant derivatives, such as anthocyanin-rich phytochemicals, have been reported to elicit a positive effect on lipid profile. Therefore, the aim of this study was to systematically review and meta-analyze the effects of Aronia consumption on lipid profiles, blood pressure, and biomarkers of inflammation in randomized controlled trials. A systematic search was performed in PubMed/MEDLINE, Cochrane, and SCOPUS up to December 2018. Seven studies were identified and analyzed in this meta-analysis. Our study found a significant increase in high-density lipoprotein (HDL; weighted mean difference [WMD]: 1.48 mg/dl, 95% confidence interval, CI, [1.29, 1.68]) and diastolic blood pressure (WMD: 2.55 mmHg, 95% CI [0.63, 4.47]) following Aronia consumption. There was no significant effect on systolic blood pressure and C-reactive protein, tumor necrosis factor, and interleukin-1. Furthermore, subgroup analysis showed that cholesterol (WMD: -7.18, 95% CI [-13.90, -0.46]) and low-density lipoprotein (LDL; WMD: -5.84, 95% CI [-6.91, -4.77]) decreased more significantly in interventions less than 10 weeks in duration. Dose-response analysis demonstrated a significant reduction in triglyceride levels when dose of Aronia was increased to 300 mg/day. In conclusion, the results demonstrated a significant increase in HDL and reduction in total cholesterol and LDL among patients supplementing with Aronia.
Collapse
Affiliation(s)
- Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Hamed Kord Varkaneh
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Theophilus Lakiang
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Lenny T Vasanthan
- Department of Physical Medicine and Rehabilitation, Physiotherapy Unit, Christian Medical College and Hospital, Vellore, India
| | - Vincent Onyeche
- National Institute for Freshwater Fisheries Research, New Bussa, Nigeria
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Student Research Committee, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yong Zhang
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Njume C, Donkor O, McAinch AJ. Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine 2018; 13:6109-6121. [PMID: 30349240 PMCID: PMC6188155 DOI: 10.2147/ijn.s178077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
| | - Govindarajan Karthivashan
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Shin Young Park
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Joonsoo Kim
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Dong-Kug Choi
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| |
Collapse
|
38
|
Makri S, Kafantaris I, Savva S, Ntanou P, Stagos D, Argyroulis I, Kotsampasi B, Christodoulou V, Gerasopoulos K, Petrotos K, Komiotis D, Kouretas D. Novel Feed Including Olive Oil Mill Wastewater Bioactive Compounds Enhanced the Redox Status of Lambs. ACTA ACUST UNITED AC 2018; 32:291-302. [PMID: 29475912 DOI: 10.21873/invivo.11237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM The aim of the present study was to investigate the antioxidant effects of a feed supplemented with polyphenolic additives from olive mill wastewater (OMW) on lambs. MATERIALS AND METHODS Lambs received breast milk until the postnatal period, and then they were divided into two groups and received control and OMW feed for 55 days. Redox biomarkers were measured in blood and tissues at days 15, 42 and 70 after feeding. RESULTS Feed supplemented with OMW reduced thiobarbituric acid reactive species and protein carbonyls and increased total antioxidant capacity, glutathione and catalase activity in both blood and tissues. CONCLUSION The administration of OMW-containing feed reinforced the antioxidant defense of lambs, which may improve their wellbeing and productivity. Additionally, this exploitation of OMW may solve problems of environmental pollution in areas with olive oil industries.
Collapse
Affiliation(s)
- Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Kafantaris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Salomi Savva
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Polyxeni Ntanou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.,Department of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Argyroulis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Basiliki Kotsampasi
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Vladimiros Christodoulou
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Konstantinos Gerasopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.,Department of Biosystem Engineering, Technical Education Institute of Thessaly, Larissa, Greece
| | - Konstantinos Petrotos
- Department of Biosystem Engineering, Technical Education Institute of Thessaly, Larissa, Greece
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
39
|
Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 2018:2495848. [PMID: 30154861 PMCID: PMC6091336 DOI: 10.1155/2018/2495848] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 02/08/2023] Open
Abstract
Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Hendrina Shipanga
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Arielle Rowe
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | | |
Collapse
|
40
|
Combination of Aronia, Red Ginseng, Shiitake Mushroom and Nattokinase Potentiated Insulin Secretion and Reduced Insulin Resistance with Improving Gut Microbiome Dysbiosis in Insulin Deficient Type 2 Diabetic Rats. Nutrients 2018; 10:nu10070948. [PMID: 30041479 PMCID: PMC6073765 DOI: 10.3390/nu10070948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
The combination of freeze-dried aronia, red ginseng, ultraviolet-irradiated shiitake mushroom and nattokinase (AGM; 3.4:4.1:2.4:0.1) was examined to evaluate its effects on insulin resistance, insulin secretion and the gut microbiome in a non-obese type 2 diabetic animal model. Pancreatectomized (Px) rats were provided high fat diets supplemented with either (1) 0.5 g AGM (AGM-L), (2) 1 g AGM (AGM-H), (3) 1 g dextrin (control), or (4) 1 g dextrin with 120 mg metformin (positive-control) per kg body weight for 12 weeks. AGM (1 g) contained 6.22 mg cyanidin-3-galactose, 2.5 mg ginsenoside Rg3 and 244 mg β-glucan. Px rats had decreased bone mineral density in the lumbar spine and femur and lean body mass in the hip and leg compared to the normal-control and AGM-L and AGM-H prevented the decrease. Visceral fat mass was lower in the control group than the normal-control group and its decrease was smaller with AGM-L and AGM-H. HOMA-IR was lower in descending order of the control, positive-control, AGM-L, AGM-H and normal-control groups. Glucose tolerance deteriorated in the control group and was improved by AGM-L and AGM-H more than in the positive-control group. Glucose tolerance is associated with insulin resistance and insulin secretion. Insulin tolerance indicated insulin resistance was highly impaired in diabetic rats, but it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Insulin secretion capacity, measured by hyperglycemic clamp, was much lower in the control group than the normal-control group and it was improved in the ascending order of the positive-control, AGM-L and AGM-H. Diabetes modulated the composition of the gut microbiome and AGM prevented the modulation of gut microbiome. In conclusion, AGM improved glucose metabolism by potentiating insulin secretion and reducing insulin resistance in insulin deficient type 2 diabetic rats. The improvement of diabetic status alleviated body composition changes and prevented changes of gut microbiome composition.
Collapse
|
41
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|