1
|
Peng G, Pan X, Ye Z, Yi X, Xie Q, Zhang X, Tong N. Nongenetic risk factors for thyroid cancer: an umbrella review of evidence. Endocrine 2025. [DOI: 10.1007/s12020-024-04155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
|
2
|
Owonikoko WM, Alimba CG. Heavy metal contamination of the Nigerian environment from e-waste management: A systematic review of exposure pathway and attendant pathophysiological implications. Toxicology 2024; 509:153966. [PMID: 39384010 DOI: 10.1016/j.tox.2024.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Nigerian environment has become a depository of worrisome levels of toxicants including heavy metals. Electrical and electronic equipment which leads to the generation of e-waste is one of the considerable sources of environmental contaminants in Nigeria. This systematic review deployed Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to analyze various empirical and quantitative outputs on heavy metal components of e-waste management sites in Nigeria and investigated the distribution of heavy metals in several environmental matrices such as soil, water, surface dust, plant and blood of e-waste scavengers. Also, the probable environmental multi-transformation that ultimately potentiates the susceptibility of humans to the pathophysiological effects and genetic related disorders of exposure to heavy metal component of e-waste was discussed. The relative abundance of metals in soils due to inappropriate e-waste handling is given as follow: Fe>Cu>Pb>Zn>Mn>Co>Cr>Ni>As>Cd, in underground and surface water: Zn>Fe>Cu>Cr>Mn>Pb>Hg>Ni>Co>Cd>As; in surface dusts: Fe>Zn>Pb>Cu>Mn>Cr>Ni>Cd>Co; in plants: Pb>Cu>Mn>Zn>Ni>Cr>Cd obtained from the Nigerian environment. Moreso, the estimated abundance of heavy metals in the blood of e-waste scavengers is Nigeria is given as Cr>Cd>Hg>Zn>As>Pb>Cu>Mn>Fe. Conclusively, this study does not only show that various matrices of Nigerian environment is contaminated with heavy metal but also that the pattern of abundance differ in the environment and in biological systems with the latter having the abundance of Pb, Cr and Cd and the former having the abundance of Cu, Zn and Fe.
Collapse
Affiliation(s)
- Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Edo State, Nigeria
| | - Chibuisi Gideon Alimba
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund 44139, Germany.
| |
Collapse
|
3
|
Hussain A, Saeed A. Hazardous or Advantageous: Uncovering the Roles of Heavy Metals and Humic Substances in Shilajit (Phyto-mineral) with Emphasis on Heavy Metals Toxicity and Their Detoxification Mechanisms. Biol Trace Elem Res 2024; 202:5794-5814. [PMID: 38393486 DOI: 10.1007/s12011-024-04109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Shilajit is a phyto-mineral diffusion and semi-solid matter used as traditional medicine with extraordinary health benefits. This study provides a comprehensive data on Shilajit with emphasis on heavy metal profile, associated toxicities, and metal detoxification mechanisms by humic substances present in Shilajit. Data was searched across papers and traditional books using Google Scholar, PubMed, Science Direct, Medline, SciELO, Web of Science, and Scopus as key scientific databases. Findings showed that Shilajit is distributed in almost 20 regions of the world with uses against 20 health problems as traditional medicine. With various humic substances, almost 11 biological activities were reported in Shilajit. This phyto-mineral diffusion possesses around 65 heavy metals including the toxic heavy metals like Cu, Al, Pb, As, Cd, and Hg. However, humic substances in Shilajit actively detoxify around 12 heavy metals. The recommended levels of heavy metals by WHO and FDA in herbal drugs is 0.20 and 0.30 ppm for Cd, 1 ppm for Hg, 10.00 ppm for As and Pb, 20 ppm for Cu, and 50 ppm for Zn. The levels of reported metals in Shilajit were found to be lower than the permissible limits set by WHO and FDA, except in few studies where exceeded levels were reported. Shilajit consumption without knowing permissible levels of metals is not safe and could pose serious health problems. Although the humic substances and few metals in Shilajit are beneficial in terms of chelating toxic heavy metals, the data on metal detoxification still needs to be clarified.
Collapse
Affiliation(s)
- Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan.
| | - Asma Saeed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan
| |
Collapse
|
4
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2024:10.1007/s00204-024-03903-2. [PMID: 39567405 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
5
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
6
|
Xue Q, Zhang L, Wang R, Xu J, Wang C, Gao S, Fang X, Meng C, Lu R, Guo L. Hexavalent chromium reduces testosterone levels by impairing lipophagy and disrupting lipid metabolism homeostasis: Based on a metabolomic analysis. Toxicology 2024; 508:153908. [PMID: 39121936 DOI: 10.1016/j.tox.2024.153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hexavalent chromium (Cr(VI)) causes testicular damage and reduces testosterone secretion. Testosterone synthesis relies on cholesterol as a raw material, and its availability can be affected by lipophagy. However, the role of lipophagy in Cr(VI)-induced testicular damage and reduced testosterone secretion remains unclear. In this study, we investigated the effect of Cr(VI) on lipid metabolism and lipophagy in the testes of ICR mice. Forty mice were randomly divided into four groups and exposed to different doses of Cr(VI) (0, 75, 100, 125 mg/kg) for thirty days. Cr(VI) increased the rate of sperm abnormalities, decreased testosterone level, and decreased the levels of testosterone synthesis-related proteins, namely steroidogenic acute regulatory (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) proteins. Through metabolomic analysis, Oil Red O staining, and biochemical indicator (triglyceride and total cholesterol) analysis, Cr(VI) was found to disrupt testicular lipid metabolism. Further investigation revealed that Cr(VI) inhibited the AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein 1 (SREBP1) pathway, elevated levels of the autophagy-related proteins microtubule-associated protein 1 light chain 3B (LC3B) and sequestosome 1 (SQSTM1)/P62 and lipophagy-related proteins Rab7 and Rab10, while increasing colocalization of LC3B and Perilipin2. These findings suggest that Cr(VI) exposure leads to abnormal lipid metabolism in the testes by suppressing the AMPK/SREBP1 pathway and disrupting lipophagy, ultimately reducing testosterone level and inducing testicular damage.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Shidi Gao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Xin Fang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Frydrych A, Frankowski M, Jurowski K. The toxicological analysis of problematic and sophisticated elements (Ni, Cr, and Se) in Food for Special Medical Purposes (FSMP) using in pharmacotherapy and clinical nutrition for oncological patients available in Polish pharmacies. Food Chem Toxicol 2024; 192:114930. [PMID: 39147355 DOI: 10.1016/j.fct.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
This study focuses on FSMPs for oncologic patients, specifically analyzing the toxicological profiles of nickel (Ni), chromium (Cr), and selenium (Se) within these products available in Polish pharmacies. The presence of these elements was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Results indicated variations in the concentrations of Ni, Cr, and Se across different FSMP samples, with some products exceeding the acceptable limits set by regulatory guidelines. The study highlights the potential health risks associated with nickel exposure, including dermatitis and carcinogenesis, and the complex roles of chromium and selenium, which can be both beneficial and harmful depending on their levels. Our findings reveal significant variability in the elemental content across different FSMP products, i.e.: Ni: 0.155-25.488 μg/portion, Cr: 0.076-28.726 μg/portion and Se: 0.083-20.304 μg/portion). Notably, selenium levels in FSMPs showed considerable discrepancies compared to manufacturers' declarations, averaging only about 20% of the stated values. Regulatory assessments based on the Acceptable Daily Intake (ADI) and Permitted Daily Exposure (PDE) descriptors indicated that the estimated weekly intake of Ni, Cr, and Se from these FSMPs did not exceed the provisional tolerable weekly intake (PTWI) values. However, the highest Ni content was 30.58% of the PTWI, raising concerns about potential health risks, including dermatitis and carcinogenesis. The results for Cr underscored the necessity for careful monitoring due to its potential toxic effects. Selenium, despite its essential role, showed levels inadequate to meet the Recommended Dietary Allowance (RDA), potentially impacting its intended health benefits.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Marcin Frankowski
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
8
|
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. TOXICS 2024; 12:657. [PMID: 39330585 PMCID: PMC11435892 DOI: 10.3390/toxics12090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Anthropogenic activities and increasing human population has led to one of the major global problems of heavy metal contamination in ecosystems and to the generation of a huge amount of waste material biomass. Hexavalent chromium [Cr(VI)] is the major contaminant introduced by various industrial effluents and activities into the ecosystem. Cr(VI) is a known mutagen and carcinogen with numerous detrimental effects on the health of humans, plants, and animals, jeopardizing the balance of ecosystems. Therefore, the remediation of such a hazardous toxic metal pollutant from the environment is necessary. Various physical and chemical methods are available for the sequestration of toxic metals. However, adsorption is recognized as a more efficient technology for Cr(VI) remediation. Adsorption by utilizing waste material biomass as adsorbents is a sustainable approach in remediating hazardous pollutants, thus serving the dual purpose of remediating Cr(VI) and exploiting waste material biomass in an eco- friendly manner. Agricultural biomass, industrial residues, forest residues, and food waste are the primary waste material biomass that could be employed, with different strategies, for the efficient sequestration of toxic Cr(VI). This review focuses on the use of diverse waste biomass, such as industrial and agricultural by-products, for the effective remediation of Cr(VI) from aqueous solutions. The review also focuses on the operational conditions that improve Cr(VI) remediation, describes the efficacy of various biomass materials and modifications, and assesses the general sustainability of these approaches to reducing Cr(VI) pollution.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sadanand Maurya
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| | - Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| |
Collapse
|
9
|
Li X, Li N, Zhang X, Zhang L, Jia G, Yu S. Low-Dose Hexavalent Chromium Exposure Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Liver. Biol Trace Elem Res 2024; 202:4136-4145. [PMID: 38064039 DOI: 10.1007/s12011-023-03995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/30/2023] [Indexed: 07/18/2024]
Abstract
This study investigated the toxic effects of low-dose hexavalent chromium (Cr(VI)) on rat liver. Male specific pathogen-free (SPF) Sprague-Dawley (SD) rats (4-5 weeks of age) were randomly divided into groups: saline, 0.05 mg/kg Cr(VI), and 0.25 mg/kg Cr(VI). The rats were subjected to intratracheal instillation of K2Cr2O7 suspensions or saline once weekly, for a total of five times. The results showed that the accumulation of Cr(VI) in the blood of the 0.25 mg/kg K2Cr2O7 group was significantly higher than that in the saline group. Transmission electron microscopy (TEM) showed that exposure to hexavalent chromium caused endoplasmic reticulum (ER) oedema and a disordered arrangement. The levels of endoplasmic reticulum stress (ERS)-related proteins (ATF6, P-PERK, P-IRE1, Grp78, and CHOP) in the 0.25 mg/kg K2Cr2O7 group were significantly higher than those in the saline group. The expression of apoptosis-inhibitory protein Bcl-2 was significantly lower in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, and the expression of apoptosis protein Bax was significantly higher in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, indicating that Cr(VI) increased apoptosis. These findings revealed that Cr(VI) may be involved in rat liver injury by initiating ERS-mediated apoptosis. The expression of ATF6, P-PERK, P-IRE1, and Bax in the 0.05 mg/kg K2Cr2O7 group was not significantly different from that in the saline group, and the different effects produced by the two different dose groups provide a possible experimental basis for further study of occupational exposure limits.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Lixia Zhang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Rahmanzadeh E, Golbabaei F, Moussavi G, Faghihi Zarandi A, Dehghani F, Ghorbanian M. Modeling of hexavalent chromium removal onto natural zeolite from air stream in a fixed bed column. Sci Rep 2024; 14:19836. [PMID: 39191983 DOI: 10.1038/s41598-024-70765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of hexavalent chromium (Cr(VI)) has exposed large populations to this environmental and occupational carcinogenic agent. Therefore, researchers have been interested in removing this substance through adsorbents. This study aimed to investigate the efficiency of natural zeolite in the direct adsorption of Cr(VI) from airflow and its adsorption modeling. In this study, a nebulizer device produced the Cr(VI) mist. The efficiency of natural zeolite in Cr(VI) adsorption from airflow, modeling of fixed column adsorption, and the effective parameters on adsorption efficiency including the initial concentration of chromium, airflow rate, and adsorption bed depth were studied. To facilitate the prediction of the performance of natural zeolite's adsorption column, Yoon-Nelson, Thomas, BDST, and Buhart-Adams models were used. The results showed that the adsorption capacity diminished with increased airflow rate and initial concentration, while it increased with elevated height of the adsorption bed. Yoon-Nelson, Thomas, and BDST models corresponded to experimental data with a correlation coefficient of 0.9933, but the information of the Buhart-Adams model had a lower correlation coefficient (around 0.6677). In conclusion, natural zeolite can be used as an efficient low-cost adsorbent for directly Cr(VI) removing from the airflow in a fixed bed column.
Collapse
Affiliation(s)
- Elham Rahmanzadeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health and Safety Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Faghihi Zarandi
- Department of Occupational Health and Safety Engineering, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Ghorbanian
- Department of Environmental Health Engineering, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
12
|
Milošević N, Milanović M, Sazdanić Velikić D, Sudji J, Jovičić-Bata J, Španović M, Ševo M, Lukić Šarkanović M, Torović L, Bijelović S, Milić N. Biomonitoring Study of Toxic Metal(loid)s: Levels in Lung Adenocarcinoma Patients. TOXICS 2024; 12:490. [PMID: 39058142 PMCID: PMC11281202 DOI: 10.3390/toxics12070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide. The aim of this study was to investigate heavy metal(loid)s (Cd, Pb, Hg, Cr, Mn, Mo, Ni, and As) in lung cancer patients in order to elucidate their role as lung cancer environmental risk factors. Sixty-three patients of both sexes with adenocarcinoma stage IIIB or IV were enrolled in this research. The heavy metal(loid) urine concentrations were measured using ICP-MS. Arsenic was quantified above 10 μg/L in 44.44% of the samples. Nickel urinary concentrations above the ToxGuide reference levels were found in 50.79% of the samples, while lead was quantified in 9.52% of the urine samples. The urinary chromium levels were above the mean ToxGuide levels in 41.27% of the patients and were significantly higher in men in comparison with women (p = 0.035). The chromium urinary concentrations were positively associated with the CRP serum levels (p = 0.037). Cadmium was quantified in 61.90% of the samples with levels significantly higher in females than in males (p = 0.023), which was associated with smoking habits. Mercury was measured above the limit of quantification in 63.49% of the samples and was not associated with amalgam dental fillings. However, the Hg urinary concentrations were correlated positively with the ALT (p = 0.02), AST (p < 0.001), and GGT (p < 0.001) serum levels. In 46.03% of the samples, the Mo concentrations were above 32 μg/L, the mean value for healthy adults according to the ToxGuide, and 9.52% of the patients had Mn levels higher than 8 μg/L, the reference value for healthy adults based on ToxGuide data. The obtained results are preliminary, and further studies are needed to have a deeper insight into metal(loid) exposure's association with lung cancer development, progression, and survival prediction.
Collapse
Affiliation(s)
- Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Danica Sazdanić Velikić
- Institute for Pulmonary Diseases of Vojvodina, Clinic for Pulmonary Oncology, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia;
| | - Jan Sudji
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Jelena Jovičić-Bata
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Milorad Španović
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Mirjana Ševo
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- IMC Banja Luka-Center of Radiotherapy, Part of Affidea Group, 78000 Banja Luka, Bosnia and Herzegovina
| | - Mirka Lukić Šarkanović
- Clinical Center of Vojvodina, Clinic for Anesthesiology, Intensive Therapy and Pain Therapy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Sanja Bijelović
- Institute of Public Health of Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| |
Collapse
|
13
|
Oleko A, Saoudi A, Zeghnoun A, Pecheux M, Cirimele V, Mihai Cirtiu C, Berail G, Szego E, Denys S, Fillol C. Exposure of the general French population to metals and metalloids in 2014-2016: Results from the Esteban study. ENVIRONMENTAL RESEARCH 2024; 252:118744. [PMID: 38579993 DOI: 10.1016/j.envres.2024.118744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The purpose of the Esteban study was to describe levels of various biomarkers of exposure to several environmental pollutants, including metals and metalloids, among the French population. This paper describes the distribution of concentrations of 28 metals and metalloids in two different populations, and estimates the main determinants of exposure to total arsenic, the sum of inorganic arsenic (iAs) and its two metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), cadmium, chromium, copper, mercury and nickel. METHODS Esteban is a cross-sectional study conducted between 2014 and 2016 on a random sample of 2503 adults (18-74 years old) and 1104 children (6-17 years old) from the general population. The data collected included biological samples (blood, hair, and urines), socio-demographic characteristics, environmental and occupational exposure, and information on dietary factors and lifestyle. The geometric mean and percentiles of the distribution were estimated for each metal. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. RESULTS Only four metals had a quantification rate below 90% in adults (beryllium, iridium, palladium, and platinum), and three metals in children (beryllium, iridium, and platinum). The concentrations of total arsenic, cadmium, chromium and mercury were higher than those found in most international studies. The determinants significantly associated with exposure were mainly diet and smoking. CONCLUSIONS Esteban provided a nationwide description of 28 metal and metalloid exposure levels for adults (some never measured before) and for the first time in children. The study results highlighted widespread exposure to several metals and metalloids. These results could be used to advocate public health decisions for continued efforts to reduce harmful exposure to toxic metals. The Reference values (RV95) built from Esteban could also be used to support future government strategies.
Collapse
Affiliation(s)
- Amivi Oleko
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France.
| | - Abdessattar Saoudi
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Marie Pecheux
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Vincent Cirimele
- ChemTox 3 Rue Grüninger, Parc D'Innovation F, Illkirch Graffenstaden, 67400, France
| | - Ciprian Mihai Cirtiu
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec (INSPQ), 945 Av., Wolfe, Québec, G1V 5B3, Canada
| | - Géraldine Berail
- Laboratoire de l'Environnement et de l'Alimentation de la Vendée (LEA Vendée), La Roche sur Yon, France
| | - Emmanuelle Szego
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Sébastien Denys
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Clémence Fillol
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| |
Collapse
|
14
|
Stojsavljević A, Marković K, Lukač A, Ristanović A, Marić N, Marković S, Šarac I, Ščančar J. Quantitative profiling and baseline intervals of trace elements in healthy lung tissues. J Trace Elem Med Biol 2024; 84:127440. [PMID: 38522290 DOI: 10.1016/j.jtemb.2024.127440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Human lung tissue, as an interface with the environment, is susceptible to various environmental pollutants, including trace metals. However, quantitative data on trace metals in human lung tissues remain poorly described. METHODS This study aimed to characterize the elemental composition of histologically healthy, unaffected parts of human lung tissues, associated with non-infective, non-infiltrative, and non-malignant diseases (n = 60) for essential (Cr, Mn, Fe, Co, Cu, Zn, and Se) and toxic trace elements (Sr, Ni, As, Cd, and Pb). Additionally, we investigated the influence of personal factors (sex, age, and smoking habits) on the examined trace element profiles, as well as between the trace elements correlations in the healthy human lungs. RESULTS Among the analyzed trace elements, Fe was the most prevalent, while As was the least prevalent in healthy lung tissues. Stratifying by age revealed significantly higher Cr and Co (less Sr, Ni, and Pb) and lower Se levels in older individuals (above 65 years) compared to their younger counterparts. Sex-based differences were also notable, with Cu and Co 1.2- and 2.3-fold higher levels in females than in males. Exploring the impact of smoking habits revealed a striking 10-fold increase in Cd levels in the lung tissues of smokers compared to non-smokers. Correlation analyses showed significant positive associations between concentrations of certain toxic and essential trace elements in healthy lung tissues. CONCLUSIONS This study could contribute to the establishment of baseline intervals for essential and toxic trace elements, valuable for toxicological and clinical assessment, in healthy, unaffected human lungs, and indicates the influence of sex, age, and smoking. However, further larger-scale studies are needed to make more stable conclusions.
Collapse
Affiliation(s)
| | - Katarina Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleksandar Lukač
- Military Medical Academy Medical Faculty, University of Defence, Belgrade, Serbia
| | | | - Nebojša Marić
- Military Medical Academy Medical Faculty, University of Defence, Belgrade, Serbia
| | - Stefan Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, University of Belgrade, Belgrade, Serbia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
15
|
Otugboyega JO, Madu FU, Otugboyega OO, Ojo AM, Adeyeye AJ, Ajayi JA. Biomonitoring and Biomathematical Modeling of Health Risks Associated with Dumpsite Grown Vegetables in Lagos State. Biol Trace Elem Res 2024; 202:3333-3348. [PMID: 37848588 DOI: 10.1007/s12011-023-03903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Conversion of dumpsites to farm lands in several communities is a usual practice in Nigeria. Wastes accumulate heavy metals in a variety of forms. This study assessed the concentration, degrees of contamination, and attendant health risk of heavy metals (HMs), using two major indigenous vegetables (Amaranthus viridis and Talinum triangulare) grown on five major dumpsites in Lagos state. After wet digestion, the mean concentrations of the HMs in the vegetable samples were evaluated using atomic absorption spectrophotometer (AAS). Daily intake of metals (DIM), target hazard quotient (THQ), and hazard index (HI) biomathematics were employed in the assessment of non-carcinogenic health risk. Incremental lifetime cancer risk (ILCR) assessment was used to assess carcinogenicity. The obtained result shows that the concentrations of HMs fell within the following ranges: (0.37 to 0.59), (0.07 to 1.36), (0.30 to 1.92), (0.00 to 0.03), and (0.00 to 0.04) mg/kg; for zinc (Zn), lead (Pb), Iron (Fe), cadmium (Cd), and chromium (Cr), respectively, with low to moderate variability. At Ikorodu dumping site, the Pb concentration was above the World Health Organization (WHO) permissible range and has the highest contamination factor. DIM for Pb was also above threshold values (> 1) in both adults and children, while the THQ values for Fe, Pb, and Cd were above 1 (> 1) in both adults and children. HI values for the vegetables exceeded WHO normal range (> 1), except Abule-Egba dumps' samples (70% HI greater than 1 in adults and 90% HI greater than 1 in children). Additionally, the ILCR values of above 50% of the samples were above the WHO (10-6) limits, with the highest value in children (Cd, 1.064 × 10-3) indicating high risk of carcinogenicity over a life time of exposure. Thus, the results revealed great health risk from consumption of vegetables from the four major dumping sites, with children being at greater risk.
Collapse
Affiliation(s)
- Joseph Olusoji Otugboyega
- Department of Environmental Management and Toxicology, Federal University Oye Ekiti, Oye, Ekiti, Nigeria
| | - Francis Ugochukwu Madu
- Department of Environmental Management and Toxicology, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria.
| | | | | | - Adeleke Joseph Adeyeye
- Department of Water Resources Management, Federal University Oye Ekiti, Oye, Ekiti, Nigeria
| | - John Adekunle Ajayi
- Centre for Environmental Studies and Sustainable Development, Lagos State University, Ojo, Nigeria
| |
Collapse
|
16
|
Shoeb M, Meighan T, Kodali VK, Abadin H, Faroon O, Zarus GM, Erdely A, Antonini JM. TERT-independent telomere elongation and shelterin dysregulation after pulmonary exposure to stainless-steel welding fume in-vivo. ENVIRONMENTAL RESEARCH 2024; 250:118515. [PMID: 38373547 PMCID: PMC11375608 DOI: 10.1016/j.envres.2024.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA.
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Henry Abadin
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Obaid Faroon
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Gregory M Zarus
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
17
|
Machunguene M, Guilundo SV, Oliveira RS, Martins CM, Quilambo OA. Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-12. [PMID: 38733327 DOI: 10.1080/10934529.2024.2349478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to evaluate heavy metals concentrations in soils and vegetables (cabbage, lettuce, and cassava) cultivated at Matola and Beluluane Industrial Parks, and to assess health risks linked to their consumption through estimated daily intake, hazard index (HI), and incremental lifetime cancer risk. Concentrations of Al, As, Co, Cd, Cr, Ni, Pb, and Zn were determined in the two sites. Soil concentrations of As at Beluluane site and As, Cd, and Cr at Matola site exceeded reference limits of the Food and Agriculture Organization/World Health Organization, showing heavy metal contamination. At Beluluane site, all studied vegetables presented As and Pb levels higher than reference limits, Cd concentrations were higher than the reference limit in cabbage, lettuce, and cassava leaves. At Matola site crops concentrations of As, Cd, Cr, and Pb exceeded the reference limits. Zinc exceeded the reference limit in all crops except in cabbage. HIs for vegetables from Beluluane exceeded 1.0 in cabbage (2.66), lettuce (2.27), and cassava leaves (2.37). Likewise, at Matola, HIs exceeded 1.0 in lettuce (1.67), cassava leaves (1.65), and root tubers (13). We found that vegetables cultivated in industrial parks present high carcinogenic risk due to heavy metal contamination, rendering them unsuitable for human consumption.
Collapse
Affiliation(s)
- Mário Machunguene
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Sónia V Guilundo
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Rui S Oliveira
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Célia M Martins
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Orlando A Quilambo
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
18
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Stępniak J, Karbownik-Lewińska M. Protective Effects of Melatonin against Carcinogen-Induced Oxidative Damage in the Thyroid. Cancers (Basel) 2024; 16:1646. [PMID: 38730600 PMCID: PMC11083294 DOI: 10.3390/cancers16091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin, primarily synthesized in the pineal gland, plays a crucial role in regulating circadian rhythms and possesses significant antioxidative properties. By neutralizing free radicals and reducing oxidative stress, melatonin emerges as a promising agent for the prevention and therapy of many different disorders, including cancer. This paper reviews the relationship between the thyroid gland and melatonin, presenting experimental evidence on the protective effects of this indoleamine against oxidative damage to macromolecules in thyroid tissue caused by documented carcinogens (as classified by the International Agency for Research on Cancer, IARC) or caused by potential carcinogens. Furthermore, the possible influence on cancer therapy in humans and the overall well-being of cancer patients are discussed. The article highlights melatonin's essential role in maintaining thyroid health and its contribution to management strategies in patients with thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital-Research Institute, Rzgowska St. 281/289, 93-338 Lodz, Poland
| |
Collapse
|
20
|
Drozdz-Afelt JM, Koim-Puchowska B, Kaminski P. Concentration of trace elements in blood of Polish patients with prostate cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104425. [PMID: 38552756 DOI: 10.1016/j.etap.2024.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
The goal of the study was to analyse the concentrations of chemical elements (Fe, Ni, As, Cd, Pb, Hg, Cr, Zn) which are important for the determination of environmental toxins (e.g. resulting from smoking, exposure to harmful agents at work) in Polish patients with prostate cancer. The study covered 66 patients with diagnosed prostate cancer and 64 healthy volunteers over 50 years old. The analysis of the concentrations of selected chemical elements in whole blood was performed using inductively coupled plasma mass spectrometry (ICP-MS). In their blood, the patients with cancer had a significantly higher concentration of only one of the examined elements: arsenic. Additionally, the study group had lower concentrations of chromium, zinc, but also cadmium and lead, which are commonly regarded as carcinogenic. Taking into consideration the control group of healthy subjects of this study, we can assume that the subjects with prostate cancer were exposed to higher levels of arsenic, and that exposure to this element may be associated with an increased risk of cancer.
Collapse
Affiliation(s)
- Joanna Maria Drozdz-Afelt
- Kazimierz Wielki University, Department of Biotechnology, Księcia Józefa Poniatowskiego St.12, Bydgoszcz 85-671, Poland.
| | - Beata Koim-Puchowska
- Kazimierz Wielki University, Department of Biotechnology, Księcia Józefa Poniatowskiego St.12, Bydgoszcz 85-671, Poland
| | - Piotr Kaminski
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz 85-094, Poland; University of Zielona Góra, Faculty of Biological Sciences, Institute of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran St. 1, Zielona Góra 65-516, Poland
| |
Collapse
|
21
|
Chen MC, Devi HS, Pien HF, Wen SFM, Sheu JL, Tsai BCK, Huang CY, Lin YJ. Novel chromium (III)-based compound for inhibition of oxaliplatin-resistant colorectal cancer progression. Am J Cancer Res 2024; 14:979-995. [PMID: 38590406 PMCID: PMC10998745 DOI: 10.62347/xtrt2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third leading cause of cancer-related mortality worldwide. The current standard of care includes systemic chemotherapy with cytotoxic agents, offering palliative relief for severe CRC cases and serving as the primary therapy for metastatic recurrence. However, the development of chemoresistance poses a substantial obstacle in the realm of chemotherapy. This study delved into the potential of a novel chromium (III)-based compound, hexaacetotetraaquadihydroxochromium (III) diiron (III) nitrate, for CRC treatment. The therapeutic promise of this innovative chromium (III)-based compound was explored by utilizing LoVo colon cancer cells and an in-vivo mouse model of CRC. Various dosages of the compound were administered to LoVo parental cells and LoVo oxaliplatin-resistant cells. Findings unveiled that a concentration of 2000 μg/mL of the chromium (III) compound significantly inhibited mesenchymal transition and the migratory and invasive properties of LoVo oxaliplatin-resistant cells. This novel chromium (III)-based compound also demonstrated similar efficacy in other different CRC cell lines. The tumor growth was in the in-vivo mouse model was reduced by this compound. Moreover, the chromium (III)-based compound induced apoptosis by triggering the endoplasmic reticulum (ER) stress pathway in LoVo oxaliplatin-resistant cells. This study illuminates the capacity of the novel chromium (III)-based compound to impede the progression and growth of chemotherapy-resistant CRC. This discovery instills confidence in the potential of this compound as a therapeutic agent for CRC, even in the face of drug resistance. It holds the promise of serving as a valuable asset in the future treatment of chemotherapy-resistant CRC.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General HospitalTaichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityTaipei, Taiwan
| | - Hema Sri Devi
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien, Taiwan
| | | | | | | | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and TechnologyHualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia UniversityTaichung, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi UniversityHualien, Taiwan
| |
Collapse
|
22
|
Peng H, Yi L, Liu C. Spatial distribution, chemical fractionation and risk assessment of Cr in soil from a typical industry smelting site in Hunan Province, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:113. [PMID: 38478134 DOI: 10.1007/s10653-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024]
Abstract
The closure or relocation of many industrial enterprises has resulted in a significant number of abandoned polluted sites enriched in heavy metals to various degrees, causing a slew of environmental problems. Therefore, it is essential to conduct research on heavy metal contamination in the soil of industrial abandoned sites. In this study, soils at different depths were collected in a smelting site located in Hunan Province, China, to understand the Cr distribution, speciation and possible risks. The results revealed that the high-content Cr and Cr(VI) contamination centers were mainly concentrated near S1 (Sample site 1) and S5. The longitudinal migration law of chromium was relatively complex, not showing a simply uniform trend of decreasing gradually with depth but presenting a certain volatility. The vertical distribution characteristics of chromium and Cr(VI) pollution suggest the need for attention to the pollution from chromium slag in groundwater and deep soil layers. The results of different speciation of Cr extracted by the modified European Community Bureau of Reference (BCR) method showed that Cr existed primarily in the residual state (F4), with a relatively low content in the weak acid extraction state (F1). The correlation analysis indicated that Cr was affected by total Cr, pH, organic matter and total carbon during the longitudinal migration process. The RSP results revealed that the smelting site as a whole had a moderate level of pollution. Soil at depths of 2-5 m was more polluted than other soil layers. Consequently, it is necessary to treat the site soil as a whole, especially the subsoil layer (2-5 m). Health risk assessment demonstrated that the soil chromium pollution was hazardous to both adults and children, and the probability of carcinogenic and non-carcinogenic risk was relatively high in the latter group. As a result, children should be a group of special concern regarding the assessment and remediation of soil contaminated with Cr. This study can provide some insight into the contamination characteristics, ecological and health risks of chromium in contaminated soils and offer a scientific basis for the prevention and control of chromium pollution at abandoned smelting sites.
Collapse
Affiliation(s)
- Hanfang Peng
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| | - Liwen Yi
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China.
- Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Chengai Liu
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| |
Collapse
|
23
|
Long C, Su Z, Hu G, Zhang Q, Zhang Y, Chen T, Hong S, Su L, Jia G. Potential mechanisms of lung injury and repair after hexavalent chromium [Cr(VI)] aerosol whole-body dynamic exposure. CHEMOSPHERE 2024; 349:140918. [PMID: 38072199 DOI: 10.1016/j.chemosphere.2023.140918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Hexavalent chromium [Cr(VI)], known as "Top Hazardous Substances", poses a significant threat to the respiratory system. Nevertheless, the potential mechanisms of toxicity and the lung's repair ability after injury remain incompletely understood. In this study, Cr(VI) aerosol whole-body dynamic exposure system simulating real exposure scenarios of chromate workers was constructed to evaluate the lung injury and repair effects. Subsequently, miRNA sequencing, mRNA sequencing and metabolomics analyses on lung tissue were performed to explore the underlying mechanisms. Our results revealed that Cr(VI) exposure led to an increase in lactic dehydrogenase activity and a time-dependent decline in lung function. Notably, after 13 w of Cr(VI) exposure, alveolar hemorrhage, thickening of alveolar walls, emphysema-like changes, mitochondrial damage of alveolar epithelial cells and macrophage polarization changes were observed. Remarkably, a two-week repair intervention effectively ameliorated lung function decline and pulmonary injury. Furthermore, significant disruptions in the expressions of miRNAs and mRNAs involved in oxidative phosphorylation, glycerophospholipid metabolism and inflammatory signaling pathways were found. The two-week repair period resulted in the reversal of expression of oxidative phosphorylation related genes, and inhibited the inflammatory signaling pathways. This study concluded that the inhibition of the mitochondrial oxidative phosphorylation pathway and the subsequent enhancement of inflammatory response might be key mechanisms underlying Cr(VI) pulmonary toxicity, and timely cessation of exposure could effectively alleviate the pulmonary injury. These findings shed light on the potential mechanisms of Cr(VI) toxicity and provide crucial insights into the health protection for occupational populations exposed to Cr(VI).
Collapse
Affiliation(s)
- Changmao Long
- Jiangxi Provincial Key Laboratory of Preventive Medicine and School of Public Health, Nanchang University, Nanchang 330006, China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, 100083, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
| |
Collapse
|
24
|
Pereira AC, Saraiva A, Oliva-Teles L, Guimarães L, Carvalho AP. Ecotoxicological Effects of Potassium Dichromate on the Tadpole Shrimp Triops longicaudatus. Animals (Basel) 2024; 14:358. [PMID: 38338000 PMCID: PMC10854805 DOI: 10.3390/ani14030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The tadpole shrimp Triops longicaudatus is a freshwater crustacean with fast embryonic and larval development, short life cycle, and high fecundity. They are very active swimmers of a reasonable size, easy to spot and record. Such characteristics make it a promising candidate as an experimental model in ecotoxicology to evaluate the effects of aquatic pollutants, particularly using its locomotor behavior as an endpoint. To evaluate the sensitivity of T. longicaudatus and develop endpoints of interest, we conducted exposure experiments with lethal and sub-lethal concentrations of potassium dichromate, a compound known for its ecotoxicological importance and as a hexavalent chromium source. The endpoints evaluated were mortality, growth, sexual maturation, reproductive output, cholinesterase activity and locomotor/swimming behavior. The 96 h median lethal concentration was found to be 65 µg/L. Furthermore, exposure to potassium dichromate at higher concentrations had a significant negative impact on the growth rate of T. longicaudatus in terms of both body mass and length. The time for maturation was also delayed at higher concentrations. In addition, locomotor behavior allowed for the discrimination of all tested chromium concentrations and the control group and from each other, proving to be the most sensitive endpoint. Overall, the data support the potential of T. longicaudatus as a model for ecotoxicity testing, using apical endpoints with impact at the population level; in particular, results suggest that behavior assessments in this species might be useful for detecting hazardous compounds in environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- André Carido Pereira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Aurélia Saraiva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Luís Oliva-Teles
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Laura Guimarães
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - António Paulo Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Alur A, Phillips J, Xu D. Effects of hexavalent chromium on mitochondria and their implications in carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:109-125. [PMID: 38230947 DOI: 10.1080/26896583.2024.2301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.
Collapse
Affiliation(s)
- Anish Alur
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
26
|
Toyoda JH, Martino J, Speer RM, Meaza I, Lu H, Williams AR, Bolt AM, Kouokam JC, Aboueissa AEM, Wise JP. Hexavalent Chromium Targets Securin to Drive Numerical Chromosome Instability in Human Lung Cells. Int J Mol Sci 2023; 25:256. [PMID: 38203427 PMCID: PMC10778806 DOI: 10.3390/ijms25010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Jennifer H. Toyoda
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Julieta Martino
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Rachel M. Speer
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Idoia Meaza
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Haiyan Lu
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Aggie R. Williams
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA;
| | - Joseph Calvin Kouokam
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | | | - John Pierce Wise
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| |
Collapse
|
27
|
Quaratesi I, Micu MC, Rebba E, Carsote C, Proietti N, Di Tullio V, Porcaro R, Badea E. Cleaner Leather Tanning and Post-Tanning Processes Using Oxidized Alginate as Biodegradable Tanning Agent and Nano-Hydroxyapatite as Potential Flame Retardant. Polymers (Basel) 2023; 15:4676. [PMID: 38139929 PMCID: PMC10747597 DOI: 10.3390/polym15244676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium alginate (SA) was oxidized with potassium periodate to produce an alginate-based tanning agent. Using OSA as a biodegradable tanning agent and a nano-hydroxyapatite (nano-HAp) low concentration suspension to give flame retardancy to leather, eco-design concepts were applied to establish a chrome-, aldehyde-, and phenol-free tanning process. Micro-DSC, 1H unilateral nuclear magnetic resonance (NMR), attenuated total reflection mode Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the complex matrix collagen-OSA-nano-HAp. Micro-differential scanning calorimetry (micro-DSC) was used to assess OSA's ability to interact with collagen and stabilize the collagen-OSA matrix, while 1H unilateral (NMR) was used to investigate the aqueous environment and its limitations around collagen molecules caused by their association with OSA and nano-HAp. Industrial standard tests were used to assess the mechanical properties and fire resistance of the new leather prototype. The findings reported here indicate that both OSA and nano-HAp are suitable alternatives for cleaner tanning technologies and more sustainable leather.
Collapse
Affiliation(s)
- Ilaria Quaratesi
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Maria Cristina Micu
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Erica Rebba
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy;
| | - Cristina Carsote
- National Museum of Romanian History, Calea Victoriei Str. 12, 030026 Bucharest, Romania;
| | - Noemi Proietti
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Valeria Di Tullio
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Rita Porcaro
- KEMIA TAU SRL, Via Torino 56/64, 10040 La Cassa, TO, Italy;
| | - Elena Badea
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti Str. 107 I, 200512 Craiova, Romania
| |
Collapse
|
28
|
Conrad JK, Fox RV, Danaher EG, Horne GP. High temperature gamma radiation-induced chromium redox chemistry via in situ spectroscopic measurements. Phys Chem Chem Phys 2023. [PMID: 38019140 DOI: 10.1039/d3cp05296f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Chromium ions can make their way into the primary coolant of nuclear power reactors from the corrosion of stainless-steel reactor components, decreasing the material's corrosion resistance and resulting in increased transport of further corrosion products. Despite these potential effects, the radiation-induced redox speciation of chromium ions in aqueous solution is not well understood, especially at the elevated temperatures experienced by reactor coolants. In the present work, we report new experimental results demonstrating that in aerated aqueous solution, the radiolytic oxidation of Cr(III) to Cr(VI) occurs at pH 4, while the reduction of Cr(VI) to Cr(III) occurs at pH 2. The oxidation of Cr(III) is primarily attributed to the reaction of the hydroxyl radical (˙OH) with the Cr(OH)2+ species, while the reduction of Cr(VI) is attributed to reactions involving the hydrated electron (eaq-) and hydrogen atom (H˙). Additionally, the steady-state equilibrium yield of Cr(VI) from the gamma irradiation of pH 4 Cr(III) solutions decreased with increasing temperature (over a range of 37-195 °C). This observation indicates that the activation energy of the Cr(VI) reduction reactions is higher than that for the Cr(III) oxidation reactions, such that it becomes relatively more favorable at higher temperatures. Overall, these data are important for the development of complementary multiscale models for the prediction of metal ion speciation in high temperature radiation environments.
Collapse
Affiliation(s)
- Jacy K Conrad
- Center for Radiation Chemistry Research, Idaho National Laboratory, 1955 N. Fremont Ave., Idaho Falls, 83415, USA.
| | - Robert V Fox
- Material Separations & Analysis, Idaho National Laboratory, 1955 N. Fremont Ave., Idaho Falls, 83415, USA
| | - Emma G Danaher
- Center for Radiation Chemistry Research, Idaho National Laboratory, 1955 N. Fremont Ave., Idaho Falls, 83415, USA.
| | - Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, 1955 N. Fremont Ave., Idaho Falls, 83415, USA.
| |
Collapse
|
29
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
30
|
Yang Y, Bai X, Lu J, Zou R, Ding R, Hua X. Assessment of five typical environmental endocrine disruptors and thyroid cancer risk: a meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1283087. [PMID: 38027118 PMCID: PMC10643203 DOI: 10.3389/fendo.2023.1283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There are conflicting reports on the association between environmental endocrine disruptors (EEDs) and thyroid cancer. This meta-analysis aimed to elucidate the relationship between EEDs and thyroid cancer. Methods We searched for epidemiological studies on EEDs and thyroid cancer published in PubMed and Web of Science up to December 2022. We then screened the articles that could extract data on EEDs concentration levels in both thyroid cancer patients and healthy controls. We excluded articles that could not calculate effect sizes, focused on other thyroid diseases, or lacked controls. Standardized mean difference (SMD) was calculated to analyze the association between EEDs and thyroid cancer. We measured the heterogeneity among the included studies using I2, assessed publication bias by Egger's and Begg's test, and evaluated article quality using the Newcastle-Ottawa Quality Score (NOS). In the end, fifteen eligible case-control studies were included. Results Our comprehensive analysis revealed that polychlorinated biphenyls (PCBs) were negatively associated with thyroid cancer{ SMD = -0.03, 95% confidence interval (CI) = (-0.05, -0.00), P = 0.03}, while polybrominated diphenyl ethers (PBDEs), phthalates (PAEs), and heavy metals were positively associated with thyroid cancer{PBDEs: SMD = 0.14, 95%CI = (0.04, 0.23), P = 0.007; PAEs: SMD = 0.30, 95%CI = (0.02, 0.58), P = 0.04; heavy metals: SMD = 0.21, 95%CI = (0.11, 0.32), P < 0.001}. We did not find a statistically significant relationship between bisphenol A (BPA) and thyroid cancer. Most of the included studies did not show publication bias, except for those on PCBs. Discussion Our results indicate that exposure to certain EEDs, such as PBDEs, PAEs, and heavy metals, increases the risk of thyroid cancer. However, further large-scale epidemiological studies and mechanism studies are needed to verify these potential relationships and understand the underlying biological mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
31
|
Olasińska-Wiśniewska A, Urbanowicz T, Hanć A, Tomczak J, Begier-Krasińska B, Tykarski A, Filipiak KJ, Rzesoś P, Jemielity M, Krasiński Z. The Diagnostic Value of Trace Metal Concentrations in Hair in Carotid Artery Disease. J Clin Med 2023; 12:6794. [PMID: 37959259 PMCID: PMC10649577 DOI: 10.3390/jcm12216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Several studies showed the role of trace elements in the increase in human susceptibility to cardiovascular diseases. Carotid artery stenosis is a leading cause of ischemic neurological events. We aimed to analyze the potential role of trace elements in hair as biomarkers of atherosclerotic carotid artery disease. Materials and Methods: Fifty-seven (n = 31 (54%) men and n = 26 (46%) women) individuals with a mean age of 67.7 ± 7.7 years who were white, European, non-Hispanic, and non-Latino were diagnosed and treated in hypertensiology/internal medicine and surgical departments over three consecutive months. Of these patients, forty were diagnosed with advanced carotid artery disease, and seventeen comprised a group of healthy controls. Inflammatory and oncological diseases were exclusion criteria. Hair samples were collected, and 14 trace elements were analyzed. Clinical and laboratory data were compared and revealed differences in the co-existence of diabetes (p = 0.036) and smoking history (p = 0.041). In the multivariable analysis, zinc, chrome, and copper revealed predictive value for the occurrence of carotid artery disease, and their combined receiver operating curve showed area under the curve of 0.935, with a sensitivity of 95% and a specificity of 82.4%. Conclusion: Our report shows the significance of trace elements analyses in patients with advanced carotid artery disease. We revealed that zinc, copper, and chrome concentrations are of particular importance in differentiating atherosclerotic disease and may serve as biomarkers of carotid atherosclerosis. Hair samples represent an easily obtained and beneficial biomatrix for the assessment of biomarkers.
Collapse
Affiliation(s)
- Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jolanta Tomczak
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Beata Begier-Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Krzysztof J. Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Patrycja Rzesoś
- Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| |
Collapse
|
32
|
Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, Bray F, Brawley O, Luckenbaugh AN, Mucci L, Morgan TM, Carlsson SV. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol 2023; 84:191-206. [PMID: 37202314 PMCID: PMC10851915 DOI: 10.1016/j.eururo.2023.04.021] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
CONTEXT Prostate cancer (PCa) is one of the most common cancers worldwide. Understanding the epidemiology and risk factors of the disease is paramount to improve primary and secondary prevention strategies. OBJECTIVE To systematically review and summarize the current evidence on the descriptive epidemiology, large screening studies, diagnostic techniques, and risk factors of PCa. EVIDENCE ACQUISITION PCa incidence and mortality rates for 2020 were obtained from the GLOBOCAN database of the International Agency for Research on Cancer. A systematic search was performed in July 2022 using PubMed/MEDLINE and EMBASE biomedical databases. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and was registered in PROSPERO (CRD42022359728). EVIDENCE SYNTHESIS Globally, PCa is the second most common cancer, with the highest incidence in North and South America, Europe, Australia, and the Caribbean. Risk factors include age, family history, and genetic predisposition. Additional factors may include smoking, diet, physical activity, specific medications, and occupational factors. As PCa screening has become more accepted, newer approaches such as magnetic resonance imaging (MRI) and biomarkers have been implemented to identify patients who are likely to harbor significant tumors. Limitations of this review include the evidence being derived from meta-analyses of mostly retrospective studies. CONCLUSIONS PCa remains the second most common cancer among men worldwide. PCa screening is gaining acceptance and will likely reduce PCa mortality at the cost of overdiagnosis and overtreatment. Increasing use of MRI and biomarkers for the detection of PCa may mitigate some of the negative consequences of screening. PATIENT SUMMARY Prostate cancer (PCa) remains the second most common cancer among men, and screening for PCa is likely to increase in the future. Improved diagnostic techniques can help reduce the number of men who need to be diagnosed and treated to save one life. Avoidable risk factors for PCa may include factors such as smoking, diet, physical activity, specific medications, and certain occupations.
Collapse
Affiliation(s)
- Oskar Bergengren
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Kelly R Pekala
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jonathan Fainberg
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean F Mungovan
- Westmead Private Physiotherapy Services and The Clinical Research Institute, Westmead Private Hospital, Sydney, Australia
| | - Ola Bratt
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Freddie Bray
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Otis Brawley
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lorelei Mucci
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Sigrid V Carlsson
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Zhu L, Yang F, Lou C, Zhang X, Yang Y. Hollow porphyrin-based porous organic polymer with dual enzyme-like activities for ultra-fast colorimetric detection of Cr (VI) in wastewater. Mikrochim Acta 2023; 190:339. [PMID: 37524992 DOI: 10.1007/s00604-023-05916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
A hollow porphyrin-based porous organic polymer (H-Fe-POP) was prepared for rapid and sensitive colorimetric determination of Cr(VI), which exhibited excellent dual enzyme-like activities, including oxidase-like and peroxidase-like activities. Due to the specific binding of 8-hydroxyquinoline (8-HQ) to Cr(VI), 3,3',5,5'-tetramethylbenzidine (TMB) was liberated, and TMB was oxidized to blue ox-TMB catalyzed by H-Fe-POP. Based on the excellent oxidase-like activity of H-Fe-POP, an ultra-fast colorimetric platform for the detection of Cr(VI) was constructed, allowing the quantification of Cr(VI) in the range 2-130 μM within 30 s with a detection limit of 0.23 μM. Importantly, the sensor can accurately determine Cr(VI) in industrial wastewater, indicating its high potential for environmental monitoring.
Collapse
Affiliation(s)
- Liqin Zhu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Congcong Lou
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Xiaomei Zhang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
34
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
35
|
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, Mahmoud YAG. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. TOXICS 2023; 11:580. [PMID: 37505546 PMCID: PMC10384455 DOI: 10.3390/toxics11070580] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.
Collapse
Affiliation(s)
- Manar K. Abd Elnabi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biotechnology Program, Institute of Basic and Applied Science (BAS), Egypt-Japan University of Science and Technology, New Borg El-Arab City 21934, Egypt
| | - Nehal E. Elkaliny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Maha M. Elyazied
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shimaa H. Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shawky A. Elkhalifa
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Sohaila Elmasry
- Microbiology Department, Faculty of science, Damanhour University, Behaira 22514, Egypt;
| | - Moustafa S. Mouhamed
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ebrahim M. Shalamesh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Naira A. Alhorieny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Abeer E. Abd Elaty
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ibrahim M. Elgendy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Alaa E. Etman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Kholod E. Saad
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Sameh S. Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Yehia A.-G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| |
Collapse
|
36
|
Yamamoto Y, Kondo M, Hotta Y, Tashiro Y, Sanagawa A, Kataoka T, Furukawa-Hibi Y, Ri M, Komatsu H, Iida S, Kimura K. The Relationship between Changes in Serum Element Concentrations and Pathological Condition and Disease Status in Japanese Multiple Myeloma Patients: A Pilot Study and Literature Review. Asian Pac J Cancer Prev 2023; 24:2493-2503. [PMID: 37505784 PMCID: PMC10676486 DOI: 10.31557/apjcp.2023.24.7.2493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a rare cancer, and information on its pathological condition and serum element levels is lacking. In this pilot study, we examined serum element concentrations in Japanese patients with MM by a comprehensive multi-element analysis. METHODS This is a case-control study of 12 Japanese patients diagnosed with MM at the Nagoya City University Hospital between 2008 and 2013. Blood samples were taken, at the initial diagnosis and at relapse. The serum concentrations of 12 elements were analyzed by inductively coupled plasma mass spectrometry and compared between MM patients and non-MM volunteers. We also analyzed the correlation between serum element concentrations and laboratory values related to disease status and tumor volume of MM. RESULTS We found that serum chromium (Cr), copper (Cu), molybdenum (Mo), and barium (Ba) concentrations were significantly increased in MM patients. Ba was significantly increased in MM patients, suggesting an association with bone lesions. There was no consistent trend between these elements and existing indices related to MM tumor volume and disease status. CONCLUSIONS Although this is a pilot study, serum Cr, Cu, Mo, and Ba concentrations were found to be significantly elevated in MM patients. Further studies with large sample sizes are needed, since the changes in serum concentrations of these elements may reflect the pathological condition of MM.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe do-ri, Mizuho-ku, Nagoya 467-8603, Japan.
- Department of Analytical Chemistry, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsuji-machi, Kita-ku, Nagoya 462-8576, Japan.
| | - Masahiro Kondo
- Department of Pharmacy, Nagoya City University Hospital East Medical Center, 1-2-23 Wakamizu, Chikusa-ku, Nagoya 464-8547, Japan.
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yuji Hotta
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe do-ri, Mizuho-ku, Nagoya 467-8603, Japan.
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
- Department of Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yuusuke Tashiro
- Department of Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe do-ri, Mizuho-ku, Nagoya 467-8603, Japan.
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
- Department of Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Chiba Institute of Science, 15-8 Shiomi-cho, Choshi 288-0025, Japan.
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
- Department of Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe do-ri, Mizuho-ku, Nagoya 467-8603, Japan.
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
- Department of Pharmacy, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
37
|
Parida L, Patel TN. Systemic impact of heavy metals and their role in cancer development: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:766. [PMID: 37249740 DOI: 10.1007/s10661-023-11399-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Heavy metals are well-recognised as environmental hazards due to their toxicity, environmental persistence, and bioaccumulation in living organisms. Human health is a crucial concern related to terrestrial and aquatic ecosystems poisoned by harmful heavy metals. Most heavy metals pollute the air, water, and soil, which can be fatal to humans. Humans and other species can be exposed to heavy metals through the food chain if the metals oxidise or combine with other environmental elements (such as water, soil, or air). Their entry into the food chain assures interactions with biological macromolecules in living systems, including humans, resulting in undesirable outcomes. Human poisonings have typically been caused by mercury, lead, chromium, cadmium, and arsenic. The build-up of these metals in living organisms causes various harmful consequences on different organs and tissues. The gravitas of heavy metal toxicity regarding molecular impact and carcinogenesis needs in-depth understanding despite the plethora of available data. Hence, additionally, we attempt to elaborate on the multi-level impact of five heavy metals and emphasise their role in cancer development. The rationale of this essay is thus to understand the role of five heavy metals, viz., lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg), in carcinogenesis. Heavy metals interfere with various biological functions, including proliferation, differentiation, repair of damage, and apoptosis. By comparing their modes of action, we see that these metals share common mechanisms for inducing toxicity, such as reactive oxygen species (ROS) production, antioxidant defence weakening, enzyme inactivation, and oxidative stress.
Collapse
Affiliation(s)
- Lucky Parida
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
38
|
Wen Z, Liu Q, Yu C, Huang L, Liu Y, Xu S, Li Z, Liu C, Feng Y. The Difference between Rhizosphere and Endophytic Bacteria on the Safe Cultivation of Lettuce in Cr-Contaminated Farmland. TOXICS 2023; 11:371. [PMID: 37112598 PMCID: PMC10146757 DOI: 10.3390/toxics11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.
Collapse
Affiliation(s)
- Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
40
|
Mashkoor J, Al-Saeed FA, Guangbin Z, Alsayeqh AF, Gul ST, Hussain R, Ahmad L, Mustafa R, Farooq U, Khan A. Oxidative stress and toxicity produced by arsenic and chromium in broiler chicks and application of vitamin E and bentonite as ameliorating agents. Front Vet Sci 2023; 10:1128522. [PMID: 36968473 PMCID: PMC10032408 DOI: 10.3389/fvets.2023.1128522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
The present study investigated the adverse effects of arsenic and chromium in broilers and ascertained the role of vitamin E and bentonite in alleviating their harmful effects. For this purpose, we experimented on 180 one-day-old broiler chickens. The feed was administered to broiler chicks of groups 2, 6, 7, 8, and 9 chromium @ (270 mg.kg−1 BW). Groups 3, 6, 7, 8, and 9 were administered arsenic @ (50 mg.kg−1 BW). Groups 4, 7, and 9 received vitamin E (150 mg.kg−1 BW), and groups 5, 8, and 9 received bentonite (5%), respectively. Group 1 was kept in control. All the broiler chicks treated with chromium and arsenic showed a significant (p < 0.05) decline in erythrocytic parameters on experimental days 21 and 42. Total proteins decreased significantly, while ALT, AST, urea, and creatinine increased significantly (p < 0.05). TAC and CAT decreased significantly (p < 0.05), while TOC and MDA concentrations increased significantly (p < 0.05) in chromium and arsenic-treated groups on experimental days 21 and 42. Pearson correlation analysis revealed a strong positive correlation between TAC and CAT (Pearson correlation value = 0.961; p < 0.001), similarly TOC and MDA positive correlation (Pearson correlation value = 0.920; p < 0.001). However, TAC and CAT showed a negative correlation between TOC and MDA. The intensity of gross and microscopic lesions was more in chromium (270 mg.kg−1) and arsenic (50 mg.kg−1) singly or in combination-treated groups. Thus, broiler chicks treated with chromium plus arsenic exhibited higher gross and microscopic lesion intensity than other treated groups. Fatty degeneration, severe cytoplasmic vacuolar degeneration, and expansion of sinusoidal spaces were the main lesions observed in the liver. Kidneys showed renal epithelial cells necrosis, glomerular shrinkage, and severe cytoplasmic vacuolar degeneration. Co-administration of bentonite along with chromium and arsenic resulted in partial amelioration (group 8) compared to groups 7 and 9, administered arsenic + chromium + vitamin E and arsenic + chromium + vitamin E + bentonite, respectively. It was concluded that arsenic and chromium cause damage not only to haemato-biochemical parameters but also lead to oxidation stress in broilers. Vitamin E and bentonite administration can ameliorate toxicity and oxidative stress produced by arsenic and chromium.
Collapse
Affiliation(s)
- Javaria Mashkoor
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Zhang Guangbin
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Shafia Tehseen Gul
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Latif Ahmad
- Department of Pre-clinical Studies, Faculty of Veterinary Medicine, Baqai Medical University, Karachi, Pakistan
| | - Riaz Mustafa
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Umar Farooq
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Ahrar Khan
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- *Correspondence: Ahrar Khan
| |
Collapse
|
41
|
Caini S, Cozzolino F, Saieva C, Aprea MC, De Bonfioli Cavalcabo' N, Ermini I, Assedi M, Biagiotti D, Trane C, Facchini L, Bendinelli B, Palli D, Masala G. Serum heavy metals and breast cancer risk: A case-control study nested in the Florence cohort of the EPIC (European Prospective Investigation into Cancer and nutrition) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160568. [PMID: 36464039 DOI: 10.1016/j.scitotenv.2022.160568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic exposure to heavy metals is of concern for its potential carcinogenic effect. An association with increased breast cancer (BC) risk was hypothesized, but literature data are conflicting and the question remains unresolved. We aimed to investigate the association between heavy metals and BC risk in a case-control study nested within the Florence section of the EPIC (European Prospective Investigation into Cancer and nutrition) cohort. METHODS We included 150 BC cases and an equal number of controls individually matched to cases by age and year of enrolment. In order to avoid confounding by smoking, the study was restricted to never smokers. Serum levels of six heavy metals (Cd, Co, Cr, Mn, Pb, and Tl) were quantified in pre-diagnostic samples using inductively coupled plasma mass spectrometry. Odds ratios (ORs) and corresponding 95 % confidence intervals (CI) were calculated via multivariable conditional logistic regression models. RESULTS Serum levels of cobalt were inversely associated with BC risk (OR for the comparison of 3rd vs. 1st tertiles: 0.33, 95 % CI 0.12-0.91, p-value 0.033). None of the other heavy metals under study was significantly associated with BC risk in multivariable models. For Cd, Cr, and Tl, over half of the study participants had serum levels below the limit of quantitation. CONCLUSIONS Our results do not support the hypothesis that exposure to heavy metals is associated with an increased BC risk among never smokers from the general population. The inverse association between cobalt serum levels and BC risk requires confirmation in future studies.
Collapse
Affiliation(s)
- Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Flavia Cozzolino
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Maria Cristina Aprea
- Unit of Occupational and Environmental Toxicology - Public Health Laboratory, Department of Prevention, AUSL South-East Tuscany, Strada del Ruffolo 4, 53100 Siena, Italy.
| | - Nora De Bonfioli Cavalcabo'
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Ilaria Ermini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Melania Assedi
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Davide Biagiotti
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Cinzia Trane
- Public Health Laboratory, Department of Technical Health Professions, Rehabilitation and Prevention, AUSL South-East Tuscany, Strada del Ruffolo 4, 53100 Siena, Italy.
| | - Luigi Facchini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Benedetta Bendinelli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo Il Vecchio 2, 50139 Florence, Italy.
| |
Collapse
|
42
|
Mwelange LP, Mamuya SHD, Mwaiselage J, Bråtveit M, Moen BE. Esophageal and Head and Neck Cancer Patients Attending Ocean Road Cancer Institute in Tanzania from 2019 to 2021: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3305. [PMID: 36833998 PMCID: PMC9962976 DOI: 10.3390/ijerph20043305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cancer in Africa is an emerging public health problem that needs urgent preventive measures, particularly in workplaces where exposure to carcinogens may occur. In Tanzania, the incidence rate of cancer and mortality rates due to cancers are increasing, with approximately 50,000 new cases each year. This is estimated to double by 2030. METHODS Our hospital-based cross-sectional study describes the characteristics of newly diagnosed patients with head and neck or esophageal cancer from the Ocean Road Cancer Institute (ORCI), Tanzania. We used an ORCI electronic system to extract secondary data for these patients. RESULTS According to the cancer registration, there were 611 head and neck and 975 esophageal cancers recorded in 2019-2021. Two-thirds of these cancer patients were male. About 25% of the cancer patients used tobacco and alcohol, and over 50% were involved in agriculture. CONCLUSION Descriptions of 1586 head and neck cancer patients and esophageal cancer patients enrolled in a cancer hospital in Tanzania are given. The information may be important for designing future studies of these cancers and may be of value in the development of cancer prevention measures.
Collapse
Affiliation(s)
- Luco P. Mwelange
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | - Simon H. D. Mamuya
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | | | - Magne Bråtveit
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, 5020 Bergen, Norway
| | - Bente E. Moen
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
43
|
Tang Y, Zhang B, Li Z, Deng P, Deng X, Long H, Wang X, Huang K. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 2023; 120:1334-1345. [PMID: 36776103 DOI: 10.1002/bit.28350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Hexavalent chromium [Cr(Ⅵ)] is a highly toxic contaminant in aquatic systems, and microalgae represent promising bioremediators of metal-containing wastewater. However, the metal-binding capacity of algal cells is limited. Therefore, we improved the cellular Cr(Ⅵ) biosorption capacity of Chlamydomonas reinhardtii by overexpressing the sulfate transporter gene SULTR2. SULTR2 was predominantly located in the cytoplasm of the cell, and few proteins mobilized to the cell membrane as a Cr transporter under Cr stress conditions. Intracellular Cr accumulation was almost doubled in SULTR2-overexpressing transgenic strains after exposure to 30 μM K2 Cr2 O7 for 4 d. Alginate-based immobilization increased the rate of Cr removal from 43.81% to 88.15% for SULTR2-overexpressing transgenic strains after exposure to 10 μM K2 Cr2 O7 for 6 d. The immobilized cells also displayed a significant increase in nutrient removal efficiency compared to that of free-swimming cells. Therefore, SULTR2 overexpression in algae has a great potential for the bioremediation of Cr(Ⅵ)-containing wastewater.
Collapse
Affiliation(s)
- Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhaoyang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
44
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
45
|
Li H, Li W, Li P, Yang P, Zhang T, Cheng Y. Influence of citrate/tartrate on chromite crystallization behavior and its potential environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130155. [PMID: 36257108 DOI: 10.1016/j.jhazmat.2022.130155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The ferrite process has been developed to purify wastewater containing heavy metal ions and recycle valuable metals by forming chromium ferrite. However, organic matter has an important influence on the crystallization behavior and stability of chromite synthesized from chromium-containing wastewater. We focused on the influence and effect mechanism of two typical organic acid salts (citrate (CA) and tartrate (TA)) on the process of chromium mineralization. It was found that the presence of organic matter leads to the increase of the residual content of Cr in CA system (0.50 mmol/L) and TA system (0.61 mmol/L) in the solution, and the removal of chromium was mainly due to the surface adsorption of Fe(III) hydrolysate. The decreased crystallinity of mineralized products is ascribed to the completion of organic compounds with Fe(II) and Fe(III), which hinders the formation of ferrite precursors. There was bidentate and monodentate chelation between -COO- and metal ions in the CA system and TA system respectively, which resulted in a stronger affinity between CA and iron. This study provides the underlying mechanism for Cr(III) solid oxidation by the ferrite method in an organic matter environment and is of great significance to prevent and control chromium pollution in the environment.
Collapse
Affiliation(s)
- Hongzheng Li
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China
| | - Wen Li
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China.
| | - Pengxu Li
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China
| | - Peng Yang
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China
| | - Tingting Zhang
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China
| | - Yangjian Cheng
- School of Advanced Manufacturing, Fuzhou University, 1 Shuicheng Road, Jinjiang, Fujian 362251, PR China.
| |
Collapse
|
46
|
Shehu I, Malsiu A, Bajraktari N. Assessment of Potentially Toxic Element Concentrations in Soil And Vegetables and Impact on Human Health Through TF, EDI, and HRI Indicators: Case Study Anadrinia Region (Kosovo). Biol Trace Elem Res 2023; 201:479-492. [PMID: 35182384 DOI: 10.1007/s12011-022-03160-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023]
Abstract
Vegetable cultivation areas in the Anadrinia region may have higher than background concentrations of potentially toxic elements (PTEs) from contaminated sources including anthropogenic activity and lithologic composition. The purpose of the present study was to assess PTEs concentrations in soil and vegetables and their impact on human health. In this study, 50 soils and 5 vegetables were sampled from the studied area. PTEs (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) after digestion in microwave system. PTEs in soil and vegetables were assessed and compared to international data (Dutch List and WHO/FAO 2011), and their toxicological risk was estimated using transfer factor (TF), estimated daily intake (EDI), and hazard quotients (HQ). The average values of As, Cd, Co, Fe, and Mn in soil were 44.96, 0.324, 16.34, 13,172, and 765.1 mg/kg, and Cr, Ni, and Pb in vegetables were 21.02, 17.11, and 4.982 mg/kg. TF values were less than 1, suggesting low bioaccumulation. EDI values of Cu, Ni, Pb, and Zn were 6.29, 6.23, 2.09, and 16.6 mg/kg, higher than international guidelines. HQ values of Pb, Ni, and Cu were 6.22, 3.66, and 1.72, higher than maximum tolerable value 1 indicating significant health risk. Some of the analyzed elements in soil and vegetable exceeded permissible limits to Dutch List and WHO/FAO 2011, respectively. From a health point of view, this study revealed vegetable contamination, recommends periodic monitoring.
Collapse
Affiliation(s)
- Ilir Shehu
- University of Prishtina "Hasan Prishtina", Department of Chemistry, FMNS, St. "Nëna Tereze" no. 5, 10 000, Prishtina, Kosovo
| | - Avni Malsiu
- University of Prishtina "Hasan Prishtina", Department of Chemistry, FMNS, St. "Nëna Tereze" no. 5, 10 000, Prishtina, Kosovo
| | - Naser Bajraktari
- University of Peja "Haxhi Zeka", Faculty of Agroecology and Agroenvironment, St. UÇK, 30000, Pejë, Kosovo.
| |
Collapse
|
47
|
Maharajan T, Chellasamy G, Tp AK, Ceasar SA, Yun K. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. CHEMOSPHERE 2023; 310:136881. [PMID: 36257391 DOI: 10.1016/j.chemosphere.2022.136881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Ajeesh Krishna Tp
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
48
|
Xu S, Yu C, Wang Q, Liao J, Liu C, Huang L, Liu Q, Wen Z, Feng Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. TOXICS 2022; 11:27. [PMID: 36668753 PMCID: PMC9866242 DOI: 10.3390/toxics11010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/14/2023]
Abstract
With the rapid development of industry, chromium (Cr) pollutants accumulate constantly in the soil, causing severe soil Cr pollution problems. Farmland Cr pollution hurts the safety of agricultural production and indirectly affects human health and safety. However, the current situation of Cr pollution in farmland soil and crops has not been detailed enough. In this study, the evaluation of Cr potential risk in soil-crop systems was conducted in a rural area that was affected by industry and historic sewage irrigation. Ten different crops and rhizosphere soils were sampled from four fields. The results showed that Cr contents in farmland soil exceeded the national standard threshold in China (>21.85%), and the Cr content in edible parts of some agricultural products exceeded that too. According to the PCA and relation analysis, the Cr accumulation in edible parts showed a significant correlation with soil Cr contents and available potassium contents. Except for water spinach, the target hazard quotient (THQ) of the other crops was lower than 1.0 but the carcinogenic health risks all exceeded the limits. The carcinogenic risks (CR) of different types of crops are food crops > legume crops > leafy vegetable crops and root-tuber crops. A comprehensive assessment revealed that planting water spinach in this area had the highest potential risk of Cr pollution. This study provided a scientific and reliable approach by integrating soil environmental quality and agricultural product security, which helps evaluate the potential risk of Cr in arable land more efficiently and lays technical guidelines for local agricultural production safety.
Collapse
Affiliation(s)
- Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiaoyuan Liao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
49
|
Manzoor N, Ali L, Ahmed T, Rizwan M, Ali S, Shahid MS, Schulin R, Liu Y, Wang G. Silicon oxide nanoparticles alleviate chromium toxicity in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120391. [PMID: 36223852 DOI: 10.1016/j.envpol.2022.120391] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Increasing chromium (Cr) contamination in agricultural soils is a threat to crop yields and quality. Recently, nano-enabled strategies have been emerging with a great potential towards improving crop production and reclaiming the heavy metal contaminated soils. This study aimed to elucidate the potential of silicon oxide nanoparticles (SiONPs) on optimizing wheat growth and yield against Cr stress-induced phytotoxicity. Spherical crystalline SiONPs with the diameter in the range of 15-24 nm were applied at a dose of 250 mg kg-1 soil for pot experiments planted with wheat seedlings, with or without Cr contaminations. The pot experiment results showed that SiONPs amendments significantly improved the plant length (26.8%), fresh (28.5%) and dry weight (30.4%) as compared with the control treatment. In addition, SiONPs also enhanced photosynthetic activity, antioxidant enzyme contents (CAT, APX, SOD and POD content) and reduced the reactive oxygen species (ROS) in wheat plants under Cr stress condition. The alleviation of Cr toxicity was deemed to be associated with the reduced Cr uptake into the roots (-39.6%) and shoots (-35.7%). The ultrastructural analyses revealed that the application of SiONPs in Cr contaminated soils maintained the normal cellular structure of the wheat plant, as compared with those of controls without SiONPs. These results provide the first evidence showing the great potential of SiONPs application towards alleviating the Cr stress for optimized wheat growth and yield in Cr contaminated soils.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Liaqat Ali
- University of Agriculture Faisalabad, Sub-Campus Burewala Vehari, 61100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Rainer Schulin
- Department of Environmental System Science, ETH Zurich, Zurich, 8092, Switzerland
| | - Ying Liu
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China; National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Metropulos AE, Becker JH, Principe DR. Chromium (VI) promotes lung cancer initiation by activating EGF/ALDH1A1 signalling. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e155. [PMID: 37396570 PMCID: PMC10312984 DOI: 10.1002/ctd2.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 07/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and is strongly associated with tobacco smoke exposure. Though smoking remains the most important and best studied risk factor, recent data suggests that several other carcinogens have a driving role in lung cancer development, particularly in select populations at risk of high or prolonged exposure. Hexavalent chromium [Cr(VI)] is a known carcinogen that is widely used in the manufacturing industry. While the link between Cr(VI) and lung cancer incidence is well-accepted, the mechanisms through which Cr(VI) promotes lung cancer development are poorly understood. In the present study by Ge and colleagues published in Clinical and Translational Medicine, the authors explored the effects of prolonged Cr(VI) on non-malignant lung epithelial cells. They determined that Cr(VI) initiates lung tumorigenesis by transforming a subpopulation of stem-like, tumor initiating cells with increased expression of Aldehyde dehydrogenase 1 family member A1 (ALDH1A1). The observed increase in ALDH1A1 was dependent on transcriptional upregulation via Krüppel-like factor 4 (KLF4), and associated with enhanced Epidermal Growth Factor (EGF) biosynthesis. Cr(VI)-transformed tumor initiating cells accelerated tumor formation in vivo, which was ameliorated by therapeutic inhibition of ALDH1A1. Importantly, ALDH1A1 inhibition also sensitized Cr(VI)-driven tumors to Gemcitabine chemotherapy and extended overall survival in mice. This study not only offers novel insight into the mechanisms through which Cr(VI) exposure initiates lung tumorigenesis, but identifies a potential therapeutic target for patients with lung cancer secondary to Cr(VI) exposure. Additionally, this study underscores the importance of limiting exposure to Cr(VI) in the workplace and finding safer alternatives for use in the manufacturing industry.
Collapse
Affiliation(s)
| | - Jeffrey H. Becker
- Department of Surgery, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL USA
| |
Collapse
|