1
|
Corona-Cervantes K, Sánchez-Salguero E, Zárate-Segura PB, Krishnakumar A, Piña-Escobedo A, Rangel-Calvillo MN, Ramírez-Lozada T, Acosta-Altamirano G, Lázaro-Pérez NDS, Sierra-Martínez M, Santos-Argumedo L, García-Mena J. Maternal immunoglobulins differentially bind a diverse bacterial community in human colostrum and the stool of breastfed neonates. Immunol Lett 2025:106978. [PMID: 39924004 DOI: 10.1016/j.imlet.2025.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In the early days, maternal immunoglobulins are essential for sustaining a balanced gut environment by influencing the interaction between the host and the microbiome. The successional establishment of the pioneer strains is an interesting topic of research where maternal immunoglobulins appear to be important. This proof-of-concept study explored the binding pattern of IgA1, IgA2, IgM, and IgG classes to a commensal bacterial in human colostrum and the stool of breastfed neonates. We used flow cytometry coupled with 16S rRNA gene sequencing in human colostrum and neonatal feces samples to characterize this Ig-microbiota association. We observed that in human colostrum samples, IgA2 and IgM bind alfa and beta Proteobacteria, which can potentially stimulate neonatal immune system development in the gut. Other immunoglobulins like IgG predominantly bind facultative anaerobes belonging to the Firmicutes phylum, reported as part of human milk microbiota and pioneer colonizers of the neonatal gut. Maternal immunoglobulins also bind a wide diversity of bacteria in the neonatal stool. For instance, IgA2 and IgM bound more members of the phylum Bacteroidetes in comparison to IgG, these Bacteroidetes and some firmicutes have been reported as late colonizers of the neonatal gut, and their presence is important due to their ability to produce important short chain fatty acids like propionate and butyrate. Our results support the current view that microbial and immunoglobulin transference is crucial for developing the neonate's immune system and individual gut microbiota.
Collapse
Affiliation(s)
- Karina Corona-Cervantes
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), México City, Mexico
| | - Erick Sánchez-Salguero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico
| | - Paola Berenice Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, México
| | - Aparna Krishnakumar
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), México City, Mexico
| | - Alberto Piña-Escobedo
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), México City, Mexico
| | | | - Tito Ramírez-Lozada
- Unidad de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Col. Zoquiapan, Ixtapaluca, 56530, México
| | - Gustavo Acosta-Altamirano
- Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Col. Zoquiapan, Ixtapaluca, 56530, México
| | - Noemí Del Socorro Lázaro-Pérez
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), México City, Mexico
| | - Mónica Sierra-Martínez
- Unidad de Investigación en Salud, Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Col. Zoquiapan, Ixtapaluca 56530, México.
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico.
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), México City, Mexico.
| |
Collapse
|
2
|
Kevenjan M, Vizeshfar F, Zarshenas L. Comparison of the Effect of Distance and Face-to-face Breastfeeding Education on Female Nursing Students' Knowledge: A Quasi-experimental Study. INTERNATIONAL JOURNAL OF COMMUNITY BASED NURSING AND MIDWIFERY 2025; 13:67-76. [PMID: 39906249 PMCID: PMC11788776 DOI: 10.30476/ijcbnm.2024.100709.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
Background Support for breastfeeding by female nursing students has a beneficial impact during the exclusive breastfeeding. This study was conducted to compare the effect of distance and face-to-face breastfeeding education on female nursing students' knowledge. Methods This is a quasi-experimental study conducted on 138 female nursing students in their third to eighth semesters at nursing and midwifery school in Shiraz. One hundred and thirty eight students were selected using convenient sampling and divided equally into two experimental groups (face-to-face education with 46 participants and distance education with 46 participants) and one control group (46 participants). Sampling started at the beginning of May 2023 and ended at the end of October 2023. The experimental groups (Groups A and B received face-to-face training and distance education, respectively) received the educational program in three 45-minute sessions over three weeks. Data were collected using a demographic questionnaire and a knowledge questionnaire regarding breastfeeding nutrition at three stages: before, immediately after, and one month after the intervention. The data were entered into SPSS 22 software and analyzed using descriptive and inferential statistics. Results There was a statistically significant difference in the two interventional groups compared to the control group regarding the mean score of breastfeeding knowledge immediately (P=0.049) and one month (P<0.001) after the intervention. Conclusion Distance breastfeeding education led to more increase in nursing students' knowledge one month after the intervention, compared to the face-to-face training. It could provide a suitable method for improving the knowledge of health professionals regarding breastfeeding.
Collapse
Affiliation(s)
- Marjan Kevenjan
- Student Research Committee, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Vizeshfar
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ladan Zarshenas
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Byrne A, Diener C, Brown BP, Maust BS, Feng C, Alinde BL, Gibbons SM, Koch M, Gray CM, Jaspan HB, Nyangahu DD. Neonates exposed to HIV but uninfected exhibit an altered gut microbiota and inflammation associated with impaired breast milk antibody function. MICROBIOME 2024; 12:261. [PMID: 39707483 DOI: 10.1186/s40168-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma. Further, we tested whether HIV exposure impacts antibody-microbiota binding in neonatal gut and whether antibodies in breast milk impact the growth of commensal bacteria. RESULTS Neonates exposed to HIV but uninfected (nHEU) exhibited altered gut bacteriome and virome compared to unexposed neonates (nHU). In addition, HIV exposure differentially impacted IgA-microbiota binding in neonates. The relative abundance of Blautia spp. in the whole stool or IgA-bound microbiota was positively associated with plasma concentrations of C-reactive protein. Finally, IgA from the breast milk of mothers living with HIV displayed a significantly lower ability to inhibit the growth of Blautia coccoides which was associated with inflammation in nHEU. CONCLUSION nHEU exhibits profound alterations in gut bacterial microbiota with a mild impact on the enteric DNA virome. Elevated inflammation in nHEU could be due to a lower capacity of breast milk IgA from mothers living with HIV to limit growth the of gut bacteria associated with inflammation. Video Abstract.
Collapse
Affiliation(s)
- Audrey Byrne
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Christian Diener
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bryan P Brown
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Colin Feng
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Berenice L Alinde
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Sean M Gibbons
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
| | - Clive M Gray
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Heather B Jaspan
- Seattle Children's Research Institute, Seattle, WA, USA
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pharmacology, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Center for Advanced Biotechnology and Medicine, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Department of Human Pathology, Egerton University, Nakuru, Kenya.
| |
Collapse
|
4
|
Natal ACDC, de Paula Menezes R, de Brito Röder DVD. Role of maternal milk in providing a healthy intestinal microbiome for the preterm neonate. Pediatr Res 2024:10.1038/s41390-024-03751-x. [PMID: 39663425 DOI: 10.1038/s41390-024-03751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The immature gastrointestinal tract of preterm neonates leads to a delayed and distinctive establishment of the gut microbiome, making them susceptible to potentially pathogenic bacteria and increasing the risk of infections. Maternal milk, recognized as the optimal source of nutrition, plays a multifaceted role in modulating the gut microbiome of premature newborns. Human milk oligosaccharides, acting as prebiotics, provide essential nourishment for key bacteria such as Bifidobacterium, contributing to the proliferation of beneficial bacterial populations. Additionally, maternal milk is rich in Immunoglobulins that stimulate immune cell responses, providing protective effects on the infant's gut mucosa. Moreover, bioactive proteins such as secretory immunoglobulin A (SIgA), lactoferrin, lysozyme, and mucins play a crucial role in defending against pathogens and regulating the immune system at the cellular level. These proteins contribute not only to infection prevention but also emphasize the impact of breast milk in fortifying the body's innate defenses. This multifaceted role of maternal milk, including essential nutrients, beneficial bacteria, and bioactive proteins, highlights the importance of promoting the mother's own milk feeding in the Neonatal Intensive Care Unit (NICU). It not only optimizes the long-term outcomes and well-being of preterm infants but also provides a holistic approach to their health and development. IMPACT: This article contributes to the current understanding of the relationship between breastfeeding and the intestinal microbiota. Fill gaps in existing literature about the subject. Provides new insights for future research.
Collapse
Affiliation(s)
- Ana Catarina de Castro Natal
- Undergraduate Nursing, Faculty of Medicine (FAMED), Federal University of Uberlandia UFU, Uberlandia, MG, Brazil.
| | | | | |
Collapse
|
5
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
7
|
Charton E, Menard O, Cochet MF, Le Gouar Y, Jardin J, Henry G, Ossemond J, Bellanger A, Montoya CA, Moughan PJ, Dupont D, Le Huërou-Luron I, Deglaire A. Human milk vs. Infant formula digestive fate: In vitro dynamic digestion and in vivo mini-piglet models lead to similar conclusions. Food Res Int 2024; 196:115070. [PMID: 39614495 DOI: 10.1016/j.foodres.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Infant formula (IF), the only nutritionally adequate substitute for human milk (HM), still needs to be improved to be more biomimetic with HM, including in terms of digestive fate. The latter can be explored using different digestion models. The present study aimed to compare IF and HM digestion using in vivo (mini-piglet) and in vitro (dynamic system, DIDGI®) models. Fresh mature HM was collected and compared with a standard bovine IF. In vivo, 18 Yucatan mini-piglets (24-day-old) received HM or IF and were euthanized 30 min after the last meal. The entire digestive content was collected from the stomach to the colon. In vitro, the same meals were fed to an in vitro dynamic digestion model simulating the term infant at four weeks of age. Digesta were sampled regularly in the gastric and intestinal compartments. Structure (confocal microscopy and laser light scattering) and proteolysis (SDS-PAGE for residual intact proteins, OPA for hydrolysis degree, LC-MS/MS for peptides) were investigated along digestion. The digesta microstructure differed between HM and IF in a similar way between in vitro and in vivo digestion. In vitro gastric proteolysis of caseins and α-lactalbumin was significantly slower for HM than for IF, such as for the early intestinal proteolysis degree. In vitro bioaccessibility of free AAs explained only 30 % of the true ileal digestibility of AAs. Peptide mapping of caseins differed between HM and IF along their digestion. The relative peptide mapping data over six proteins from HM and IF were highly correlated between in vitro and in vivo digestion, particularly at 80 and 120 min of in vitro gastric digestion vs. in vivo stomach data and at 20 and 40 min of in vitro intestinal digestion vs. in vivo proximal jejunum data (r = 0.7-0.9, p < 0.0001, n = 1604). 40 to 50 % of the bioactive peptides identified in vivo were also found in vitro, with a good correlation of their abundances (r = 0.5, p < 0.0001, n = 61). Overall, in vitro and in vivo digestion were in good agreement, both indicating a different digestive fate for HM and IF.
Collapse
Affiliation(s)
- Elise Charton
- STLO, L'Institut Agro, INRAE, 35042 Rennes, France; Institut NuMeCan, INRAE, INSERM, Univ Rennes, 35590 Saint Gilles, France.
| | | | | | | | | | | | | | - Amandine Bellanger
- CHU Rennes, Pediatrics Department, 35000 Rennes, France; University of Rennes, Faculty of Medicine, 35000 Rennes, France; CHU Rennes, CIC-Inserm 1414, 35000 Rennes, France
| | - Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand; Smart Foods Innovation and Bioproducts Group, AgResearch Limited, Palmerston North, New Zealand.
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
8
|
Donald K, Finlay BB. Experimental models of antibiotic exposure and atopic disease. FRONTIERS IN ALLERGY 2024; 5:1455438. [PMID: 39525399 PMCID: PMC11543581 DOI: 10.3389/falgy.2024.1455438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
In addition to numerous clinical studies, research using experimental models have contributed extensive evidence to the link between antibiotic exposure and atopic disease. A number of mouse models of allergy have been developed and used to uncover the specific effects of various microbiota members and perturbations on allergy development. Studies in mice that lack microbes entirely have also demonstrated the various components of the immune system that require microbial exposure. The importance of the early-life period and the mechanisms by which atopy "protective" species identified in human cohorts promote immune development have been elucidated in mice. Finally, non-animal models involving human-derived cells shed light on specific effects of bacteria on human epithelial and immune responses. When considered alongside clinical cohort studies, experimental model systems have provided crucial evidence for the link between the neonatal gut microbiota and allergic disease, immensely supporting the stewardship of antibiotic administration in infants. The following review aims to describe the range of experimental models used for studying factors that affect the relationship between the gut microbiota and allergic disease and summarize key findings that have come from research in animal and in vitro models.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Bianco I, Ferrara C, Romano F, Loperfido F, Sottotetti F, El Masri D, Vincenti A, Cena H, De Giuseppe R. The Influence of Maternal Lifestyle Factors on Human Breast Milk Microbial Composition: A Narrative Review. Biomedicines 2024; 12:2423. [PMID: 39594990 PMCID: PMC11592219 DOI: 10.3390/biomedicines12112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Human breast milk (HBM) is considered the gold standard for infant nutrition due to its optimal nutrient profile and complex composition of cellular and non-cellular components. Breastfeeding positively influences the newborn's gut microbiota and health, reducing the risk of conditions like gastrointestinal infections and chronic diseases (e.g., allergies, asthma, diabetes, and obesity). Research has revealed that HBM contains beneficial microbes that aid gut microbiota maturation through mechanisms like antimicrobial production and pathogen exclusion. The HBM microbiota composition can be affected by several factors, including gestational age, delivery mode, medical treatments, lactation stage, as well as maternal lifestyle habits (e.g., diet, physical activity, sleep quality, smoking, alcohol consumption, stress level). Particularly, lifestyle factors can play a significant role in shaping the HBM microbiota by directly modulating the microbial composition or influencing the maternal gut microbiota and influencing the HBM microbes through the enteromammary pathway. This narrative review of current findings summarized how maternal lifestyle influences HBM microbiota. While the influence of maternal diet on HBM microbiota is well-documented, indicating that dietary patterns, especially those rich in plant-based proteins and complex carbohydrates, can positively influence HBM microbiota, the impact of other lifestyle factors is poorly investigated. Maintaining a healthy lifestyle during pregnancy and breastfeeding is crucial for the health of both mother and baby. Understanding how maternal lifestyle factors influence microbial colonization of HBM, along with their interactions and impact, is key to developing new strategies that support the beneficial maturation of the infant's gut microbiota.
Collapse
Affiliation(s)
- Irene Bianco
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Chiara Ferrara
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Romano
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Dana El Masri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici (ICS) Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| |
Collapse
|
10
|
Donald K, Finlay BB. Mechanisms of microbe-mediated immune development in the context of antibiotics and asthma. FRONTIERS IN ALLERGY 2024; 5:1469426. [PMID: 39469482 PMCID: PMC11513386 DOI: 10.3389/falgy.2024.1469426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The gut houses 70%-80% of the body's immune cells and represents the main point of contact between the immune system and the outside world. Immune maturation occurs largely after birth and is guided by the gut microbiota. In addition to the many human clinical studies that have identified relationships between gut microbiota composition and disease outcomes, experimental research has demonstrated a plethora of mechanisms by which specific microbes and microbial metabolites train the developing immune system. The healthy maturation of the gut microbiota has been well-characterized and discreet stages marked by changes in abundance of specific microbes have been identified. Building on Chapter 8, which discusses experimental models used to study the relationship between the gut microbiota and asthma, the present review aims to dive deeper into the specific microbes and metabolites that drive key processes in immune development. The implications of microbiota maturation patterns in the context of asthma and allergies, as well as the effects of antibiotics on microbe-immune crosstalk, will also be discussed.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Sha Y, Liu X, Li X, Wang Z, Shao P, Jiao T, He Y, Zhao S. Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs. MICROBIOME 2024; 12:172. [PMID: 39267132 PMCID: PMC11397069 DOI: 10.1186/s40168-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The microbiota and metabolites in the gastrointestinal tracts of female animals at different reproductive periods are very important to the growth, development, and health of themselves and their offspring. However, the changes in the gastrointestinal microbiota and metabolites throughout reproductive period of different sheep breeds and their effects on the growth and development of offspring lambs are still unclear. Hence, this study presents an assessment of the reproductive hormone levels, immune levels, rumen microbiota, and metabolites in Hu sheep and Suffolk ewes at different reproductive periods and their effects on the growth and development of offspring lambs. RESULTS Hu sheep and Suffolk during non-pregnancy, pregnancy, and lactation were used as the research objects to determine reproductive and immune indexes of ewes at different periods, analyze rumen microbiome and metabolome, and track the growth performance and development of offspring lambs. The results showed that the reproductive hormone and immune levels of Hu sheep and Suffolk underwent adaptive changes across different reproductive periods. Compared with non-pregnancy, the microbial energy metabolism and lipid metabolism function decreased during Hu sheep pregnancy, and energy metabolism function decreased during lactation. In Suffolk, energy metabolism, glycan biosynthesis, and metabolism function were enhanced during pregnancy, and the metabolism of cofactors and vitamins was enhanced during lactation. Prevotella increased in Suffolk during pregnancy and lactation (P < 0.05) and was positively correlated with the birth weight and body size of the lambs (P < 0.05). Moreover, the abundances of Butyrivibrio and Rikenellaceae_RC9_gut_group during pregnancy were positively correlated with the intestinal immunity of the offspring lambs (P < 0.05), thereby regulating the intestinal immunity level of the lambs. Metabolomic analysis revealed that the protein digestion, absorption, and amino acid metabolism of Hu sheep were enhanced during pregnancy, which provided amino acids for the growth and development of pregnant ewes and fetuses and was significantly correlated with the birth weight, body size, and intestinal immunity of lambs (P < 0.05). Simultaneously, there was an increase in acetate and propionate during the pregnancy and lactation period of both Hu sheep and Suffolk, providing energy for ewes during reproductive period. Moreover, the microbiota during the lactation period was significantly correlated with the milk quality and lambs daily gain (P < 0.05). CONCLUSIONS This study revealed the characteristic succession changes in the rumen microbiota and its metabolites at different reproductive periods in sheep breeds and their regulation of reproductive hormone and immune levels and identified their potential effects on the growth and development of offspring lambs. The findings provide valuable insights into the health and feeding management of different sheep breeds during the reproductive stage. Video Abstract.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Pengyang Shao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Waller ME, Eichhorn CJ, Gutierrez A, Baatz JE, Wagner CL, Chetta KE, Engevik MA. Analyzing the Responses of Enteric Bacteria to Neonatal Intensive Care Supplements. Int J Microbiol 2024; 2024:3840327. [PMID: 39220439 PMCID: PMC11364479 DOI: 10.1155/2024/3840327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the neonatal intensive care unit, adequate nutrition requires various enteral products, including human milk and formula. Human milk is typically fortified to meet increased calorie goals, and infants commonly receive vitamin mixes, iron supplements, and less frequently, thickening agents. We examined the growth of 16 commensal microbes and 10 pathobionts found in the premature infant gut and found that formula, freshly pasteurized milk, and donated banked milk generally increased bacterial growth. Fortification of human milk significantly elevated the growth of all microbes. Supplementation with thickeners or NaCl in general did not stimulate additional growth. Vitamin mix promoted the growth of several commensals, while iron promoted growth of pathobionts. These data indicate that pathobionts in the preterm gut have significant growth advantage with preterm formula, fortified donor milk, and supplemented iron and suggest that the choice of milk and supplements may impact the infant gut microbiota.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Caroline J. Eichhorn
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Alyssa Gutierrez
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - John E. Baatz
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Carol L. Wagner
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Katherine E. Chetta
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
- Department of Microbiology and ImmunologyMedical University of South Carolina, Charleston, USA
| |
Collapse
|
13
|
Wang N, Ma M, Mu G, Qian F, Xuemei Z. Lipid analysis of breast milk and formula for preterm infants and the application and prospects of novel structural lipids - a comprehensive review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39066633 DOI: 10.1080/10408398.2024.2383964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants, often characterized by lower birth weights and underdeveloped physiologies, necessitate specialized nutritional care. While breast milk stands as the ideal nutritional source, offering substantial energy through its fatty acid content to support the infants' growth and developmental needs, its usage might not always be feasible. Fatty acids in breast milk are critical for the development of these infants. In scenarios where breast milk is not an option, formula feeding becomes a necessary alternative. Thus, a comprehensive understanding of the fatty acid profiles in both breast milk and formulas is crucial for addressing the distinct nutritional requirements of preterm infants. This paper aims to summarize the effects of lipid composition, structure, and positioning in breast milk and formula on the growth and development of preterm infants. Furthermore, it explores recent advancements in the use of novel structural lipids in formulas, laying the groundwork for future innovations in formula design specifically catered to the needs of preterm infants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingyang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhu Xuemei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
14
|
Johnson KE, Hernandez-Alvarado N, Blackstad M, Heisel T, Allert M, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth. Nat Commun 2024; 15:6216. [PMID: 39043677 PMCID: PMC11266569 DOI: 10.1038/s41467-024-50282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full-term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3-dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate two opposing CMV-associated effects on infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full-term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | | | - Mark Blackstad
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Timothy Heisel
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics and Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Tsifintaris M, Sitmalidis M, Tokamani M, Anastasiadi C, Georganta M, Tsochantaridis I, Vlachakis D, Tsikouras P, Nikolettos N, Chrousos GP, Sandaltzopoulos R, Giannakakis A. Analysis of Human Milk Microbiota in Northern Greece by Comparative 16S rRNA Sequencing vs. Local Dairy Animals. Nutrients 2024; 16:2175. [PMID: 39064618 PMCID: PMC11280067 DOI: 10.3390/nu16142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Milk is a biological fluid with a dynamic composition of micronutrients and bioactive molecules that serves as a vital nutrient source for infants. Milk composition is affected by multiple factors, including genetics, geographical location, environmental conditions, lactation phase, and maternal nutrition, and plays a key role in dictating its microbiome. This study addresses a less-explored aspect, comparing the microbial communities in human breast milk with those in mature milk from species that are used for milk consumption. Since mature animal milk is used as a supplement for both the infant (formula) and the child/adolescent, our main aim was to identify shared microbial communities in colostrum and mature human milk. Using 16S rRNA metagenomic sequencing, we focused on characterizing the milk microbiota in the Northern Greek population by identifying shared microbial communities across samples and comparing the relative abundance of prevalent genera. We analyzed ten human milk samples (from five mothers), with five collected three days postpartum (colostrum) and five collected thirty to forty days postpartum (mature milk) from corresponding mothers. To perform an interspecies comparison of human milk microbiota, we analyzed five goat and five bovine milk samples from a local dairy industry, collected fifty to seventy days after birth. Alpha diversity analysis indicated moderate diversity and stability in bovine milk, high richness in goat milk, and constrained diversity in breast milk. Beta diversity analysis revealed significant distinctions among mammalian species, emphasizing both presence/absence and abundance-based clustering. Despite noticeable differences, shared microbial components underscore fundamental aspects across all mammalian species, highlighting the presence of a core microbiota predominantly comprising the Proteobacteria, Firmicutes, and Actinobacteriota phyla. At the genus level, Acinetobacter, Gemella, and Sphingobium exhibit significant higher abundance in human milk compared to bovine and goat milk, while Pseudomonas and Atopostipes are more prevalent in animal milk. Our comparative analysis revealed differences and commonalities in the microbial communities of various mammalian milks and unraveled the existence of a common fundamental milk core microbiome. We thus revealed both species-specific and conserved microbial communities in human, bovine, and goat milk. The existence of a common core microbiome with conserved differences between colostrum and mature human milk underscores fundamental similarities in the microbiota of milk across mammalian species, which could offer valuable implications for optimizing the nutritional quality and safety of dairy products as well as supplements for infant health.
Collapse
Affiliation(s)
- Margaritis Tsifintaris
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Michail Sitmalidis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Maria Tokamani
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Christina Anastasiadi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Maria Georganta
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Dimitrios Vlachakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- UNESCO Chair of Adolescent Health, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| | - Antonis Giannakakis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.)
| |
Collapse
|
16
|
Sun Q, Zhou Q, Ge S, Liu L, Li P, Gu Q. Effects of Maternal Diet on Infant Health: A Review Based on Entero-Mammary Pathway of Intestinal Microbiota. Mol Nutr Food Res 2024; 68:e2400077. [PMID: 39059011 DOI: 10.1002/mnfr.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Indexed: 07/28/2024]
Abstract
SCOPE The microbes in breast milk are critical for the early establishment of infant gut microbiota and have important implications for infant health. Breast milk microbes primarily derive from the migration of maternal intestinal microbiota. This review suggests that the regulation of maternal diet on gut microbiota may be an effective strategy to improve infant health. METHODS AND RESULTS This article reviews the impact of breast milk microbiota on infant development and intestinal health. The close relationship between the microbiota in the maternal gut and breast through the entero-mammary pathway is discussed. Based on the effect of diet on gut microbiota, it is proposed that changing the maternal dietary structure is a new strategy for regulating breast milk microbiota and infant intestinal microbiota, which would have a positive impact on infant health. CONCLUSION Breast milk microbes have beneficial effects on infant development and regulation of the immune system. The mother's gut and breast can undergo certain bacterial migration through the entero-mammary pathway. Research has shown that intervening in a mother's diet during breastfeeding can affect the composition of the mother's gut microbiota, thereby regulating the microbiota of breast milk and infant intestines, and is closely related to infant health.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Sitong Ge
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingli Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
17
|
Khaiboullina S, Chen Z, Alva-Murillo N, Holban AM. Editorial: Women in infectious agents and disease: 2023. Front Microbiol 2024; 15:1436831. [PMID: 38946895 PMCID: PMC11212011 DOI: 10.3389/fmicb.2024.1436831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| | - Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Nayeli Alva-Murillo
- Division of Natural and Exact Sciences (DCNE), Departament of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
18
|
Oesterle I, Ayeni KI, Ezekiel CN, Berry D, Rompel A, Warth B. Insights into the early-life chemical exposome of Nigerian infants and potential correlations with the developing gut microbiome. ENVIRONMENT INTERNATIONAL 2024; 188:108766. [PMID: 38801800 DOI: 10.1016/j.envint.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Early-life exposure to natural and synthetic chemicals can impact acute and chronic health conditions. Here, a suspect screening workflow anchored on high-resolution mass spectrometry was applied to elucidate xenobiotics in breast milk and matching stool samples collected from Nigerian mother-infant pairs (n = 11) at three time points. Potential correlations between xenobiotic exposure and the developing gut microbiome, as determined by 16S rRNA gene amplicon sequencing, were subsequently explored. Overall, 12,192 and 16,461 features were acquired in the breast milk and stool samples, respectively. Following quality control and suspect screening, 562 and 864 features remained, respectively, with 149 of these features present in both matrices. Taking advantage of 242 authentic reference standards measured for confirmatory purposes of food bio-actives and toxicants, 34 features in breast milk and 68 features in stool were identified and semi-quantified. Moreover, 51 and 78 features were annotated with spectral library matching, as well as 416 and 652 by in silico fragmentation tools in breast milk and stool, respectively. The analytical workflow proved its versatility to simultaneously determine a diverse panel of chemical classes including mycotoxins, endocrine-disrupting chemicals (EDCs), antibiotics, plasticizers, perfluorinated alkylated substances (PFAS), and pesticides, although it was originally optimized for polyphenols. Spearman rank correlation of the identified features revealed significant correlations between chemicals of the same classification such as polyphenols. One-way ANOVA and differential abundance analysis of the data obtained from stool samples revealed that molecules of plant-based origin elevated as complementary foods were introduced to the infants' diets. Annotated compounds in the stool, such as tricetin, positively correlated with the genus Blautia. Moreover, vulgaxanthin negatively correlated with Escherichia-Shigella. Despite the limited sample size, this exploratory study provides high-quality exposure data of matched biospecimens obtained from mother-infant pairs in sub-Saharan Africa and shows potential correlations between the chemical exposome and the gut microbiome.
Collapse
Affiliation(s)
- Ian Oesterle
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute for Bioanalytics and Agro-Metabolomics, Konrad-Lorenz Str. 20, 3430 Tulln, Austria
| | - David Berry
- University of Vienna, Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, 1030 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
19
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
20
|
Ebrahimi A, Andishmand H, Huo C, Amjadi S, Khezri S, Hamishehkar H, Mahmoudzadeh M, Kim KH. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies. Compr Rev Food Sci Food Saf 2024; 23:e13370. [PMID: 38783570 DOI: 10.1111/1541-4337.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sima Khezri
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
21
|
Ramezanalipour Z, Hashemi SJ, Daie Ghazvini R, Shenagari M, Sharifdini M, Salehiniya H, Keivanlou MH, Ashrafi K, Roostaei D, Mansour Ghanaei F, Sasani E, Rafat Z. Assessment of species distribution and virulence factors of oral fungal carriage among hospitalized patients with COVID-19: a case-control study. Ann Med Surg (Lond) 2024; 86:2458-2466. [PMID: 38694283 PMCID: PMC11060290 DOI: 10.1097/ms9.0000000000001956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Background The COVID-19 pandemic highlighted the need to study oral fungal carriage and its potential impact. In oral fungal environments, factors like changes in respiratory epithelium, increased pathogen attachment, local inflammation, and virulence factors could influence COVID-19 severity. The authors conducted a study to explore oral fungal carriage in COVID-19 patients and compare it to a healthy control group. Methods The authors executed a case-control investigation including 144 COVID-19 patients and an equivalent number of 144 healthy controls. The matching criteria encompassed age, sex, body mass index, and the history of antibiotic and antiviral medication intake. This research was performed over a span of 12 months from May 2021 to May 2022. The mouth area was sampled with a cotton-tipped swab. Subsequently, all the samples underwent fungal culture and PCR-sequencing procedures. Results In COVID-19 patients, oral fungal carriage was three times higher compared to healthy controls. Candida was the exclusive genus found in both groups, with Candida albicans being the most frequently isolated species (90.79%). Among COVID-19 patients, Candida species showed significantly higher esterase, proteinase, and hemolysin activity compared to healthy individuals. Both groups exhibited elevated levels of C. albicans virulence factors compared to non-albicans species. Conclusions It is crucial to understand the way that virulence factors of oral fungal carriage act in COVID-19 patients in order to come up with novel antifungal medications, identify the contributing factors to drug resistance, and manage clinical outcomes.
Collapse
Affiliation(s)
- Zahra Ramezanalipour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran
| | - Roshanak Daie Ghazvini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran
| | | | | | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand
| | | | | | | | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center
- GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht
| | - Elahe Sasani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | |
Collapse
|
22
|
Aydemir Y, Aydemir O, Dinleyici M, Saglik AC, Cam D, Kaya TB, Canpolat FE. Screening for functional gastrointestinal disorders in preterm infants up to 12 months of corrected age: a prospective cohort study. Eur J Pediatr 2024; 183:2091-2099. [PMID: 38347262 PMCID: PMC11035472 DOI: 10.1007/s00431-024-05451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 04/23/2024]
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by a variety of symptoms that are frequently age-dependent, chronic, or recurrent and are not explained by structural or biochemical abnormalities. There are studies in the literature reporting different results regarding the relationship between prematurity and FGIDs. The main objective of this study was to compare the frequency of FGIDs between preterm and term infants. The secondary objective was to evaluate whether there was any association between neonatal characteristics and development of FGIDs. A multicenter prospective cohort study that included preterm infants born before 37 weeks of gestation and healthy term infants was carried out. At 1, 2, 4, 6, 9, and 12 months of age, infants were assessed for the presence of FGIDs using the Rome IV criteria. In preterm infants, an additional follow-up visit was made at 12 months corrected age. 134 preterm and 104 term infants were enrolled in the study. Infantile colic, rumination syndrome, functional constipation, and infant dyschezia were more common in preterm infants. Incidence of other FGIDs (infant regurgitation, functional diarrhea and cyclic vomiting syndrome) were similar among preterm and term infants. Preterm infants who are exclusively breastfeed in the first 6 months of life have a lower incidence of infantile colic (18.8% vs 52.1%, p = 0.025). In terms of chronological age, FGIDs symptoms started later in preterm infants; this difference was statistically significant for infantile colic and regurgitation (median age 2 months vs 1 month, p < 0.001). Conclusions: Preterm infants have a higher prevalence of FGIDs compared with term controls. Therefore, especially if they have gastrointestinal complaints, they should be screened for FGIDs. Possibly due to maturational differences, the time of occurrence of FGIDs may differ in preterm infants. Infantile colic incidence decreases with exclusive breastfeeding. What is Known: • The functional gastrointestinal disorders are a very common in infancy. • Data on preterm infants with FGIDs are currently very limited. What is New: • Preterm infants have a higher incidence of infantile colic, rumination syndrome, functional constipation and infant dyschezia when compared to term infants. • Preterm infants who are exclusively breastfed during the first 6 months of life experience a lower incidence of infantile colic.
Collapse
Affiliation(s)
- Yusuf Aydemir
- Faculty of Medicine Department of Pediatrics, Division of Gastroenterology and Hepatology, Eskisehir Osmangazi University, Meselik, 26040, Eskisehir, Turkey.
| | - Ozge Aydemir
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Meltem Dinleyici
- Faculty of Medicine Department of Pediatrics, Division of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Adviye Cakil Saglik
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Demet Cam
- Neonatal Intensive Care Unit, Dr. Zekai Tahir Burak Womens Health Research and Education Hospital, Ankara, Turkey
| | - Tugba Barsan Kaya
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fuat Emre Canpolat
- Department of Pediatrics, Division of Neonatology, University of Health Science Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Gurung M, Schlegel BT, Rajasundaram D, Fox R, Bode L, Yao T, Lindemann SR, LeRoith T, Read QD, Simecka C, Carroll L, Andres A, Yeruva L. Microbiota from human infants consuming secretors or non-secretors mothers' milk impacts the gut and immune system in mice. mSystems 2024; 9:e0029424. [PMID: 38530054 PMCID: PMC11019842 DOI: 10.1128/msystems.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renee Fox
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tianming Yao
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Stephen R. Lindemann
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Christy Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
24
|
Hattoufi K, Raji F, Tligui H, Heikel J, Aguenaou H, Barkat A. Dataset of establishment of gut microbiota: Molecular analysis of a cohort of 29 preterm Moroccan newborns. Data Brief 2024; 53:110129. [PMID: 38379886 PMCID: PMC10877160 DOI: 10.1016/j.dib.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The initial colonization of the intestine represents one of the most profound immunological exposures faced by the newborn. During the first three years of life, the intestinal microbial composition undergoes significant changes. At birth, the digestive tract is rapidly colonized by microorganisms of maternal and environmental origins. Microbiota's composition is influenced by various factors, including the mode of delivery, gestational age, type of feeding, and medication use. Through the current study, we specifically focused on elucidating the dynamics of gut microbiota colonization within the first three weeks of life of infants, shedding light on this critical phase of development. A prospective cohort study involving 29 preterm infants was conducted from January to September 2021 at the National Reference Center for Neonatology and Nutrition, in collaboration with the research laboratory of Children's Hospital at the University Hospital Center Ibn Sina in Rabat. Stool samples were collected from each infant's diapers into a sterile tube and send for laboratory analysis. A total of 203 stool samples were collected. For each newborn, one stool sample was obtained within the first 48 h after birth, followed by two samples per week over a period of three weeks. The microbial compositions of these samples were analyzed using real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Kenza Hattoufi
- National Reference Center in Neonatology and Nutrition, Children's Hospital, Ibn Sina University Hospital Centre, Rabat, Morocco
- Research Team on Health and Nutrition of Mother and Child, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Fatiha Raji
- Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Ibn Tofail University-CNESTEN, Morocco
| | - Houssain Tligui
- Research Laboratory of Ibn Sina University Hospital, Rabat, Morocco
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Jaafar Heikel
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Hassan Aguenaou
- Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Ibn Tofail University-CNESTEN, Morocco
| | - Amina Barkat
- National Reference Center in Neonatology and Nutrition, Children's Hospital, Ibn Sina University Hospital Centre, Rabat, Morocco
- Research Team on Health and Nutrition of Mother and Child, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
25
|
Wojciechowska D, Salamon S, Wróblewska-Seniuk K. It's time to shed some light on the importance of fungi in neonatal intensive care units: what do we know about the neonatal mycobiome? Front Microbiol 2024; 15:1355418. [PMID: 38567073 PMCID: PMC10985264 DOI: 10.3389/fmicb.2024.1355418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The 21st century, thanks to the development of molecular methods, including DNA barcoding, using Sanger sequencing, and DNA metabarcoding, based on next-generation sequencing (NGS), is characterized by flourishing research on the human microbiome. Microbial dysbiosis is perceived as a new pathogenetic factor for neonatal diseases. Fungi are crucial, but neglected, components of the neonatal microbiome, which, despite their low abundance, significantly impact morbidity and mortality rates of premature infants hospitalized in Neonatal Intensive Care Units (NICUs). The neonatal mycobiome's composition and effect on health remain poorly studied research areas. Our knowledge about neonatal mycobiome, composed of limited genera, is mainly based on research on the bacterial microbiome. We presume it is influenced by clinical factors, including prematurity, antibiotic therapy, and type of delivery. Understanding these risk factors may be useful in prevention strategies against dysbiosis and invasive fungal infections. Despite the methodological challenges resulting from the biology of the fungal cell, this topic is an attractive area of research that may contribute to more effective treatment, especially of newborns from risk groups. In this mini review, we discuss the current state of knowledge, research gaps, study difficulties, and future research directions on the neonatal mycobiome, concerning potential future clinical applications.
Collapse
Affiliation(s)
- Dobrochna Wojciechowska
- II Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Sylwia Salamon
- Department of Plant Microbiomics, Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
26
|
Moreno-Sanz B, Lázaro-Perona F, Escribano E, Cabrera Lafuente M, Montes MT, Amorós R, Arboleya S, Gueimonde M, Mingorance J, Saenz de Pipaon M. Assessment trial of the effect of enteral insulin on the preterm infant intestinal microbiota. Pediatr Res 2024; 95:1117-1123. [PMID: 38086952 DOI: 10.1038/s41390-023-02917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Insulin might be associated with changes in infant gastrointestinal microbiota. The objective of this randomized controlled trial was to assess the efficacy of two doses of recombinant human(rh) enteral insulin administration compared to placebo in intestinal microbiota. METHODS 19 preterm patients were recruited at the NICU of La Paz University Hospital (Madrid, Spain). Subjects received 2000 µIU of rh enteral insulin/ml(n = 8), 400 µIU of rh enteral insulin/ml(n = 6) or placebo(n = 5) for 28 days administered once per day. Extracted DNA from fecal samples collected at the beginning and end of treatment were analyzed. The 16S rRNA V4 region was amplified and sequenced in a Miseq(Illumina®) sequencer using 2 × 250 bp paired end. Resulting reads were filtered and analyzed using Qiime2 software. Metabolic activity was assessed by GC. RESULTS Gestational age and birth weight did not differ between groups. At the phylum level, both insulin treated groups increased the relative abundance of Bacillota, while Pseudomonadota decreased. No change was observed in infants receiving placebo. At the genus level, insulin at both doses showed enriching effects on Clostridium. We found a significant increase in concentrations of fecal propionate in both rh insulin treated groups. CONCLUSION Rh insulin may modify neonatal intestinal microbiota and SCFAs in preterm infants. IMPACT STATEMENT Decrease of Pseudomonadota (former Proteobacteria phylum) and increase of Bacillota (former Firmicutes phylum) obtained in this study are the changes observed previously in low-risk infants for NEC. The administration of recombinant enteral insulin may modify the microbiota of preterm new-borns and SCFAs. Modulation of the microbiota may be a mechanism whereby insulin contributes to neonatal intestinal maturation and/or protection.
Collapse
Affiliation(s)
- Bárbara Moreno-Sanz
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Fernando Lázaro-Perona
- Department of Microbiology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Esperanza Escribano
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Marta Cabrera Lafuente
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - María Teresa Montes
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Rocío Amorós
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa, Spain
| | - Jesús Mingorance
- Department of Microbiology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Miguel Saenz de Pipaon
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain.
- Universidad Autonoma de Madrid Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Kahhaleh FG, Barrientos G, Conrad ML. The gut-lung axis and asthma susceptibility in early life. Acta Physiol (Oxf) 2024; 240:e14092. [PMID: 38251788 DOI: 10.1111/apha.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Asthma is the most common chronic disease among children, with more than 300 million cases worldwide. Over the past several decades, asthma incidence has grown, and epidemiological studies identify the modernized lifestyle as playing a strong contributing role in this phenomenon. In particular, lifestyle factors that modify the maternal gut microbiome during pregnancy, or the infant microbiome in early life, can act as developmental programming events which determine health or disease susceptibility later in life. Microbial colonization of the gut begins at birth, and factors such as delivery mode, breastfeeding, diet, antibiotic use, and exposure to environmental bacteria influence the development of the infant microbiome. Colonization of the gut microbiome is crucial for proper immune system development and disruptions to this process can predispose a child to asthma development. Here, we describe the importance of early-life events for shaping immune responses along the gut-lung axis and why they may provide a window of opportunity for asthma prevention.
Collapse
Affiliation(s)
- Fariz G Kahhaleh
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
28
|
Le Bourgot C, Lollier V, Richer Y, Thoulouze L, Svilar L, Le Gall S, Blat S, Le Huërou-Luron I. Maternal short chain fructo-oligosaccharides supplementation during late gestation and lactation influences milk components and offspring gut metabolome: a pilot study. Sci Rep 2024; 14:4236. [PMID: 38378944 PMCID: PMC10879084 DOI: 10.1038/s41598-024-54813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Breast milk composition is influenced by maternal diet. This study aimed to evaluate if supplementation of maternal diet with a prebiotic fibre, through its potential effect on milk composition, can be a leverage to orientate the gut microbiota of infants in a way that would be beneficial for their health. Twelve sows received a diet supplemented with short chain fructo-oligosaccharides or maltodextrins during the last month of gestation and the lactation. Oligosaccharidic and lipidomic profiles of colostrum and mature milk (21 days), as well as faecal microbiota composition and metabolomic profile of 21 day-old piglets were evaluated. The total porcine milk oligosaccharide concentration tended to be lower in scFOS-supplemented sows, mainly due to the significant reduction of the neutral core oligosaccharides (in particular that of a tetrahexose). Maternal scFOS supplementation affected the concentration of 31 lipids (mainly long-chain triglycerides) in mature milk. Faecal short-chain fatty acid content and that of 16 bacterial metabolites were modified by scFOS supplementation. Interestingly, the integrative data analysis gave a novel insight into the relationships between (i) maternal milk lipids and PMOs and (ii) offspring faecal bacteria and metabolites. In conclusion, scFOS-enriched maternal diet affected the composition of mature milk, and this was associated with a change in the colonisation of the offspring intestinal microbiota.
Collapse
Affiliation(s)
- Cindy Le Bourgot
- Tereos, Scientific and Regulatory Affairs Department, Moussy-le-Vieux, France.
| | - Virginie Lollier
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Yoann Richer
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Loric Thoulouze
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Ljubica Svilar
- Cribiom, Centre de Recherche Cardiovasculaire et Nutrition C2VN, UMR INRAE 1260 INSERM 1263, University Aix-Marseille, Marseille, France
| | - Sophie Le Gall
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, University Rennes, 35590, Saint-Gilles, France
| | | |
Collapse
|
29
|
Xu D, Zhou S, Liu Y, Scott AL, Yang J, Wan F. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell 2024; 187:750-763.e20. [PMID: 38242132 PMCID: PMC10872564 DOI: 10.1016/j.cell.2023.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.
Collapse
Affiliation(s)
- Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Scott
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Bernabeu M, Cabello-Yeves E, Flores E, Samarra A, Kimberley Summers J, Marina A, Collado MC. Role of vertical and horizontal microbial transmission of antimicrobial resistance genes in early life: insights from maternal-infant dyads. Curr Opin Microbiol 2024; 77:102424. [PMID: 38237429 DOI: 10.1016/j.mib.2023.102424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Early life represents a critical window for metabolic, cognitive and immune system development, which is influenced by the maternal microbiome as well as the infant gut microbiome. Antibiotic exposure, mode of delivery and breastfeeding practices modulate the gut microbiome and the reservoir of antibiotic resistance genes (ARGs). Vertical and horizontal microbial gene transfer during early life and the mechanisms behind these transfers are being uncovered. In this review, we aim to provide an overview of the current knowledge on the transfer of antibiotic resistance in the mother-infant dyad through vertical and horizontal transmission and to highlight the main gaps and challenges in this area.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - Elena Cabello-Yeves
- Instituto de Biomedicina de Valencia-Consejo de Investigaciones Científicas (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain.
| | - Eduard Flores
- Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Joanna Kimberley Summers
- Wellington Lab, School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Alberto Marina
- Instituto de Biomedicina de Valencia-Consejo de Investigaciones Científicas (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
31
|
Mohamed AA, al-Ramadi BK, Fernandez-Cabezudo MJ. Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions. Int J Mol Sci 2024; 25:1747. [PMID: 38339023 PMCID: PMC10855551 DOI: 10.3390/ijms25031747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.
Collapse
Affiliation(s)
- Alaa A. Mohamed
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
32
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
33
|
Scadding GK, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, Conti DM, De Corso E, Diamant Z, Gray C, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept for prevention and disease-modification? A EUFOREA paper. Part 1-allergic asthma. FRONTIERS IN ALLERGY 2024; 4:1291185. [PMID: 38352244 PMCID: PMC10863454 DOI: 10.3389/falgy.2023.1291185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
Asthma, which affects some 300 million people worldwide and caused 455,000 deaths in 2019, is a significant burden to suffers and to society. It is the most common chronic disease in children and represents one of the major causes for years lived with disability. Significant efforts are made by organizations such as WHO in improving the diagnosis, treatment and monitoring of asthma. However asthma prevention has been less studied. Currently there is a concept of pre- diabetes which allows a reduction in full blown diabetes if diet and exercise are undertaken. Similar predictive states are found in Alzheimer's and Parkinson's diseases. In this paper we explore the possibilities for asthma prevention, both at population level and also investigate the possibility of defining a state of pre-asthma, in which intensive treatment could reduce progression to asthma. Since asthma is a heterogeneous condition, this paper is concerned with allergic asthma. A subsequent one will deal with late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Head of ORL-Deptartment, Clinic Barcelona, Barcelona, Spain
- Chair of ORL, University of Barcelona, Barcelona, Spain
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Deptarment of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Gray
- Paediatric Allergist, Red Cross Children’s Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Division of Applied Health Sciences, Centre of Academic Primary Care, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Former Head of the Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Composition of Microbiota in Transient and Mature Human Milk: Significant Changes in Large for Gestational Age Group. Nutrients 2024; 16:208. [PMID: 38257101 PMCID: PMC10818272 DOI: 10.3390/nu16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The composition of the human milk (HM) microbiota and, consequently, the microorganisms that are passed on to the infant through breastfeeding, can be influenced by various factors such as the mother's health and diet, gestational age, delivery mode, lactation stage, method of infant feeding, and geographical location. The aim of the Human Milk-Gest Study was to compare the microbiota of transient (postpartum 7-15 days) and mature HM (postpartum 45-90 days) of 44 mothers, and to investigate any potential changes associated with preterm birth, mode of delivery, and birth weight in relation to gestational age. The data were classified into five study groups: normal spontaneous delivery-term (NS-T) newborns, cesarean delivery-term (CS-T) newborns, preterm (PT) newborns (with a gestational age of less than 37 weeks), small for gestational age (SGA) newborns, and large for gestational age (LGA) newborns. An analysis of differential abundance was conducted using ANCOM-BC to compare the microbial genera between transient and mature HM samples as well as between other study groups. A significant difference was detected between HM samples at different sampling times and between the study groups (p < 0.01). In transient HM samples, Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the NS-T, CS-T, PT, and SGA groups. In mature HM samples, Burkholderiaceae_uc, Ralstonia, Pelomonas, and Klebsiella were significantly dominant in the LGA group compared to the NS-T, CS-T, and PT groups, while Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the SGA group. Differences were also detected between the transient and mature HM samples in the CS-T, PT, SGA, and LGA groups, but no differences occurred in the NS-T groups. In conclusion, we showed that Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group in transient HM and continued in mature HM. The body mass index (BMI) of the mothers in the LGA group was not >30 at conception, however, the maternal BMI at birth and maternal weight gain during pregnancy were higher than in the other groups. The nutritional composition of HM is specifically designed to meet infant nutritional requirements during early life. Evaluating the effects of HM microbiota on infant microbiota composition and short- and long-term health effects in larger studies would be useful.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Türkiye;
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Ozge Aydemir
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Neslihan Tekin
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1090 Brussels, Belgium
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC-UVEG), 46980 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye
| |
Collapse
|
35
|
Brockway MM, Daniel AI, Reyes SM, Gauglitz JM, Granger M, McDermid JM, Chan D, Refvik R, Sidhu KK, Musse S, Patel PP, Monnin C, Lotoski L, Geddes DT, Jehan F, Kolsteren P, Bode L, Eriksen KG, Allen LH, Hampel D, Rodriguez N, Azad MB. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv Nutr 2024; 15:100127. [PMID: 37802214 PMCID: PMC10831900 DOI: 10.1016/j.advnut.2023.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Human milk (HM) contains macronutrients, micronutrients, and a multitude of other bioactive factors, which can have a long-term impact on infant growth and development. We systematically searched MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born infants. From 9992 abstracts screened, 141 articles were included and categorized based on their reporting of HM micronutrients, macronutrients, or bioactive components. Bioactives including hormones, HM oligosaccharides (HMOs), and immunomodulatory components are reported here, based on 75 articles from 69 unique studies reporting observations from 9980 dyads. Research designs, milk collection strategies, sampling times, geographic and socioeconomic settings, reporting practices, and outcomes varied considerably. Meta-analyses were not possible because data collection times and reporting were inconsistent among the studies included. Few measured infant HM intake, adjusted for confounders, precisely captured breastfeeding exclusivity, or adequately described HM collection protocols. Only 5 studies (6%) had high overall quality scores. Hormones were the most extensively examined bioactive with 46 articles (n = 6773 dyads), compared with 13 (n = 2640 dyads) for HMOs and 12 (n = 1422 dyads) for immunomodulatory components. Two studies conducted untargeted metabolomics. Leptin and adiponectin demonstrated inverse associations with infant growth, although several studies found no associations. No consistent associations were found between individual HMOs and infant growth outcomes. Among immunomodulatory components in HM, IL-6 demonstrated inverse relationships with infant growth. Current research on HM bioactives is largely inconclusive and is insufficient to address the complex composition of HM. Future research should ideally capture HM intake, use biologically relevant anthropometrics, and integrate components across categories, embracing a systems biology approach to better understand how HM components work independently and synergistically to influence infant growth.
Collapse
Affiliation(s)
- Meredith Merilee Brockway
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Allison I Daniel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah M Reyes
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Deborah Chan
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Rebecca Refvik
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karanbir K Sidhu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suad Musse
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Pooja P Patel
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, Unites States
| | - Caroline Monnin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, MB, Canada
| | - Larisa Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Fyezah Jehan
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | - Patrick Kolsteren
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Lars Bode
- Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego (UC San Diego), San Diego, CA, United States
| | - Kamilla G Eriksen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lindsay H Allen
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Daniela Hampel
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Natalie Rodriguez
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
36
|
Fasano A, Chassaing B, Haller D, Flores Ventura E, Carmen-Collado M, Pastor N, Koren O, Berni Canani R. Microbiota during pregnancy and early life: role in maternal-neonatal outcomes based on human evidence. Gut Microbes 2024; 16:2392009. [PMID: 39161102 PMCID: PMC11340748 DOI: 10.1080/19490976.2024.2392009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Here, we explored the vast potential of microbiome-based interventions in preventing and managing non-communicable diseases including obesity, diabetes, allergies, celiac disease, inflammatory bowel diseases, malnutrition, and cardiovascular diseases across different life stages. We discuss the intricate relationship between microbiome and non-communicable diseases, emphasizing on the "window of opportunity" for microbe-host interactions during the first years after birth. Specific biotics and also live biotherapeutics including fecal microbiota transplantation emerge as pivotal tools for precision medicine, acknowledging the "one size doesn't' fit all" aspect. Challenges in implementation underscore the need for advanced technologies, scientific transparency, and public engagement. Future perspectives advocate for understanding maternal-neonatal microbiome, exploring the maternal exposome and delving into human milk's role in the establishment and restoration of the infant microbiome and its influence over health and disease. An integrated scientific approach, employing multi-omics and accounting for inter-individual variance in microbiome composition and function appears central to unleash the full potential of early-life microbiome interventions in revolutionizing healthcare.
Collapse
Affiliation(s)
- Alessio Fasano
- Mucosal Immunology and Biology Research Center, Mass General Brigham, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, INSERM, Université Paris Cité, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS, Université de Paris, Paris, France
| | - Dirk Haller
- Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eduard Flores Ventura
- Department of Biotechnology, Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen-Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Nitida Pastor
- Department of Medical Affairs, Clinical Research, Mead Johnson Nutrition, Evansville, IN, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Roberto Berni Canani
- Department of Translational Medical Science, and ImmunoNutritionLab at Ceinge Advanced Biotechnologies Research Center, and European Laboratory for Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Le Bras C, Rault L, Jacquet N, Daniel N, Chuat V, Valence F, Bellanger A, Bousarghin L, Blat S, Le Loir Y, Le Huërou-Luron I, Even S. Two human milk-like synthetic bacterial communities displayed contrasted impacts on barrier and immune responses in an intestinal quadricellular model. ISME COMMUNICATIONS 2024; 4:ycad019. [PMID: 38415201 PMCID: PMC10897888 DOI: 10.1093/ismeco/ycad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/29/2024]
Abstract
The human milk (HM) microbiota, a highly diverse microbial ecosystem, is thought to contribute to the health benefits associated with breast-feeding, notably through its impact on infant gut microbiota. Our objective was to further explore the role of HM bacteria on gut homeostasis through a "disassembly/reassembly" strategy. HM strains covering the diversity of HM cultivable microbiota were first characterized individually and then assembled in synthetic bacterial communities (SynComs) using two human cellular models, peripheral blood mononuclear cells and a quadricellular model mimicking intestinal epithelium. Selected HM bacteria displayed a large range of immunomodulatory properties and had variable effects on epithelial barrier, allowing their classification in functional groups. This multispecies characterization of HM bacteria showed no clear association between taxonomy and HM bacteria impacts on epithelial immune and barrier functions, revealing the entirety and complexity of HM bacteria potential. More importantly, the assembly of HM strains into two SynComs of similar taxonomic composition but with strains exhibiting distinct individual properties, resulted in contrasting impacts on the epithelium. These impacts of SynComs partially diverged from the predicted ones based on individual bacteria. Overall, our results indicate that the functional properties of the HM bacterial community rather than the taxonomic composition itself could play a crucial role in intestinal homeostasis of infants.
Collapse
Affiliation(s)
- Charles Le Bras
- STLO, INRAE, Institut Agro, Rennes, 35042, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Lucie Rault
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| | | | | | | | | | | | - Latifa Bousarghin
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Yves Le Loir
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| | | | - Sergine Even
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| |
Collapse
|
38
|
Sabino J, Tarassishin L, Eisele C, Hawkins K, Barré A, Nair N, Rendon A, Debebe A, Picker M, Agrawal M, Stone J, George J, Legnani P, Maser E, Chen CL, Thjømøe A, Mørk E, Dubinsky M, Hu J, Colombel JF, Peter I, Torres J. Influence of Early Life Factors, including breast milk Composition, on the Microbiome of Infants Born to Mothers with and without Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:1723-1732. [PMID: 37279927 PMCID: PMC10673817 DOI: 10.1093/ecco-jcc/jjad096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Herein we analysed the influence of early life factors, including breast milk composition, on the development of the intestinal microbiota of infants born to mothers with and without IBD. METHODS The MECONIUM [Exploring MEChanisms Of disease traNsmission In Utero through the Microbiome] study is a prospective cohort study consisting of pregnant women with or without IBD and their infants. Longitudinal stool samples were collected from babies and analysed using 16s rRNA sequencing and faecal calprotectin. Breast milk proteomics was profiled using Olink inflammation panel. RESULTS We analysed gut microbiota of 1034 faecal samples from 294 infants [80 born to mothers with and 214 to mothers without IBD]. Alpha diversity was driven by maternal IBD status and time point. The major influencers of the overall composition of the microbiota were mode of delivery, feeding, and maternal IBD status. Specific taxa were associated with these exposures, and maternal IBD was associated with a reduction in Bifidobacterium. In 312 breast milk samples [91 from mothers with IBD], mothers with IBD displayed lower abundance of proteins involved in immune regulation, such as thymic stromal lymphopoietin, interleukin-12 subunit beta, tumour necrosis factor-beta, and C-C motif chemokine 20, as compared with control mothers [adjusted p = 0.0016, 0.049, 0.049, and 0.049, respectively], with negative correlations with baby´s calprotectin, and microbiome at different time points. CONCLUSION Maternal IBD diagnosis influences microbiota in their offspring during early life. The proteomic profile of breast milk of women with IBD differs from that of women without IBD, with distinct time-dependent associations with baby's gut microbiome and feacal calprotectin.
Collapse
Affiliation(s)
- João Sabino
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Leonid Tarassishin
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Caroline Eisele
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- College of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kelly Hawkins
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Amelie Barré
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Nile Nair
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alexa Rendon
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Anketse Debebe
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mellissa Picker
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Manasi Agrawal
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Center for Molecular Prediction of IBD [PREDICT], Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Joanne Stone
- Gastroenterology Division, Icahn School of Medicine at Mount Sinai, Department of Obstetrics, Gynecology and Reproductive Sciences, New York, NY, USA
| | - James George
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Peter Legnani
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Elana Maser
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Ching-Lynn Chen
- Gastroenterology Division, Icahn School of Medicine at Mount Sinai, Department of Obstetrics, Gynecology and Reproductive Sciences, New York, NY, USA
| | | | | | - Marla Dubinsky
- Icahn School of Medicine at Mount Sinai, Division of Pediatric Gastroenterology and Hepatology, New York, NY, USA
| | - Jianzhong Hu
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Jean-Frederic Colombel
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Joanna Torres
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Gastroenterology Division, Hospital Beatriz Ângelo, Loures, Portugal
- Gastroenterology Division, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
39
|
Lou YC, Rubin BE, Schoelmerich MC, DiMarco KS, Borges AL, Rovinsky R, Song L, Doudna JA, Banfield JF. Infant microbiome cultivation and metagenomic analysis reveal Bifidobacterium 2'-fucosyllactose utilization can be facilitated by coexisting species. Nat Commun 2023; 14:7417. [PMID: 37973815 PMCID: PMC10654741 DOI: 10.1038/s41467-023-43279-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Benjamin E Rubin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaden S DiMarco
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rachel Rovinsky
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Leo Song
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
40
|
Kortman GAM, Timmerman HM, Schaafsma A, Stoutjesdijk E, Muskiet FAJ, Nhien NV, van Hoffen E, Boekhorst J, Nauta A. Mothers' Breast Milk Composition and Their Respective Infant's Gut Microbiota Differ between Five Distinct Rural and Urban Regions in Vietnam. Nutrients 2023; 15:4802. [PMID: 38004196 PMCID: PMC10675055 DOI: 10.3390/nu15224802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiota colonization and development in early life is impacted by various host intrinsic (genetic) factors, but also diet, lifestyle, as well as environmental and residential factors upon and after birth. To characterize the impact of maternal nutrition and environmental factors on vaginally born infant gut microbiota composition, we performed an observational study in five distinct geographical areas in Vietnam. Fecal samples of infants (around 39 days old) and fecal and breast milk samples of their mothers (around 28 years) were collected. The microbiota composition of all samples was analyzed by 16S rRNA gene Illumina sequencing and a bioinformatics workflow based on QIIME. In addition, various breast milk components were determined. Strong associations between the geographically determined maternal diet and breast milk composition as well as infant fecal microbiota were revealed. Most notable was the association of urban Ha Noi with relatively high abundances of taxa considered pathobionts, such as Klebsiella and Citrobacter, at the expense of Bifidobacterium. Breast milk composition was most distinct in rural Ha Long Bay, characterized by higher concentrations of, e.g., docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), selenium, and vitamin B12, while it was characterized by, e.g., iron, zinc, and α-linolenic acid (ALA) in Ha Noi. Breast milk iron levels were positively associated with infant fecal Klebsiella and negatively with Bifidobacterium, while the EPA and DHA levels were positively associated with Bifidobacterium. In conclusion, differences between five regions in Vietnam with respect to both maternal breast milk and infant gut microbiota composition were revealed, most likely in part due to maternal nutrition. Thus, there could be opportunities to beneficially steer infant microbiota development in a more desired (rural instead of urban) direction through the mother's diet.
Collapse
Affiliation(s)
| | | | - Anne Schaafsma
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| | - Eline Stoutjesdijk
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Frits A. J. Muskiet
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Nguyen V. Nhien
- National Institute of Food Control, No. 65 Pham Than Duat Str., Mai Dich Ward., Cau Giay Dist., Ha Noi 100000, Vietnam
| | | | - Jos Boekhorst
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands
| | - Arjen Nauta
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
41
|
DuPont HL, Salge MMH. The Importance of a Healthy Microbiome in Pregnancy and Infancy and Microbiota Treatment to Reverse Dysbiosis for Improved Health. Antibiotics (Basel) 2023; 12:1617. [PMID: 37998819 PMCID: PMC10668833 DOI: 10.3390/antibiotics12111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The microbiome of newborn infants during the first 1000 days, influenced early on by their mothers' microbiome health, mode of delivery and breast feeding, orchestrates the education and programming of the infant's immune system and determines in large part the general health of the infant for years. METHODS PubMed was reviewed for maternal infant microbiome health and microbiota therapy in this setting with prebiotics, probiotics, vaginal seeding and fecal microbiota transplantation (FMT). RESULTS A healthy nonobese mother, vaginal delivery and strict breast feeding contribute to microbiome health in a newborn and young infant. With reduced microbiome diversity (dysbiosis) during pregnancy, cesarean delivery, prematurity, and formula feeding contribute to dysbiosis in the newborn. Microbiota therapy is an important approach to repair dysbiosis in pregnant women and their infants. Currently available probiotics can have favorable metabolic effects on mothers and infants, but these effects are variable. In research settings, reversal of infant dysbiosis can be achieved via vaginal seeding or FMT. Next generation probiotics in development should replace current probiotics and FMT. CONCLUSIONS The most critical phase of human microbiome development is in the first 2-3 years of life. Preventing and treating dysbiosis during pregnancy and early life can have a profound effect on an infant's later health.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
| | | |
Collapse
|
42
|
Tan A, Murugapiran S, Mikalauskas A, Koble J, Kennedy D, Hyde F, Ruotti V, Law E, Jensen J, Schroth GP, Macklaim JM, Kuersten S, LeFrançois B, Gohl DM. Rational probe design for efficient rRNA depletion and improved metatranscriptomic analysis of human microbiomes. BMC Microbiol 2023; 23:299. [PMID: 37864136 PMCID: PMC10588151 DOI: 10.1186/s12866-023-03037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.
Collapse
Affiliation(s)
- Asako Tan
- Illumina, Inc, Madison, WI, 53719, USA
| | | | | | - Jeff Koble
- Illumina, Inc, San Diego, CA, 92122, USA
| | | | - Fred Hyde
- Illumina, Inc, Madison, WI, 53719, USA
| | | | - Emily Law
- Diversigen, Inc, New Brighton, MN, 55112, USA
| | | | | | | | | | | | - Daryl M Gohl
- Diversigen, Inc, New Brighton, MN, 55112, USA.
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
Le Guillou S, Ciobotaru C, Laubier J, Castille J, Aujean E, Hue-Beauvais C, Cherbuy C, Liuu S, Henry C, David A, Jaffrezic F, Laloë D, Charlier M, Alexandre-Gouabau MC, Le Provost F. Specific Milk Composition of miR-30b Transgenic Mice Associated with Early Duodenum Maturation in Offspring with Lasting Consequences for Growth. J Nutr 2023; 153:2808-2826. [PMID: 37543213 DOI: 10.1016/j.tjnut.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 μM compared with 6.9 μM; P < 0.05), and sphingomyelin concentrations (163.7 μM compared with 76.3 μM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.
Collapse
Affiliation(s)
| | - Céline Ciobotaru
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johann Laubier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Etienne Aujean
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Cathy Hue-Beauvais
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, MICALIS Institute, Jouy-en-Josas, France
| | - Sophie Liuu
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Agnès David
- Nantes Université, CRNH-OUEST, INRAE, UMR 1280, PhAN, Nantes, France
| | - Florence Jaffrezic
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Denis Laloë
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Madia Charlier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | |
Collapse
|
44
|
Bastos-Moreira Y, Ouédraogo L, De Boevre M, Argaw A, de Kok B, Hanley-Cook GT, Deng L, Ouédraogo M, Compaoré A, Tesfamariam K, Ganaba R, Huybregts L, Toe LC, Lachat C, Kolsteren P, De Saeger S, Dailey-Chwalibóg T. A Multi-Omics and Human Biomonitoring Approach to Assessing the Effectiveness of Fortified Balanced Energy-Protein Supplementation on Maternal and Newborn Health in Burkina Faso: A Study Protocol. Nutrients 2023; 15:4056. [PMID: 37764838 PMCID: PMC10535470 DOI: 10.3390/nu15184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fortified balanced energy-protein (BEP) supplementation is a promising intervention for improving maternal health, birth outcomes and infant growth in low- and middle-income countries. This nested biospecimen sub-study aimed to evaluate the physiological effect of multi-micronutrient-fortified BEP supplementation on pregnant and lactating women and their infants. Pregnant women (15-40 years) received either fortified BEP and iron-folic acid (IFA) (intervention) or IFA only (control) throughout pregnancy. The same women were concurrently randomized to receive either a fortified BEP supplement during the first 6 months postpartum in combination with IFA for the first 6 weeks (i.e., intervention) or the postnatal standard of care, which comprised IFA alone for 6 weeks postpartum (i.e., control). Biological specimens were collected at different timepoints. Multi-omics profiles will be characterized to assess the mediating effect of BEP supplementation on the different trial arms and its effect on maternal health, as well as birth and infant growth outcomes. The mediating effect of the exposome in the relationship between BEP supplementation and maternal health, birth outcomes and infant growth were characterized via biomonitoring markers of air pollution, mycotoxins and environmental contaminants. The results will provide holistic insight into the granular physiological effects of prenatal and postnatal BEP supplementation.
Collapse
Affiliation(s)
- Yuri Bastos-Moreira
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lionel Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Centre Muraz, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Brenda de Kok
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Giles T. Hanley-Cook
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Anderson Compaoré
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Rasmané Ganaba
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (M.O.); (A.C.); (R.G.)
| | - Lieven Huybregts
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Nutrition, Diets, and Health Unit, Department of Food and Nutrition Policy, International Food Policy Research Institute (IFPRI), Washington, DC 20005, USA
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
- Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.); (A.A.); (B.d.K.); (G.T.H.-C.); (L.D.); (K.T.); (L.H.); (L.C.T.); (C.L.); (P.K.)
| |
Collapse
|
45
|
Elgersma KM, Wolfson J, Fulkerson JA, Georgieff MK, Looman WS, Spatz DL, Shah KM, Uzark K, McKechnie AC. Human Milk Feeding and Direct Breastfeeding Improve Outcomes for Infants With Single Ventricle Congenital Heart Disease: Propensity Score-Matched Analysis of the NPC-QIC Registry. J Am Heart Assoc 2023; 12:e030756. [PMID: 37642030 PMCID: PMC10547322 DOI: 10.1161/jaha.123.030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Background Infants with single ventricle congenital heart disease undergo 3 staged surgeries/interventions, with risk for morbidity and mortality. We estimated the effect of human milk (HM) and direct breastfeeding on outcomes including necrotizing enterocolitis, infection-related complications, length of stay, and mortality. Methods and Results We analyzed the National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) registry (2016-2021), examining HM/breastfeeding groups during stage 1 and stage 2 palliations. We calculated propensity scores for feeding exposures, then fitted Poisson and logistic regression models to compare outcomes between propensity-matched cohorts. Participants included 2491 infants (68 sites). Estimates for all outcomes were better in HM/breastfeeding groups. Infants fed exclusive HM before stage 1 palliation (S1P) had lower odds of preoperative necrotizing enterocolitis (odds ratio [OR], 0.37 [95% CI, 0.17-0.84]; P=0.017) and shorter S1P length of stay (rate ratio [RR], 0.87 [95% CI, 0.78-0.98]; P=0.027). During the S1P hospitalization, infants with high HM had lower odds of postoperative necrotizing enterocolitis (OR, 0.28 [95% CI, 0.15-0.50]; P<0.001) and sepsis (OR, 0.29 [95% CI, 0.13-0.65]; P=0.003), and shorter S1P length of stay (RR, 0.75 [95% CI, 0.66-0.86]; P<0.001). At stage 2 palliation, infants with any HM (RR, 0.82 [95% CI, 0.69-0.97]; P=0.018) and any breastfeeding (RR, 0.71 [95% CI, 0.57-0.89]; P=0.003) experienced shorter length of stay. Conclusions Infants with single ventricle congenital heart disease in high-HM and breastfeeding groups experienced multiple significantly better outcomes. Given our findings of improved health, strategies to increase the rates of HM/breastfeeding in these patients should be implemented. Future research should replicate these findings with granular feeding data and in broader congenital heart disease populations, and should examine mechanisms (eg, HM components, microbiome) by which HM/breastfeeding benefits these infants.
Collapse
Affiliation(s)
| | - Julian Wolfson
- Division of BiostatisticsUniversity of Minnesota School of Public HealthMinneapolisMNUSA
| | - Jayne A. Fulkerson
- University of Minnesota School of NursingMinneapolisMNUSA
- Division of EpidemiologyUniversity of Minnesota School of Public HealthMinneapolisMNUSA
| | - Michael K. Georgieff
- Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolisMNUSA
- M Health Fairview University of Minnesota Masonic Children’s HospitalMinneapolisMNUSA
| | | | - Diane L. Spatz
- University of Pennsylvania School of NursingPhiladelphiaPAUSA
- Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Kavisha M. Shah
- Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolisMNUSA
- M Health Fairview University of Minnesota Masonic Children’s HospitalMinneapolisMNUSA
| | - Karen Uzark
- Division of Cardiac SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- C. S. Mott Children’s HospitalAnn ArborMIUSA
| | | |
Collapse
|
46
|
Muro-Valdez JC, Meza-Rios A, Aguilar-Uscanga BR, Lopez-Roa RI, Medina-Díaz E, Franco-Torres EM, Zepeda-Morales ASM. Breastfeeding-Related Health Benefits in Children and Mothers: Vital Organs Perspective. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1535. [PMID: 37763654 PMCID: PMC10536202 DOI: 10.3390/medicina59091535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Breast milk (BM) is a constantly changing fluid that represents the primary source of nutrition for newborns. It is widely recognized that breastfeeding provides benefits for both the child and the mother, including a lower risk of ovarian and breast cancer, type 2 diabetes mellitus, decreased blood pressure, and more. In infants, breastfeeding has been correlated with a lower risk of infectious diseases, obesity, lower blood pressure, and decreased incidence of respiratory infections, diabetes, and asthma. Various factors, such as the baby's sex, the health status of the mother and child, the mother's diet, and the mode of delivery, can affect the composition of breast milk. This review focuses on the biological impact of the nutrients in BM on the development and functionality of vital organs to promote the benefit of health.
Collapse
Affiliation(s)
- Julio César Muro-Valdez
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Rocio Ivette Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Eunice Medina-Díaz
- Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Av. José Parres Arias 5, Rinconada de la Azalea, Industrial Belenes, Zapopan 45150, Mexico
| | - Esmeralda Marisol Franco-Torres
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| |
Collapse
|
47
|
Salli K, Hirvonen J, Anglenius H, Hibberd AA, Ahonen I, Saarinen MT, Maukonen J, Ouwehand AC. The Effect of Human Milk Oligosaccharides and Bifidobacterium longum subspecies infantis Bi-26 on Simulated Infant Gut Microbiome and Metabolites. Microorganisms 2023; 11:1553. [PMID: 37375055 DOI: 10.3390/microorganisms11061553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Human milk oligosaccharides (HMOs) shape the developing infant gut microbiota. In this study, a semi-continuous colon simulator was used to evaluate the effect of 2 HMOs-2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL)-on the composition of infant faecal microbiota and microbial metabolites. The simulations were performed with and without a probiotic Bifidobacterium longum subspecies infantis Bi-26 (Bi-26) and compared with a control that lacked an additional carbon source. The treatments with HMOs decreased α-diversity and increased Bifidobacterium species versus the control, but the Bifidobacterium species differed between simulations. The levels of acetic acid and the sum of all short-chain fatty acids (SCFAs) trended toward an increase with 2'-FL, as did lactic acid with 2'-FL and 3-FL, compared with control. A clear correlation was seen between the consumption of HMOs and the increase in SCFAs (-0.72) and SCFAs + lactic acid (-0.77), whereas the correlation between HMO consumption and higher total bifidobacterial numbers was moderate (-0.46). Bi-26 decreased propionic acid levels with 2'-FL. In conclusion, whereas infant faecal microbiota varied between infant donors, the addition of 2'-FL and 3-FL, alone or in combination, increased the relative abundance and numbers Bifidobacterium species in the semi-continuous colon simulation model, correlating with the production of microbial metabolites. These findings may suggest that HMOs and probiotics benefit the developing infant gut microbiota.
Collapse
Affiliation(s)
- Krista Salli
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Johanna Hirvonen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Heli Anglenius
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Ashley A Hibberd
- Genomics & Microbiome Science, IFF Health, Madison, WI 53716, USA
| | | | - Markku T Saarinen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Johanna Maukonen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Arthur C Ouwehand
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| |
Collapse
|
48
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
49
|
Laviano HD, Gómez G, Muñoz M, García-Casco JM, Nuñez Y, Escudero R, Molina AH, González-Bulnes A, Óvilo C, López-Bote C, Rey AI. Dietary Vitamin E and/or Hydroxytyrosol Supplementation to Sows during Late Pregnancy and Lactation Modifies the Lipid Composition of Colostrum and Milk. Antioxidants (Basel) 2023; 12:antiox12051039. [PMID: 37237905 DOI: 10.3390/antiox12051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Modifying the composition of a sow's milk could be a strategy to improve the intestinal health and growth of her piglet during the first weeks of life. This study evaluated how dietary supplementation of vitamin E (VE), hydroxytyrosol (HXT) or VE+HXT given to Iberian sows from late gestation affected the colostrum and milk composition, lipid stability and their relationship with the piglet's oxidative status. Colostrum from VE-supplemented sows had greater C18:1n-7 than non-supplemented sows, whereas HXT increased polyunsaturated (∑PUFAs), ∑n-6 and ∑n-3 fatty acids. In 7-day milk, the main effects were induced by VE supplementation that decreased ∑PUFAs, ∑n-6 and ∑n-3 and increased the Δ-6-desaturase activity. The VE+HXT supplementation resulted in lower desaturase capacity in 20-day milk. Positive correlations were observed between the estimated mean milk energy output and the desaturation capacity of sows. The lowest concentration of malondialdehyde (MDA) in milk was observed in VE-supplemented groups, whereas HXT supplementation increased oxidation. Milk lipid oxidation was negatively correlated with the sow's plasma oxidative status and to a great extent with the oxidative status of piglets after weaning. Maternal VE supplementation produced a more beneficial milk composition to improve the oxidative status of piglets, which could promote gut health and piglet growth during the first weeks, but more research is needed to clarify this.
Collapse
Affiliation(s)
- Hernan D Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), 13700 Toledo, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Juan M García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana Heras Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana I Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|
50
|
Elgersma KM, Wolfson J, Fulkerson JA, Georgieff MK, Looman WS, Spatz DL, Shah KM, Uzark K, McKechnie AC. Human milk feeding and direct breastfeeding improve outcomes for infants with single ventricle congenital heart disease: Propensity score matched analysis of the NPC-QIC registry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.26.23289126. [PMID: 37162951 PMCID: PMC10168482 DOI: 10.1101/2023.04.26.23289126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Infants with single ventricle (SV) congenital heart disease (CHD) undergo three staged surgeries/interventions, with risk for morbidity and mortality. We estimated the effect of human milk (HM) and direct breastfeeding (BF) on outcomes including necrotizing enterocolitis (NEC), infection-related complications, length of stay (LOS), and mortality. Methods We analyzed the National Pediatric Cardiology Quality Improvement Collaborative registry (2016-2021), examining HM/BF groups during stage 1 (S1P) and stage 2 (S2P) palliations. We calculated propensity scores for feeding exposures, then fitted Poisson and logistic regression models to compare outcomes between propensity-matched cohorts. Results Participants included 2491 infants (68 sites). Estimates for all outcomes were better in HM/BF groups. Infants fed exclusive HM before S1P had lower odds of preoperative NEC (OR=0.37, 95% CI=0.17-0.84, p=0.017) and shorter S1P LOS (RR=0.87, 0.78-0.98, p=0.027). During the S1P hospitalization, infants with high HM had lower odds of postoperative NEC (OR=0.28, 0.15-0.50, p<0.001) and sepsis (0.29, 0.13-0.65, p=0.003), and shorter S1P LOS (RR=0.75, 0.66-0.86, p<0.001). At S2P, infants with any HM (0.82, 0.69-0.97, p=0.018) and any BF (0.71, 0.57-0.89, p=0.003) experienced shorter LOS. Conclusions Infants with SV CHD in high HM and BF groups experienced multiple significantly better outcomes. Given our findings of improved health, strategies to increase the rates of HM/BF in these patients should be implemented. Future research should replicate these findings with granular feeding data and in broader CHD populations, and should examine mechanisms (eg, HM components; microbiome) by which HM/BF benefits these infants. Clinical Perspective What is new?: This is the first large, multisite study examining the impact of human milk and breastfeeding on outcomes for infants with single ventricle congenital heart disease.All outcome estimates were better in high human milk and breastfeeding groups, with significantly lower odds of necrotizing enterocolitis, sepsis, and infection-related complications; and significantly shorter length of stay at both the neonatal stage 1 palliation and the subsequent stage 2 palliation.All estimates of all-cause mortality were substantially lower in human milk and breastfeeding groups, with clinically important estimates of 75%-100% lower odds of mortality in direct breastfeeding groups.What are the clinical implications?: There is a critical need for improved, condition-specific lactation support to address the low prevalence of human milk and breastfeeding for infants with single ventricle congenital heart disease.Increasing the dose and duration of human milk and direct breastfeeding has strong potential to substantially improve the health outcomes of these vulnerable infants.
Collapse
Affiliation(s)
| | - Julian Wolfson
- University of Minnesota School of Public Health, Division of Biostatistics
| | - Jayne A. Fulkerson
- University of Minnesota School of Nursing
- University of Minnesota School of Public Health, Division of Epidemiology
| | - Michael K. Georgieff
- University of Minnesota Medical School, Department of Pediatrics
- M Health Fairview University of Minnesota Masonic Children’s Hospital
| | | | - Diane L. Spatz
- University of Pennsylvania School of Nursing
- Children’s Hospital of Philadelphia
| | - Kavisha M. Shah
- University of Minnesota Medical School, Department of Pediatrics
- M Health Fairview University of Minnesota Masonic Children’s Hospital
| | - Karen Uzark
- University of Michigan Medical School, Division of Cardiac Surgery
- C. S. Mott Children's Hospital
| | | |
Collapse
|