1
|
Ten-Doménech I, Moreno-Giménez A, Campos-Berga L, Zapata de Miguel C, López-Nogueroles M, Parra-Llorca A, Quintás G, García-Blanco A, Gormaz M, Kuligowski J. Impact of maternal health and stress on steroid hormone profiles in human milk: Implications for infant development. J Lipid Res 2024; 65:100688. [PMID: 39490927 PMCID: PMC11617944 DOI: 10.1016/j.jlr.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Steroid hormones are biologically active factors in human milk (HM) that influence the physical and mental development of infants. Critically, maternal psychosocial stress has been associated with changes in HM steroid composition. This work aimed to characterize the steroid hormone profile of HM and pasteurized donor human milk (DHM) and assess the interplay between maternal physical and psychosocial status, the HM steroid profile, and infant outcomes. A targeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to quantify sixteen steroid hormones in HM samples. HM samples from mothers of term infants (N = 42) and preterm infants (N = 35) were collected at (i) recovery of birth weight or achievement of complete enteral nutrition, respectively, and (ii) 6 months later as well as DHM samples (N = 19) from 11 donors. The physical and psychosocial status of mothers and infant neurodevelopment and temperament were assessed through structured interviews and validated questionnaires. Fourteen steroids were detected in HM/DHM samples, with cortisol, 20β-dihydrocortisol, dehydroepiandrosterone, pregnenolone, and cortisone being present in > 48% of samples. Pregnenolone, 17α-OH-progesterone, and dehydroepiandrosterone are reported for the first time in HM. Whereas milk cortisol levels were not directly related to maternal physical and psychosocial status nor with infant development, cortisone, and pregnenolone correlated positively with maternal weight gain during pregnancy and were associated with maternal well-being and infant growth. The pasteurization process may have a detrimental effect on the steroid hormone levels in HM, which might influence the development of receptors.
Collapse
Affiliation(s)
- Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Mental Health Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Laura Campos-Berga
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Mental Health Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Cristina Zapata de Miguel
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Mental Health Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | | | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Terrassa, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana García-Blanco
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Mental Health Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - María Gormaz
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Qureshi R, Fewtrell M, Wells JCK, Dib S. The association between maternal factors and milk hormone concentrations: a systematic review. Front Nutr 2024; 11:1390232. [PMID: 39021603 PMCID: PMC11253774 DOI: 10.3389/fnut.2024.1390232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Breast milk is the gold standard for infant feeding. It is a dynamic biological fluid rich in numerous bioactive components. Emerging research suggests that these components, including hormones, may serve as signals between mother and offspring. From an evolutionary perspective, maternal hormonal signals could allow co-adaptation of maternal and offspring phenotype, with implications for their Darwinian fitness. However, a series of steps need to be considered to establish the role of a component as a signal and this systematic review focuses on one step: 'Do maternal factors influence the concentration of milk hormones?' Objective To systematically review human studies which analyze the association between maternal factors and the concentration of hormones in breast milk. Methods Three databases were searched for studies reporting the association of maternal factors including body mass index (BMI), weight, fat mass, age, ethnicity, smoking with hormones such as adiponectin, leptin, insulin, ghrelin, and cortisol in breast milk. Results Thirty-three studies were eligible for inclusion. Maternal BMI was positively associated with milk leptin (20/21 studies) and with milk insulin (4/6 studies). Maternal weight also displayed a positive correlation with milk leptin levels, and maternal diabetes status was positively associated with milk insulin concentrations. Conversely, evidence for associations between maternal fat mass, smoking, ethnicity and other maternal factors and hormone levels in breast milk was inconclusive or lacking. Conclusion Current evidence is consistent with a signaling role for leptin and insulin in breast milk, however other steps need to be investigated to understand the role of these components as definitive signals. This review represents a first step in establishing the role of signaling components in human milk and highlights other issues that need to be considered going forward.
Collapse
Affiliation(s)
| | - Mary Fewtrell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | |
Collapse
|
3
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
4
|
Rosen-Carole CB, Greenman S, Wang H, Sonawane S, Misra R, O'Connor T, Järvinen K, D'Angio C, Young BE. Association between maternal stress and premature milk cortisol, milk IgA, and infant health: a cohort study. Front Nutr 2024; 11:1270523. [PMID: 38533463 PMCID: PMC10964987 DOI: 10.3389/fnut.2024.1270523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Background Maternal stress is pervasive in the neonatal intensive care unit (NICU). Maternal stress is associated with changes in human milk (HM) immunomodulatory agents, which may impact neonatal health. We sought to determine the association between maternal stress, HM immunoglobulin A (IgA) and cortisol, and to assess how these milk components correlate with infant immune and neurodevelopmental outcomes. We then compared how these associations persist over time. Methods The study design involved a cohort study of exclusively breastfeeding mothers and their singleton moderately preterm (28-34 weeks) infants admitted to the NICU. We collected maternal serum, maternal saliva, and first-morning whole milk samples, and administered maternal stress questionnaires at 1 and 5 weeks postpartum. We analyzed the samples for HM IgA (using a customized immunoassay in skim milk) and for HM and salivary cortisol (using a chemiluminescent immunoassay). Infant illness was assessed using the Score for Neonatal Acute Physiology II (SNAP II) and SNAP II with Perinatal Extension (SNAPPE II), and infant neurodevelopment were assessed using the Test of Infant Motor Performance. We analyzed changes in HM IgA and cortisol over time using paired t-tests. Furthermore, we performed correlation and regression analyses after adjusting for gestational age (GA), corrected GA, and infant days of life. Results In our study, we enrolled 26 dyads, with a mean maternal age of 28.1 years, consisting of 69% white, 19% Black, and 8% Hispanic. Cortisol: Salivary and HM cortisol were closely associated in week 1 but not in week 5. Though mean salivary cortisol remained stable over time [2.41 ng/mL (SD 2.43) to 2.32 (SD 1.77), p = 0.17], mean HM cortisol increased [1.96 ng/mL (SD 1.93) to 5.93 ng/mL (SD 3.83), p < 0.001]. Stress measures were inversely associated with HM cortisol at week 1 but not at week 5. IgA: HM IgA decreased over time (mean = -0.14 mg/mL, SD 0.53, p < 0.0001). High maternal stress, as measured by the Parental Stressor Scale: neonatal intensive care unit (PSS:NICU), was positively associated with HM IgA at week 5 (r = 0.79, P ≤ 0.001). Higher IgA was associated with a lower (better) SNAP II score at week 1 (r = -0.74, p = 0.05). No associations were found between maternal stress, salivary cortisol, HM cortisol, or HM IgA and neurodevelopment at discharge (as assessed using the TIMP score). Furthermore, these relationships did not differ by infant sex. Conclusion Maternal stress showed associations with HM cortisol and HM IgA. In turn, HM IgA was associated with lower measures of infant illness.
Collapse
Affiliation(s)
- Casey B. Rosen-Carole
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Susan Greenman
- Swedish First Hill Family Medicine, Seattle, WA, United States
| | - Hongyue Wang
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Sharvari Sonawane
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ravi Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Tom O'Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Kirsi Järvinen
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Carl D'Angio
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Bridget E. Young
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
5
|
Brockway MM, Daniel AI, Reyes SM, Gauglitz JM, Granger M, McDermid JM, Chan D, Refvik R, Sidhu KK, Musse S, Patel PP, Monnin C, Lotoski L, Geddes DT, Jehan F, Kolsteren P, Bode L, Eriksen KG, Allen LH, Hampel D, Rodriguez N, Azad MB. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv Nutr 2024; 15:100127. [PMID: 37802214 PMCID: PMC10831900 DOI: 10.1016/j.advnut.2023.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Human milk (HM) contains macronutrients, micronutrients, and a multitude of other bioactive factors, which can have a long-term impact on infant growth and development. We systematically searched MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born infants. From 9992 abstracts screened, 141 articles were included and categorized based on their reporting of HM micronutrients, macronutrients, or bioactive components. Bioactives including hormones, HM oligosaccharides (HMOs), and immunomodulatory components are reported here, based on 75 articles from 69 unique studies reporting observations from 9980 dyads. Research designs, milk collection strategies, sampling times, geographic and socioeconomic settings, reporting practices, and outcomes varied considerably. Meta-analyses were not possible because data collection times and reporting were inconsistent among the studies included. Few measured infant HM intake, adjusted for confounders, precisely captured breastfeeding exclusivity, or adequately described HM collection protocols. Only 5 studies (6%) had high overall quality scores. Hormones were the most extensively examined bioactive with 46 articles (n = 6773 dyads), compared with 13 (n = 2640 dyads) for HMOs and 12 (n = 1422 dyads) for immunomodulatory components. Two studies conducted untargeted metabolomics. Leptin and adiponectin demonstrated inverse associations with infant growth, although several studies found no associations. No consistent associations were found between individual HMOs and infant growth outcomes. Among immunomodulatory components in HM, IL-6 demonstrated inverse relationships with infant growth. Current research on HM bioactives is largely inconclusive and is insufficient to address the complex composition of HM. Future research should ideally capture HM intake, use biologically relevant anthropometrics, and integrate components across categories, embracing a systems biology approach to better understand how HM components work independently and synergistically to influence infant growth.
Collapse
Affiliation(s)
- Meredith Merilee Brockway
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Allison I Daniel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah M Reyes
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Deborah Chan
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Rebecca Refvik
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karanbir K Sidhu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suad Musse
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Pooja P Patel
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, Unites States
| | - Caroline Monnin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, MB, Canada
| | - Larisa Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Fyezah Jehan
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | - Patrick Kolsteren
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Lars Bode
- Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego (UC San Diego), San Diego, CA, United States
| | - Kamilla G Eriksen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lindsay H Allen
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Daniela Hampel
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Natalie Rodriguez
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Reza HA, Farooqui Z, Reza AA, Conroy C, Iwasawa K, Ogura Y, Okita K, Osafune K, Takebe T. Synthetic augmentation of bilirubin metabolism in human pluripotent stem cell-derived liver organoids. Stem Cell Reports 2023; 18:2071-2083. [PMID: 37832542 PMCID: PMC10679658 DOI: 10.1016/j.stemcr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
UGT1A1 (UDP glucuronosyltransferase family 1 member A1) is the primary enzyme required for bilirubin conjugation, which is essential for preventing hyperbilirubinemia. Animal models lack key human organic anion transporting polypeptides with distinct epigenetic control over bilirubin metabolism, necessitating a human model to interrogate the regulatory mechanism behind UGT1A1 function. Here, we use induced pluripotent stem cells to develop human liver organoids that can emulate conjugation failure phenotype. Bilirubin conjugation assays, chromatin immunoprecipitation, and transcriptome analysis elucidated the role of glucocorticoid antagonism in UGT1A1 activation. This antagonism prevents the binding of transcriptional repressor MECP2 at the expense of NRF2 with associated off-target effects. Therefore, we introduced functional GULO (L-gulonolactone oxidase) in human organoids to augment intracellular ascorbate for NRF2 reactivation. This engineered organoid conjugated more bilirubin and protected against hyperbilirubinemia when transplanted in immunosuppressed Crigler-Najjar syndrome rat model. Collectively, we demonstrate that our organoid system serves as a manipulatable model for interrogating hyperbilirubinemia and potential therapeutic development.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zishaan Farooqui
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callen Conroy
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
8
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
9
|
Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 2023; 19:46-61. [PMID: 36192506 DOI: 10.1038/s41574-022-00742-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Maternal childhood trauma is associated with offspring body size during the first year of life. Sci Rep 2022; 12:19619. [PMID: 36380091 PMCID: PMC9666509 DOI: 10.1038/s41598-022-23740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal childhood trauma (MCT) is an important factor affecting offspring size at birth. Whether the effect of MCT persists during the subsequent development remains unclear. We present the results of a semi-longitudinal investigation examining the physical growth of infants born to mothers with high (HCT) and low (LCT) childhood trauma during the first year of life. One hundred healthy mother-infant dyads were included based on following criteria: exclusive breastfeeding, birth on term with appropriate weight for gestational age. MCT was assessed using the Early Life Stress Questionnaire. The weight, length, and head circumference of the infant were taken at birth, 5 and 12 months postpartum. Separate MANCOVA models were run for infant size at each age. We found an association between MCT and infant size at 5 and 12 months. The children of mothers with HCT had higher weight and greater head circumference than the children of mothers with LCT. These results suggest that MCT might contribute to developmental programming of offspring growth during the first year of life. From an evolutionary perspective, the larger size of HCT mother's offspring might represent an adaptation to potentially harsh environmental conditions. This effect might be mediated by epigenetic changes to DNA and altered breast milk composition.
Collapse
|
11
|
Muelbert M, Alexander T, Vickers MH, Harding JE, Galante L, Bloomfield FH. Glucocorticoids in preterm human milk. Front Nutr 2022; 9:965654. [PMID: 36238462 PMCID: PMC9552215 DOI: 10.3389/fnut.2022.965654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glucocorticoids (GCs), cortisol and cortisone, are essential regulators of many physiological responses, including immunity, stress and mammary gland function. GCs are present in human milk (HM), but whether maternal and infant factors are associated with HM GC concentration following preterm birth is unclear. Materials and methods HM samples were collected on postnatal day 5 and 10 and at 4 months’ corrected age (4m CA) in a cohort of moderate- and late-preterm infants. GCs in HM were measured by liquid chromatography-tandem mass spectrometry. Relationships between GCs in HM and both maternal and infant characteristics were investigated using Spearman’s correlations and linear mixed models. Results 170 mothers of 191 infants provided 354 HM samples. Cortisol concentrations in HM increased from postnatal day 5–4m CA (mean difference [MD] 0.6 ± 0.1 ng/ml, p < 0.001). Cortisone concentration did not change across lactation but was higher than cortisol throughout. Compared to no antenatal corticosteroid (ANS), a complete course of ANS was associated with lower GC concentrations in HM through to 4m CA (cortisol: MD –0.3 ± 0.1 ng/ml, p < 0.01; cortisone MD –1.8 ± 0.4 ng/ml, p < 0.001). At 4m CA, higher maternal perceived stress was negatively associated with GC concentrations in HM (cortisol adjusted beta-coefficient [aβ] –0.01 ± 0.01 ng/ml, p = 0.05; and cortisone aβ –0.1 ± 0.03 ng/ml, p = 0.01), whereas higher postpartum depression and maternal obesity were associated with lower cortisone concentrations (aβ –0.1 ± 0.04 ng/ml p < 0.05; MD [healthy versus obese] –0.1 ± 0.04 ng/ml p < 0.05, respectively). There was a weak positive correlation between GC concentrations in HM and gestational age at birth (r = 0.1, p < 0.05). Infant birth head circumference z-score was negatively associated with cortisol concentrations (aβ –0.01 ± 0.04 ng/ml, p < 0.05). At hospital discharge, fat-free mass showed a weak positive correlation with cortisol concentrations (r = 0.2, p = 0.03), while fat mass showed a weak negative correlation with cortisone concentrations (r = –0.25, p < 0.001). Conclusion The mammary gland appears to protect the infant from cortisol through inactivation into cortisone. Maternal and infant characteristics were associated with concentration of GCs in HM, including ANS, stress and depression scores, obesity, gestational age and infant size. The effects of HM glucocorticoids on long-term health outcomes requires further research.
Collapse
Affiliation(s)
- Mariana Muelbert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tanith Alexander
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Neonatal Unit, Kidz First, Middlemore Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Laura Galante
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Frank H. Bloomfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Frank H. Bloomfield,
| | - the DIAMOND study groupMuelbertMariana1AlexanderTanith12GalanteLaura1AsadiSharin1ChongClara Y.L.1AlsweilerJane M.34BekerFriederike56BloomfieldFrank H.13Cameron-SmithDavid1CrowtherCaroline A.1HardingJane E.1JiangYannan7MeyerMichael P.24MilanAmber18o’SullivanJustin M.1WallClare R.91Liggins Institute, University of Auckland, Auckland, New Zealand2Neonatal Unit, Kidz First, Middlemore Hospital, Auckland, New Zealand3Newborn Services, Auckland City Hospital, Auckland, New Zealand4Department of Paediatrics: Child and Youth Health.5Department of Newborn Services, Mater Mothers’ Hospital, Brisbane, QLD, Australia6Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia7Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand8Food and Bio-based Products, AgResearch Grasslands, Palmerston North, New Zealand9Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Survilienė V, Rukšėnas O, Pomeroy PP, Moss SEW, Bennett KA. Evaluating suitability of saliva to measure steroid concentrations in grey seal pups. Gen Comp Endocrinol 2022; 326:114070. [PMID: 35671833 DOI: 10.1016/j.ygcen.2022.114070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Measurement of steroids in wild pinnipeds can facilitate assessment of breeding, nutritional and stress status, and is useful in understanding behavioral responses. Even in young animals, sex steroids may be important in behavioral interactions and immune modulation. Use of saliva can avoid the large fluctuations seen in some steroids in plasma, and can negate the need for venipuncture, making it a potentially useful matrix in the wildlife. However, its utility in estimating steroid levels in wild young pinnipeds has not been evaluated. Here, we investigated the suitability of saliva for steroid hormone analysis in wild grey seal pups during their suckling and post-weaning fast periods. We collected saliva (n = 38) and plasma (n = 71) samples during the breeding season on the Isle of May, Scotland, 2012. We investigated success of sample collection, ease of preparation, accuracy and precision of analysis, and, where possible, comparability of measurements (n = 27) from saliva and plasma. Plasma sampling was rapid, whereas sampling saliva took up to five times longer. Analytical performance criteria (parallelism, accuracy, and precision (intra and inter assay co-efficient of variation (% CV)) of commercial ELISA kits to measure estradiol, testosterone and cortisol in both matrices were assessed. Estradiol and cortisol assays performed well and can be used in plasma and saliva. However, we could not confidently validate testosterone for either matrix. Saliva estradiol correlated with levels in plasma. Saliva sample preparation was faster and simpler than plasma preparation because it did not require extraction. However, given the additional time taken to obtain saliva in the wild, the possibility of blood contamination from oral damage and the lower success rate in obtaining sufficient sample for analysis, we recommend that this matrix only be used as an alternative to plasma sampling measurement in pinnipeds when animals are anaesthetized, tolerate mouth swabbing, or have been trained to accept saliva sampling in captivity.
Collapse
Affiliation(s)
- V Survilienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Lithuania.
| | - O Rukšėnas
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257, Lithuania
| | - P P Pomeroy
- Sea Mammal Research Unit (SMRU), Scottish Ocean Institute, East Sands, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - S E W Moss
- Sea Mammal Research Unit (SMRU), Scottish Ocean Institute, East Sands, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - K A Bennett
- School of Applied Sciences, Division of Health Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|
13
|
Gridneva Z, George AD, Suwaydi MA, Sindi AS, Jie M, Stinson LF, Geddes DT. Environmental determinants of human milk composition in relation to health outcomes. Acta Paediatr 2022; 111:1121-1126. [PMID: 35067980 DOI: 10.1111/apa.16263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Humans are exposed to environmental factors at every stage of life including infancy. The aim of this mini-review was to present a narrative of environmental factors influencing human milk composition. Current literature shows lactation is a dynamic process and is responsive to multiple environmental challenges including geographical location, lifestyle, persistent pollutants and maternal factors (ethnicity, diet, stress, allergy and adiposity) that may influence human milk composition in a synergistic manner and should be considered in order to improve infant and maternal outcomes on a populations scale. Further interventional studies on larger international cohorts are needed to elucidate these complex relationships. Lactating women should aim for a healthy lifestyle and maintain a healthy body composition prior to and throughout the reproductive period, including during lactation.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Alexandra D. George
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
- Metabolomics Laboratory Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Majed A. Suwaydi
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- Department of Medical Laboratory Technology College of Applied Medical Sciences Jazan University Jazan Saudi Arabia
| | - Azhar S. Sindi
- Division of Obstetrics and Gynaecology School of Medicine The University of Western Australia Crawley Western Australia Australia
- College of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | - Ma Jie
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
| | - Lisa F. Stinson
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Donna T. Geddes
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| |
Collapse
|
14
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
15
|
Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients 2021; 13:3071. [PMID: 34578947 PMCID: PMC8465002 DOI: 10.3390/nu13093071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation.
Collapse
Affiliation(s)
- Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Leon Robert Mitoulas
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
- Medela, AG, Lättichstrasse 4b, 6340 Baar, Switzerland
| | - Jacqueline Coral Kent
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Vanessa Sakalidis
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | | | - Peter Edwin Hartmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| |
Collapse
|