1
|
Altaf MT, Liaqat W, Jamil A, Jan MF, Baloch FS, Barutçular C, Nadeem MA, Mohamed HI. Strategies and bibliometric analysis of legumes biofortification to address malnutrition. PLANTA 2024; 260:85. [PMID: 39227398 DOI: 10.1007/s00425-024-04504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
MAIN CONCLUSION Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Azhar Nadeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Manan S, Bilal S. Editorial: Molecular regulation of seed development and storage reserve metabolism in crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1348252. [PMID: 38269135 PMCID: PMC10807039 DOI: 10.3389/fpls.2023.1348252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
3
|
Orka NA, Uddin MN, Toushique FM, Hossain MS. OLID I: an open leaf image dataset for plant stress recognition. FRONTIERS IN PLANT SCIENCE 2023; 14:1251888. [PMID: 37771492 PMCID: PMC10523147 DOI: 10.3389/fpls.2023.1251888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Nabil Anan Orka
- Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Gazipur, Bangladesh
| | - M. Nazim Uddin
- Olericulture Division, Horticulture Research Center (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fardeen Md. Toushique
- Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Gazipur, Bangladesh
| | - M. Shahadath Hossain
- Entomology Section , Horticulture Research Center (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| |
Collapse
|
4
|
Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. PLANTA 2023; 258:36. [PMID: 37395789 DOI: 10.1007/s00425-023-04187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MAIN CONCLUSION This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.
Collapse
Affiliation(s)
- Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Guangdong Zhao
- College of Life Sciences, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Lin Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xiaoming Cai
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xuejiao Yuan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Palanog AD, Nha CT, Descalsota-Empleo GIL, Calayugan MI, Swe ZM, Amparado A, Inabangan-Asilo MA, Hernandez JE, Sta. Cruz PC, Borromeo TH, Lalusin AG, Mauleon R, McNally KL, Swamy BPM. Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1157507. [PMID: 37035067 PMCID: PMC10073715 DOI: 10.3389/fpls.2023.1157507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis. The MC-QTL analysis was able to detect important QTLs viz: qZn5.2, qFe7.1, qGY10.1, qDF7.1, qPH1.1, qNT4.1, qPT4.1, qPL1.2, qTGW5.1, qGL3.1 , and qGW6.1 , which can be used in rice genomics assisted breeding. A major QTL (qZn5.2 ) for grain Zn concentration has been detected on chromosome 5 that accounted for 13% of R2. In all, 26 QTL clusters were identified on different chromosomes. qPH6.1 epistatically interacted with qZn5.1 and qGY6.2 . Most of QTLs were co-located with functionally related candidate genes indicating the accuracy of QTL mapping. The genomic region of qZn5.2 was co-located with putative genes such as OsZIP5, OsZIP9, and LOC_OS05G40490 that are involved in Zn uptake. These genes included polymorphic functional SNPs, and their promoter regions were enriched with cis-regulatory elements involved in plant growth and development, and biotic and abiotic stress tolerance. Major effect QTL identified for biofortification and agronomic traits can be utilized in breeding for Zn biofortified rice varieties.
Collapse
Affiliation(s)
- Alvin D. Palanog
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
- PhilRice Negros Branch Station, Philippine Rice Research Institute, Murcia, Negros Occidental, Philippines
| | | | | | - Mark Ian Calayugan
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Zin Mar Swe
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Amery Amparado
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Jose E. Hernandez
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Pompe C. Sta. Cruz
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Teresita H. Borromeo
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Antonio G. Lalusin
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Ramil Mauleon
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture, University of Southern Mindanao, Kabacan, North Cotabato, Philippines
| | - Kenneth L. McNally
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - B. P. Mallikarjuna Swamy
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
6
|
Tafuri A, Zuccaro M, Ravaglia S, Pirona R, Masci S, Sestili F, Lafiandra D, Ceriotti A, Baldoni E. Exploring Variability of Free Asparagine Content in the Grain of Bread Wheat ( Triticum aestivum L.) Varieties Cultivated in Italy to Reduce Acrylamide-Forming Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1349. [PMID: 36987037 PMCID: PMC10054617 DOI: 10.3390/plants12061349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy. Here, we analysed the accumulation of free asparagine in a total of 54 bread wheat cultivars that are relevant for the Italian market. Six field trials in three Italian locations over two years were considered. Wholemeal flours obtained from harvested seeds were analysed using an enzymatic method. Free asparagine content ranged from 0.99 to 2.82 mmol/kg dry matter in the first year, and from 0.55 to 2.84 mmol/kg dry matter in the second year. Considering the 18 genotypes that were present in all the field trials, we evaluated possible environment and genetic influences for this trait. Some cultivars seemed to be highly affected by environment, whereas others showed a relative stability in free asparagine content across years and locations. Finally, we identified two varieties showing the highest free asparagine levels in our analysis, representing potential useful materials for genotype x environment interaction studies. Two other varieties, which were characterized by low amounts of free asparagine in the considered samples, may be useful for the food industry and for future breeding programs aimed to reduce acrylamide-forming potential in bread wheat.
Collapse
Affiliation(s)
- Andrea Tafuri
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Melania Zuccaro
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefano Ravaglia
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
| | - Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Aldo Ceriotti
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| |
Collapse
|
7
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
8
|
Romano G, Tufariello M, Calabriso N, Del Coco L, Fanizzi FP, Blanco A, Carluccio MA, Grieco F, Laddomada B. Pigmented cereals and legume grains as healthier alternatives for brewing beers. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Kamble U, Mishra CN, Govindan V, Sharma AK, Pawar S, Kumar S, Krishnappa G, Gupta OP, Singh GP, Singh G. Ensuring Nutritional Security in India through Wheat Biofortification: A Review. Genes (Basel) 2022; 13:genes13122298. [PMID: 36553565 PMCID: PMC9778289 DOI: 10.3390/genes13122298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Undernourishment of nutrients, also known as hidden hunger, affects over 2 billion populace globally. Even though stunting among children below five years of age has decreased in India in the last ten years, India is home to roughly thirty percent of the world's population of stunted pre-schoolers. A significant improvement has been witnessed in the targeted development and deployment of biofortified crops; approximately 20 million farm households from developing counties benefit from cultivating and consuming biofortified crops. There is ample scope for including biofortified varieties in the seed chain, ensuring nutritional security. Wheat is a dietary staple in India, typically consumed as wholemeal flour in the form of flatbreads such as chapatti and roti. Wheat contributes to nearly one fifth of global energy requirements and can also provide better amounts of iron (Fe) and zinc (Zn). As a result, biofortified wheat can serve as a medium for delivery of essential micronutrients such as Fe and Zn to end users. This review discusses wheat biofortification components such as Fe and Zn dynamics, its uptake and movement in plants, the genetics of their buildup, and the inclusion of biofortified wheat varieties in the seed multiplication chain concerning India.
Collapse
Affiliation(s)
- Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
- Correspondence: ; Tel.: +91-946-8251-294
| | | | - Amit Kumar Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sushma Pawar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | | | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | | | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
10
|
Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. FRONTIERS IN PLANT SCIENCE 2022; 13:1008904. [PMID: 36466237 PMCID: PMC9712971 DOI: 10.3389/fpls.2022.1008904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.
Collapse
|
11
|
Safiul Azam FM, Lian T, Liang Q, Wang W, Zhang C, Jiang L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front Nutr 2022; 9:1029119. [PMID: 36337650 PMCID: PMC9634661 DOI: 10.3389/fnut.2022.1029119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B and its derivatives possess diverse physiological functions and are essential micronutrients for humans. Their variation in crops is important for the identification of genetic resources used to develop new varieties with enhanced vitamin B. In this research, remarkable variations were observed in kernels of 156 maize inbred lines, ranging from 107.61 to 2654.54 μg per 100 g for vitamin B1, 1.19-37.37 μg per 100 g for B2, 19.60-213.75 μg per 100 g for B3, 43.47-590.86 μg per 100 g for B5, and 138.59-1065.11 μg per 100 g for B6. Growing inbreeds in Hainan and Hebei provinces of China revealed environmental and genotype interactions among these vitamins and the correlations between them in maize grain. Several inbred lines were identified as good sources of vitamin B and promising germplasms for maize breeding, namely By855 and Si273 are overall rich in all the studied vitamins, and GY386B and CML118 are specially enriched with derivatives of vitamin B6. The present study can assist maize breeders with germplasm resources of vitamin B for biofortification to offer people nutritious foods.
Collapse
Affiliation(s)
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Natural Variation of Fatty Acid Desaturase Gene Affects Linolenic Acid Content and Starch Pasting Viscosity in Rice Grains. Int J Mol Sci 2022; 23:ijms231912055. [PMID: 36233354 PMCID: PMC9570344 DOI: 10.3390/ijms231912055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Rice, as one of the main food crops, provides a vital source of dietary energy for over half the world's population. The OsFAD3 gene encodes fatty acid desaturase, catalyzing the conversion of linoleic acid (LA) to alpha-linolenic acid (ALA) in rice. However, the genetic characterization of OsFAD3 and its role in the conversion of LA to ALA remains elusive. Here, we validated the effects of two homologous genes, OsFAD3-1 and OsFAD3-2, on the ALA and LA/ALA ratio in rice grains using near-isogenic lines. Two major haplotypes of OsFAD3-1 are identified with different effects on the ALA and LA/ALA ratio in rice germplasm. High expression of OsFAD3-1 is associated with high ALA accumulation and eating quality of rice grains. Overexpression of OsFAD3-1 driven by a seed-specific promoter increases the ALA content up to 16-fold in the endosperm. A diagnostic marker is designed based on an 8-bp insertion/deletion in the OsFAD3-1 promoter, which can recognize OsFAD3-1 alleles in rice. These results indicate that OsFAD3-1 is a useful target gene in marker-assisted breeding programs to improve varieties with high ALA and appropriate LA/ALA ratio in brown rice.
Collapse
|
13
|
Gupta OP, Singh AK, Singh A, Singh GP, Bansal KC, Datta SK. Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies. Front Nutr 2022; 9:826131. [PMID: 35938135 PMCID: PMC9348810 DOI: 10.3389/fnut.2022.826131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.
Collapse
Affiliation(s)
- Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | | | | | - Swapan K. Datta
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
14
|
Arriagada O, Cacciuttolo F, Cabeza RA, Carrasco B, Schwember AR. A Comprehensive Review on Chickpea ( Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int J Mol Sci 2022; 23:ijms23126794. [PMID: 35743237 PMCID: PMC9223724 DOI: 10.3390/ijms23126794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea is one of the most important pulse crops worldwide, being an excellent source of protein. It is grown under rain-fed conditions averaging yields of 1 t/ha, far from its potential of 6 t/ha under optimum conditions. The combined effects of heat, cold, drought, and salinity affect species productivity. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. A large collection of nearly 100,000 chickpea accessions is the basis of breeding programs, and important advances have been achieved through conventional breeding, such as germplasm introduction, gene/allele introgression, and mutagenesis. In parallel, advances in molecular biology and high-throughput sequencing have allowed the development of specific molecular markers for the genus Cicer, facilitating marker-assisted selection for yield components and abiotic tolerance. Further, transcriptomics, proteomics, and metabolomics have permitted the identification of specific genes, proteins, and metabolites associated with tolerance to abiotic stress of chickpea. Furthermore, some promising results have been obtained in studies with transgenic plants and with the use of gene editing to obtain drought-tolerant chickpea. Finally, we propose some future lines of research that may be useful to obtain chickpea genotypes tolerant to abiotic stress in a scenario of climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Felipe Cacciuttolo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), Av. Lircay s/n, Talca 3480094, Chile;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
- Correspondence:
| |
Collapse
|
15
|
Wani SH, Gaikwad K, Razzaq A, Samantara K, Kumar M, Govindan V. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Mol Biol Rep 2022; 49:8007-8023. [PMID: 35661970 PMCID: PMC9165711 DOI: 10.1007/s11033-022-07326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Globally, about 20% of calories (energy) come from wheat. In some countries, it is more than 70%. More than 2 billion people are at risk for zinc deficiency and even more, people are at risk of iron deficiency, nearly a quarter of all children underage group of 5 are physically and cognitively stunted, and lack of dietary zinc is a major contributing factor. Biofortified wheat with elevated levels of zinc and iron has several potential advantages as a delivery vehicle for micronutrients in the diets of resource-poor consumers who depend on cereal-based diets. The conventional breeding strategies have been successful in the introduction of novel alleles for grain Zn and Fe that led to the release of competitive Zn enriched wheat varieties in South Asia. The major challenge over the next few decades will be to maintain the rates of genetic gains for grain yield along with increased grain Zn/Fe concentration to meet the food and nutritional security challenges. Therefore, to remain competitive, the performance of Zn-enhanced lines/varieties must be equal or superior to that of current non-biofortified elite lines/varieties. Since both yield and Zn content are invisible and quantitatively inherited traits except few intermediate effect QTL regions identified for grain Zn, increased breeding efforts and new approaches are required to combine them at high frequency, ensuring that Zn levels are steadily increased to the required levels across the breeding pipelines. The current review article provides a comprehensive list of genomic regions for enhancing grain Zn and Fe concentrations in wheat including key candidate gene families such NAS, ZIP, VLT, ZIFL, and YSL. Implementing forward breeding by taking advantage of the rapid cycling trait pipeline approaches would simultaneously introgress high Zn and Fe QTL into the high Zn and normal elite lines, further increasing Zn and Fe concentrations.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192102 Khudwani, J&K India
| | - Kiran Gaikwad
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, 761211 Odisha, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Velu Govindan
- Global Wheat Program International Maize and Wheat Improvement Center Texcoco Mexico, Texcoco, Mexico
| |
Collapse
|
16
|
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol 2022; 43:594-612. [PMID: 35369831 DOI: 10.1080/07388551.2022.2048791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Nutritional improvement of cereal crops to combat hidden hunger during COVID-19 pandemic: Progress and prospects. ADVANCES IN FOOD SECURITY AND SUSTAINABILITY 2022. [PMCID: PMC8917837 DOI: 10.1016/bs.af2s.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
COVID-19 has posed a severe challenge on food security by limiting access to food for the marginally placed population. While access to food is a challenge, access to nutritional food is a greater challenge to the population. The present-day foods are not sufficient to meet the nutritional requirements of the human body. In a pandemic condition, providing nutritious food to the population is imperative to ensure the health and well-being of humankind. Exploiting the existing biodiversity of crop species and deploying classical and modern tools to improve the nutritional potential of these species holds the key to addressing the above challenge. Breeding has been a classical tool of crop improvement that relied predominantly on genetic diversity. Collecting and conserving diverse germplasms and characterizing their diversity using molecular markers is essential to preserve diversity and use them in genetic improvement programs. These markers are also valuable for association mapping analyses to identify the genetic determinants of traits-of-interest in crop species. Association mapping identifies the quantitative trait loci (QTL) underlying the trait-of-interest by exploring marker-trait associations, and these QTLs can further be exploited for the genetic improvement of cultivated species through genomics-assisted breeding. Conventional breeding and genomics approaches are also being applied to develop biofortified cereal crops to reduce nutritional deficiencies in consumers. In this context, chapter explains the prerequisites for association mapping, population structure, genetic diversity, different approaches of performing association mapping to dissect nutritional traits, use the information for genomics-assisted breeding for nutrient-rich cereal crops, and application of genomics strategies in crop biofortification. These approaches will ensure food and nutrition security for all amidst the current COVID-19 crisis.
Collapse
|
18
|
Mendes FA, Leitão ST, Correia V, Mecha E, Rubiales D, Bronze MR, Vaz Patto MC. Portuguese Common Bean Natural Variation Helps to Clarify the Genetic Architecture of the Legume's Nutritional Composition and Protein Quality. PLANTS (BASEL, SWITZERLAND) 2021; 11:26. [PMID: 35009030 PMCID: PMC8747538 DOI: 10.3390/plants11010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Common bean is a nutritious food legume widely appreciated by consumers worldwide. It is a staple food in Latin America, and a component of the Mediterranean diet, being an affordable source of protein with high potential as a gourmet food. Breeding for nutritional quality, including both macro and micronutrients, and meeting organoleptic consumers' preferences is a difficult task which is facilitated by uncovering the genetic basis of related traits. This study explored the diversity of 106 Portuguese common bean accessions, under two contrasting environments, to gain insight into the genetic basis of nutritional composition (ash, carbohydrates, fat, fiber, moisture, protein, and resistant starch contents) and protein quality (amino acid contents and trypsin inhibitor activity) traits through a genome-wide association study. Single-nucleotide polymorphism-trait associations were tested using linear mixed models accounting for the accessions' genetic relatedness. Mapping resolution to the gene level was achieved in 56% of the cases, with 102 candidate genes proposed for 136 genomic regions associated with trait variation. Only one marker-trait association was stable across environments, highlighting the associations' environment-specific nature and the importance of genotype × environment interaction for crops' local adaptation and quality. This study provides novel information to better understand the molecular mechanisms regulating the nutritional quality in common bean and promising molecular tools to aid future breeding efforts to answer consumers' concerns.
Collapse
Affiliation(s)
- Francisco A. Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| | - Susana T. Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| | - Verónica Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Elsa Mecha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- iBET—Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Av. Menéndez Pidal, 14004 Cordova, Spain;
| | - Maria Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
- Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- iBET—Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (F.A.M.); (V.C.); (E.M.); (M.R.B.); (M.C.V.P.)
| |
Collapse
|