1
|
Shankar K, Zingler-Hoslet I, Tabima DM, Zima S, Shi L, Gimse K, Forsberg MH, Katta V, Davis SZ, Maldonado D, Russell BE, Murtaza M, Tsai SQ, Ayuso JM, Capitini CM, Saha K. Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. Mol Ther 2025; 33:1014-1030. [PMID: 39815622 PMCID: PMC11897758 DOI: 10.1016/j.ymthe.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR-Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knockin of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-seq, in-out PCR, amplicon sequencing, and long-read whole-genome sequencing. KLRC1-GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2+ human tumor cells. Notably, KLRC1-GD2 CAR NK cells overcome HLA-E-based inhibition in vitro against HLA-E-expressing, GD2+ melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR-Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E+ solid tumors.
Collapse
Affiliation(s)
- Keerthana Shankar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Isabelle Zingler-Hoslet
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Diana M Tabima
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Seth Zima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kirstan Gimse
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Varun Katta
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sage Z Davis
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel Maldonado
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brittany E Russell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Muhammed Murtaza
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jose M Ayuso
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Christian M Capitini
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA.
| |
Collapse
|
2
|
Li X, Wei H, Wei S, Wang Z, Qi J, Weng L. Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes. Mol Pharm 2025; 22:1210-1219. [PMID: 39874541 DOI: 10.1021/acs.molpharmaceut.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells. The ability of NK cells to recognize target cells was increased upon exposure to amoxicillin at low concentration (10 ng/mL). Additionally, the utilization of amoxicillin loaded in liposome (AMO@Liposome) for NK cell immunotherapy in a mouse breast cancer model resulted in an increased antitumor effect in comparison to without the treatment of AMO@Liposome. RNA transcriptome analysis showed that amoxicillin upregulated differential genes related to the synaptic vesicle cycle pathway and calcium signaling pathway, and FOSB, TNFRSF18, and H4C1 were identified as critical players. These studies suggest that the strategy of using amoxicillin in NK cell immunotherapy has potential applications in the field of tumor therapy.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huan Wei
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Siyuan Wei
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhixuan Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiachen Qi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
3
|
Gergely B, Vereb MA, Rebenku I, Vereb G, Szöőr Á. Targeting HER2-Positive Solid Tumors with CAR NK Cells: CD44 Expression Is a Critical Modulator of HER2-Specific CAR NK Cell Efficacy. Cancers (Basel) 2025; 17:731. [PMID: 40075578 PMCID: PMC11898473 DOI: 10.3390/cancers17050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Monoclonal antibody therapies for HER2-positive tumors frequently encounter resistance, requiring alternative treatment strategies. This study investigates the use of natural killer (NK) cells expressing HER2-specific chimeric antigen receptor (CAR) to address this issue. CAR NK cells have several benefits over CAR T cells: they are less likely to cause severe side effects such as cytokine release syndrome and neurotoxicity, can be sourced from various origins, and do not trigger Graft versus Host Disease, making them ideal for "off-the-shelf" applications. Methods: We have generated NK-92 cell lines expressing first, second and third-generation HER2-specific CARs with CD28 and/or 41BB costimulatory domains using a retroviral transduction system, followed by FACS sorting and expansion to obtain pure HER2-CAR NK-92 cell products for functional benchmarking. Results: In vitro tests showed that these CAR NK cells were effective against both trastuzumab-sensitive (CD44-) and -resistant (CD44+) tumors in monolayer cultures. However, in three-dimensional spheroid models and in vivo xenografts, they were less effective against CD44+ trastuzumab-resistant tumors. Conclusions: This reduced efficacy highlights the significant role of the tumor microenvironment, particularly the extracellular matrix, in hindering the therapeutic potential of CAR NK cells. Despite the promising in vitro performance of CAR NK cells, this study emphasizes the need for improved strategies to enhance their penetration and effectiveness in resistant tumors: optimizing CAR constructs and devising methods to overcome extracellular matrix barriers are crucial for advancing CAR NK cell therapies in oncology.
Collapse
Affiliation(s)
- Bence Gergely
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Márk A. Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - István Rebenku
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Dravid AA, Singh A, García AJ. Biomaterial-Based Therapeutic Delivery of Immune Cells. Adv Healthc Mater 2025; 14:e2400586. [PMID: 38813869 PMCID: PMC11607182 DOI: 10.1002/adhm.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Immune cell therapy (ICT) is a transformative approach used to treat a wide range of diseases including type 1 diabetes, sickle cell disease, disorders of the hematopoietic system, and certain forms of cancers. Despite excellent clinical successes, the scope of adoptively transferred immune cells is limited because of toxicities like cytokine release syndrome and immune effector cell-associated neurotoxicity in patients. Furthermore, reports suggest that such treatment can impact major organ systems including cardiac, renal, pulmonary, and hepatic systems in the long term. Additionally, adoptively transferred immune cells cannot achieve significant penetration into solid tissues, thus limiting their therapeutic potential. Recent studies suggest that biomaterial-assisted delivery of immune cells can address these challenges by reducing toxicity, improving localization, and maintaining desired phenotypes to eventually regain tissue function. In this review, recent efforts in the field of biomaterial-based immune cell delivery for the treatment of diseases, their pros and cons, and where these approaches stand in terms of clinical treatment are highlighted.
Collapse
Affiliation(s)
- Ameya A. Dravid
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ankur Singh
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Andrés J. García
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
5
|
Sehl OC, Yang Y, Anjier AR, Nevozhay D, Cheng D, Guo K, Fellows B, Mohtasebzadeh AR, Mason EE, Sanders T, Kim P, Trease D, Koul D, Goodwill PW, Sokolov K, Wintermark M, Gordon N, Greve JM, Gopalakrishnan V. Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification. Mol Imaging Biol 2025; 27:78-88. [PMID: 39653984 DOI: 10.1007/s11307-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 02/08/2025]
Abstract
PURPOSE Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells. PROCEDURES Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc. RESULTS NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial. CONCLUSION MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.
Collapse
Affiliation(s)
- Olivia C Sehl
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA.
| | - Yanwen Yang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ariana R Anjier
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghang Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Kelvin Guo
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | | | | | - Erica E Mason
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Toby Sanders
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Petrina Kim
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - David Trease
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Dimpy Koul
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Joan M Greve
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Brain Tumor Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson- UT Health Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
6
|
Cai L, Chen H, Wang Y, Zhang J, Song D, Tan Y, Guo Z, Wang X. Platinum(IV) Complexes Trigger Death Receptors and Natural Killer Cells to Suppress Breast Cancer. J Med Chem 2025. [PMID: 39886904 DOI: 10.1021/acs.jmedchem.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Chemoimmunotherapy is an alternative treatment against cancers. Platinum(IV) complexes FMP and DFMP, coupling formononetin derivative as axial ligand(s), were designed to suppress triple-negative breast cancer (TNBC) by activating death receptors (DRs) and natural killer (NK) cells. These complexes show great potential to overcome the resistance of TNBC to chemotherapy by inducing both intrinsic and extrinsic apoptosis in cancer cells. Particularly, FMP with one axial formononetin derivative not only induced the caspase-3-dependent intrinsic apoptosis but also upregulated the expression of DRs and caspase-8, triggered the extrinsic apoptosis, and enhanced the cytotoxic ability of NK92 cells. Moreover, FMP increased the release of granzyme B, restrained the proliferation and differentiation of myeloid-derived suppressor cells, and the secretion of IL-10, thus inhibiting the TNBC in vitro and in vivo. The results demonstrate that FMP overcomes the chemoresistance and immune escape of TNBC through a new mechanism involving the synergy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Huang Y, Liao H, Luo J, Wei H, Li A, Lu Y, Xiang B. Reversing NK cell exhaustion: a novel strategy combining immune checkpoint blockade with drug sensitivity enhancement in the treatment of hepatocellular carcinoma. Front Oncol 2025; 14:1502270. [PMID: 39906665 PMCID: PMC11790413 DOI: 10.3389/fonc.2024.1502270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common lethal cancers worldwide. Natural killer cells (NK cells) play a key role in liver immunosurveillance, but in the tumor microenvironment, NK cells are readily depleted, as evidenced by down-regulation of activating receptors, reduced cytokine secretion, and attenuated killing function. The up-regulation of inhibitory receptors, such as PD-1, TIM-3, and LAG-3, further exacerbates the depletion of NK cells. Combined blockade strategies targeting these immunosuppressive mechanisms, such as the combination of PD-1 inhibitors with other inhibitory pathways (eg. TIM-3 and LAG-3), have shown potential to reverse NK cell exhaustion in preclinical studies. This article explores the promise of these innovative strategies in HCC immunotherapy, providing new therapeutic directions for optimizing NK cell function and improving drug sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
8
|
Yang Z, Yang Z, Wang D, Li Y, Hao M, Tao B, Feng Q, Wu H, Li Q, Wu J, Lin Q, Wang G, Liu W. Iron Knights with Nanosword Induced Ferroptosis in the Battle Against Oral Carcinoma. NANO LETTERS 2025; 25:327-335. [PMID: 39703040 DOI: 10.1021/acs.nanolett.4c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a tumor characterized by cellular redox imbalance, rendering it particularly sensitive to ferroptosis treatment. However, traditional ferroptosis inducers have a few drawbacks. In this study, ultrasmall AuMn nanoclusters (AMNCs) with a bovine serum albumin (BSA) ligand were synthesized and encapsulated in natural killer (NK) cell-derived exosomes to form an Exo-AMNCs composite for targeted ferroptosis therapy of OSCC. Unlike previously reported alloyed metal nanoclusters, not only do AMNCs react with intracellular H2O2 to produce reactive oxygen species (ROS) and induce ferroptosis but also the BSA ligand improves biocompatibility and water solubility. These properties render AMNCs ideal for fluorescence imaging in vivo. When combined with NK cell exosomes, the Exo-AMNCs composite exhibited strong targeted imaging and therapeutic effects on OSCC. Further investigation into the mechanistic details demonstrated that Exo-AMNCs downregulate the overexpression of fat mass and obesity-associated (FTO) in OSCC and regulate the key ferroptosis-related protein glutathione peroxidase 4 (GPX4).
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Restorative Dental Science, Faculty of Dentisry, University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Zhe Yang
- Department of Chemistry, Jilin University, Changchun 130012, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuyang Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Jianing Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Quan Lin
- Department of Chemistry, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
Luo W, Gardenswartz A, Hoang H, Chu Y, Tian M, Liao Y, Ayello J, Rosenblum JM, Mo X, Marcondes AM, Overwijk WW, Cripe TP, Lee DA, Cairo MS. Combinatorial immunotherapy of anti-MCAM CAR-modified expanded natural killer cells and NKTR-255 against neuroblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200894. [PMID: 39554906 PMCID: PMC11567912 DOI: 10.1016/j.omton.2024.200894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Pediatric patients with recurrent metastatic neuroblastoma (NB) have a dismal 5-year survival. Novel therapeutic approaches are urgently needed. The melanoma cell adhesion molecule (MCAM/CD146/MUC18) is expressed in a variety of pediatric solid tumors, including NB, and constitutes a novel target for immunotherapy. Here, we developed a chimeric antigen receptor (CAR) expressing natural killer (NK) cell-targeting MCAM by non-viral electroporation of CAR mRNA into ex vivo expanded NK cells. Expression of anti-MCAM CAR significantly enhanced NK cell cytotoxic activity compared to mock NK cells against MCAMhigh but not MCAMlow/knockout NB cells in vitro. Anti-MCAM-CAR-NK cell treatment significantly decreased tumor growth and prolonged animal survival in an NB xenograft mouse model. NKTR-255, a polymer-conjugated recombinant human interleukin-15 agonist, significantly stimulated NK cell proliferation and expansion and further enhanced the in vitro cytotoxic activity and in vivo anti-tumor efficacy of anti-MCAM-CAR-NK cells against NB. Our preclinical studies demonstrate that ex vivo expanded and modified anti-MCAM-CAR-NK cells alone and/or in combination with NKTR-255 are promising novel alternative therapeutic approaches to targeting MCAMhigh malignant NB.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - Timothy P. Cripe
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dean A. Lee
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, USA
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
10
|
Russick J, Torset C, Sun D, Marmier S, Merle N, Voilin E, Josseaume N, Meylan M, Hernandez I, Foy PE, Joubert PE, Alifano M, Lupo A, Siberil S, Björkström NK, Damotte D, Cremer I. Tumor stage-driven disruption of NK cell maturation in human and murine tumors. iScience 2024; 27:111233. [PMID: 39583926 PMCID: PMC11585790 DOI: 10.1016/j.isci.2024.111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Natural killer (NK) cells play a pivotal role against cancer, both by direct killing of malignant cells and by promoting adaptive immune response though cytokine and chemokine secretion. In the lung tumor microenvironment (TME), NK cells are scarce and dysfunctional. By conducting single-cell transcriptomic analysis of lung tumors, and exploring pseudotime, we uncovered that the intratumoral maturation trajectory of NK cells is disrupted in a tumor stage-dependent manner, ultimately resulting in the selective exclusion of the cytotoxic subset. Using functional assays, we observed intratumoral NK cell death and a reduction in cytotoxic capacities depending on the tumor stage. Finally, our analyses of human public dataset on lung cancer corroborate these findings, revealing a parallel dysfunctional maturation process of NK cells during tumor progression. These results highlight additional mechanisms by which tumor cells escape from NK cell cytotoxicity, therefore paving the way for tailored therapeutic strategies.
Collapse
Affiliation(s)
- Jules Russick
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Carine Torset
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Solenne Marmier
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Nicolas Merle
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Elodie Voilin
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Nathalie Josseaume
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Maxime Meylan
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Isaïas Hernandez
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Pierre-Emmanuel Foy
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Pierre-Emmanuel Joubert
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Marco Alifano
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Departments of Surgery and Pathology, Hopital Cochin Assistance Publique Hopitaux de Paris, 75014 Paris, France
| | - Audrey Lupo
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Departments of Surgery and Pathology, Hopital Cochin Assistance Publique Hopitaux de Paris, 75014 Paris, France
| | - Sophie Siberil
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Diane Damotte
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Departments of Surgery and Pathology, Hopital Cochin Assistance Publique Hopitaux de Paris, 75014 Paris, France
| | - Isabelle Cremer
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team “Inflammation, Complement and Cancer”, 75006 Paris, France
- Sorbonne Universite, Centre de Recherche des Cordeliers, 75006 Paris, France
- Universite Paris Cite, Centre de Recherche des Cordeliers, 75006 Paris, France
| |
Collapse
|
11
|
Luo W, Hoang H, Zhu H, Miller K, Mo X, Eguchi S, Tian M, Liao Y, Ayello J, Rosenblum JM, Marcondes M, Currier M, Mardis E, Cripe T, Lee D, Cairo MS. Circumventing resistance within the Ewing sarcoma microenvironment by combinatorial innate immunotherapy. J Immunother Cancer 2024; 12:e009726. [PMID: 39266215 PMCID: PMC11404285 DOI: 10.1136/jitc-2024-009726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, New York, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Shiori Eguchi
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Mark Currier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
| | - Elaine Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Timothy Cripe
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Dean Lee
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Departments of Pathology, Immunology and Microbiology, Medicine, Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Mohseni R, Mahdavi Sharif P, Behfar M, Shojaei S, Shoae-Hassani A, Jafari L, Khosravi A, Nikfetrat Z, Hamidieh AA. Phase I study of safety and efficacy of allogeneic natural killer cell therapy in relapsed/refractory neuroblastomas post autologous hematopoietic stem cell transplantation. Sci Rep 2024; 14:20971. [PMID: 39251669 PMCID: PMC11385932 DOI: 10.1038/s41598-024-70958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Despite low incidence, neuroblastoma, an immunologically cold tumor, is the most common extracranial solid neoplasm in pediatrics. In relapsed/refractory cases, the benefits of autologous hematopoietic stem cell transplantation (auto-HSCT) and other therapies are limited. Natural killer (NK) cells apply cytotoxicity against tumor cells independently of antigen-presenting cells and the adaptive immune system. The primary endpoint of this trial was to assess the safety of the injection of allogenic, ex vivo-expanded and primed NK cells in relapsed/refractory neuroblastoma patients after auto-HSCT. The secondary endpoint included the efficacy of this intervention in controlling tumors. NK cells were isolated and primed ex vivo (by adding interleukin [IL]-2, IL-15, and IL-21) in a GMP-compliant CliniMACS system and administered to four patients with relapsed/refractory MYCN-positive neuroblastoma. NK cell injections (1 and 5 × 107 cells/kg in the first and second injections, respectively) were safe, and no acute or sub-acute adverse events were observed. During the follow-up period, one complete response (CR) and one partial response (PR) were observed, while two cases exhibited progressive disease (PD). In follow-up evaluations, two died due to disease progression, including the case with a PR. The patient with CR had regular growth at the 31-month follow-up, and another patient with PD is still alive and receiving chemotherapies 20 months after therapy. This therapy is an appealing and feasible approach for managing refractory neuroblastomas post-HSCT. Further studies are needed to explore its efficacy with higher doses and more frequent administrations for high-risk neuroblastomas and other immunologically cold tumors.Trial registration number: irct.behdasht.gov.ir (Iranian Registry of Clinical Trials, No. IRCT20201202049568N1).
Collapse
Affiliation(s)
- Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Sahar Shojaei
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Abbas Khosravi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Zeynab Nikfetrat
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran.
| |
Collapse
|
13
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
15
|
Chu Y, Nayyar G, Tian M, Lee DA, Ozkaynak MF, Ayala-Cuesta J, Klose K, Foley K, Mendelowitz AS, Luo W, Liao Y, Ayello J, Behbehani GK, Riddell S, Cripe T, Cairo MS. Efficiently targeting neuroblastoma with the combination of anti-ROR1 CAR NK cells and N-803 in vitro and in vivo in NB xenografts. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200820. [PMID: 38933492 PMCID: PMC11201149 DOI: 10.1016/j.omton.2024.200820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The prognosis for children with recurrent and/or refractory neuroblastoma (NB) is dismal. The receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is highly expressed on the surface of NB cells, provides a potential target for novel immunotherapeutics. Anti-ROR1 chimeric antigen receptor engineered ex vivo expanded peripheral blood natural killer (anti-ROR1 CAR exPBNK) cells represent this approach. N-803 is an IL-15 superagonist with enhanced biological activity. In this study, we investigated the in vitro and in vivo anti-tumor effects of anti-ROR1 CAR exPBNK cells with or without N-803 against ROR1+ NB models. Compared to mock exPBNK cells, anti-ROR1 CAR exPBNK cells had significantly enhanced cytotoxicity against ROR1+ NB cells, and N-803 further increased cytotoxicity. High-dimensional analysis revealed that N-803 enhanced Stat5 phosphorylation and Ki67 levels in both exPBNK and anti-ROR1 CAR exPBNK cells with or without NB cells. In vivo, anti-ROR1 CAR exPBNK plus N-803 significantly (p < 0.05) enhanced survival in human ROR1+ NB xenografted NSG mice compared to anti-ROR1 CAR exPBNK alone. Our results provide the rationale for further development of anti-ROR1 CAR exPBNK cells plus N-803 as a novel combination immunotherapeutic for patients with recurrent and/or refractory ROR1+ NB.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Dean A. Lee
- Department of Pediatric Hem/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mehmet F. Ozkaynak
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Kayleigh Klose
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Keira Foley
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Gregory K. Behbehani
- Department of Internal Medicine, Division of Hematology, the Ohio State University; Columbus, OH 43210, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Tim Cripe
- Department of Pediatric Hem/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Microbiology, Immunology and Pathology, New York Medical College, Valhalla, NY 10595, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
16
|
Lian GY, Wang QM, Mak TSK, Huang XR, Yu XQ, Lan HY. Disrupting Smad3 potentiates immunostimulatory function of NK cells against lung carcinoma by promoting GM-CSF production. Cell Mol Life Sci 2024; 81:262. [PMID: 38878186 PMCID: PMC11335298 DOI: 10.1007/s00018-024-05290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Through Smad3-dependent signalings, transforming growth factor-β (TGF-β) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-β-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-β-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.
Collapse
Affiliation(s)
- Guang-Yu Lian
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Yun J, Saddawi-Konefka R, Goldenson B, Al-Msari R, Bernareggi D, Thangaraj JL, Tang S, Patel SH, Luna SM, Gutkind JS, Kaufman D. CHMP2A regulates broad immune cell-mediated antitumor activity in an immunocompetent in vivo head and neck squamous cell carcinoma model. J Immunother Cancer 2024; 12:e007187. [PMID: 38702144 PMCID: PMC11086353 DOI: 10.1136/jitc-2023-007187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.
Collapse
Affiliation(s)
- Jiyoung Yun
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Robert Saddawi-Konefka
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Otolaryngology-Head and Neck Surgery, University of California-San Diego, La Jolla, California, USA
| | - Benjamin Goldenson
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Riyam Al-Msari
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Davide Bernareggi
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jaya L Thangaraj
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Shiqi Tang
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sonam H Patel
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sarah M Luna
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Pharmacology, University of California School of Medicine, La Jolla, California, USA
| | - Dan Kaufman
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Kashani Khatib Z, Maleki A, Pourfatollah AA, Hamidieh AA, Ferdowsi S. Antileukemia Activity of Human Natural Killer Cell-Derived Nanomagic Bullets against Acute Myeloid Leukemia (AML). Int J Hematol Oncol Stem Cell Res 2024; 18:123-139. [PMID: 38868808 PMCID: PMC11166499 DOI: 10.18502/ijhoscr.v18i2.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2024] Open
Abstract
Background: Cancer is among the serious health problems of the medical world, for treatment of which severe treatments are used. However, the prognosis of cancer patients is still poor. The application of NK cell-derived exosomes (NK-Exo) is a new method for cancer immunotherapy. These nanoparticles with a size range of 30-120 nm are a small model of mother cells. In this study, the anti-tumor activity of NK-Exo and LAK-Exo (activated NK cell-derived exosome) against acute myeloid leukemia (AML) is investigated in vitro. Materials and Methods: The MACS method was performed for the separation of NK cells from the buffy coats of healthy donors, and an EXOCIBE kit was used for the isolation of NK-Exo. After treating the KG-1 cell line with different doses of NK-Exo, MTT assay, and annexin V-PE were done to evaluate cell proliferation and apoptosis, respectively, and for confirmation of involved proteins, Real-Time PCR and western blotting were performed. Results: Anti-tumor activity of NK-Exo and LAK-Exo was dose- and time-dependent. Their highest activities were observed following 48 hours of incubation with 50 µg/ml exosome (p<0.0001). However, this cytotoxic activity was also seen over a short period of time with low concentrations of NK-Exo (p<0.05) and LAK-Exo (p<0.001).The cytotoxic effect of LAK-Exo on target cells was significantly higher than NK-EXO. The induction of apoptosis by different pathways was time-point dependent. Total apoptosis was 34.56% and 51.6% after 48 hours of tumor cell coculture with 50µg/ml NK-Exo and LAK-Exo, respectively. Significant expression of CASPASE3, P38, and CYTOCHROME C genes was observed in the cells treated with 50 µg/ml NK-Exo and LAK-Exo. Conclusion: Our study confirmed the antileukemia activity of NK-Exo against AML tumor cells in vitro. Therefore, NK-Exo can be considered as a promising and effective treatment for leukemia therapy.
Collapse
Affiliation(s)
- Zahra Kashani Khatib
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Maleki
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfatollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amir Ali Hamidieh
- Department of Pediatric Stem Cell Transplantation, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Ferdowsi
- High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
19
|
Hadfield MJ, Safran H, Purbhoo MA, Grossman JE, Buell JS, Carneiro BA. Overcoming resistance to programmed cell death protein 1 (PD-1) blockade with allogeneic invariant natural killer T-cells (iNKT). Oncogene 2024; 43:758-762. [PMID: 38281989 DOI: 10.1038/s41388-024-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Gastric cancer is the 5th most common malignancy worldwide with only 36% of patients with metastatic disease surviving beyond 5 years. Despite therapeutic improvements with the advent of immune checkpoint inhibitors, most patients with gastric cancer develop disease progression related to tumor resistance. Novel immunotherapeutic approaches, including invariant natural killer (iNKT) cells, are in clinical development and represent potential therapeutic options to overcome resistance. AgenT-797 is an allogeneic human unmodified iNKT derived from healthy donors. Activation of iNKT cells by tumor lipid antigens can trigger direct cytotoxicity and promote indirect anti-tumor immune responses such as recruitment and activation of T cells, NK cells, and dendritic cells through secretion of cytokines and IFNγ. We describe immune modulation leading to durable tumor response in a patient with microsatellite instability-high (MSI-H) advanced gastric adenocarcinoma treated with agent-797 after progression on standard chemotherapy and anti-PD-1 therapy.
Collapse
Affiliation(s)
- Matthew J Hadfield
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Howard Safran
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | | | | | | | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA.
| |
Collapse
|
20
|
Lee K, Perry K, Xu M, Veillard I, Kumar R, Rao TD, Rueda BR, Spriggs DR, Yeku OO. Structural basis for antibody recognition of the proximal MUC16 ectodomain. J Ovarian Res 2024; 17:41. [PMID: 38374055 PMCID: PMC10875768 DOI: 10.1186/s13048-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mucin 16 (MUC16) overexpression is linked with cancer progression, metastasis, and therapy resistance in high grade serous ovarian cancer and other malignancies. The cleavage of MUC16 forms independent bimodular fragments, the shed tandem repeat sequence which circulates as a protein bearing the ovarian cancer biomarker (CA125) and a proximal membrane-bound component which is critical in MUC16 oncogenic behavior. A humanized, high affinity antibody targeting the proximal ectodomain represents a potential therapeutic agent against MUC16 with lower antigenic potential and restricted human tissue expression. RESULTS Here, we demonstrate the potential therapeutic versatility of the humanized antibody as a monoclonal antibody, antibody drug conjugate, and chimeric antigen receptor. We report the crystal structures of 4H11-scFv, derived from an antibody specifically targeting the MUC16 C-terminal region, alone and in complex with a 26-amino acid MUC16 segment resolved at 2.36 Å and 2.47 Å resolution, respectively. The scFv forms a robust interaction with an epitope consisting of two consecutive β-turns and a β-hairpin stabilized by 2 hydrogen bonds. The VH-VL interface within the 4H11-scFv is stabilized through an intricate network of 11 hydrogen bonds and a cation-π interaction. CONCLUSIONS Together, our studies offer insight into antibody-MUC16 ectodomain interaction and advance our ability to design agents with potentially improved therapeutic properties over anti-CA125 moiety antibodies.
Collapse
Affiliation(s)
- Kwangkook Lee
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Kay Perry
- Department of Chemistry and Chemical Biology, Argonne National Laboratory, NE-CAT, Cornell University, Building 436E, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Mengyao Xu
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Irva Veillard
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Raj Kumar
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Thapi Dharma Rao
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David R Spriggs
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Oladapo O Yeku
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Shankar K, Zingler-Hoslet I, Shi L, Katta V, Russell BE, Tsai SQ, Capitini CM, Saha K. Virus-free CRISPR knock-in of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580371. [PMID: 38405747 PMCID: PMC10888791 DOI: 10.1101/2024.02.14.580371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR/Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knock-in of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-Seq, in-out PCR, and next generation sequencing. KLRC1 -GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2 + human melanoma cells. Notably, KLRC1 -GD2 CAR NK cells overcome HLA-E-based inhibition by HLA-E-expressing, GD2 + melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR/Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E + solid tumors.
Collapse
|
22
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
23
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
24
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Bagus BI. Autologous natural killer cells as a promising immunotherapy for locally advanced colon adenocarcinoma: Three years follow-up of resectable case. Cancer Rep (Hoboken) 2023; 6:e1866. [PMID: 37439389 PMCID: PMC10480413 DOI: 10.1002/cnr2.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Over the last decade, a new modality of immunotherapy has been announced, with the expectation of better long-term clinical outcomes and disease-free survival after the definitive surgical treatment of colon cancer. Natural killer (NK) cells as part of cellular therapy in immunotherapy have the potential effect as an adjuvant therapy for locally advanced and metastasized colorectal adenocarcinoma. We would evaluate the clinical outcome of autologous NK cell therapy for resectable colon cancer. CASE A 64-year-old woman presented with a transverse colon tumor-related partial intestinal obstruction and a history of bloody diarrhea. A transverse colectomy has been done, and the pathology report reported adenocarcinoma of the transverse colon and positive lymph node involvement (TNM stage III). The patient had R0 resection status. A PET scan was done 6 months later, with positive lymph node glucose uptake at mesocolic. NK cell therapy was administered for 2 cycles with a 3-month interval, and PET scan follow-up was done 3 years after resection; no more glucose uptake was found, and the patients tolerated the therapy well with no immune-related adverse effects reported. CONCLUSION As a new modality in immunotherapy strategies for locally advanced colon adenocarcinoma, particularly in cases unsuitable for standard chemotherapeutic treatment, autologous NK cells have a promising effect and are feasible and well tolerated in our clinical practice.
Collapse
Affiliation(s)
- Budhi Ida Bagus
- Department of SurgerySebelas Maret UniversitySurakartaIndonesia
| |
Collapse
|
26
|
Wu Y, Zheng Y, Jin Z. ANGPTL3 affects the metastatic potential and the susceptibility of ovarian cancer cells to natural killer cell-mediated cytotoxicity. Heliyon 2023; 9:e18799. [PMID: 37636444 PMCID: PMC10457421 DOI: 10.1016/j.heliyon.2023.e18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
High metastatic potential and resistance to immunotherapy lead to poor survival in patients with ovarian cancer. Angiopoietin-like protein 3 is aberrantly expressed and exerts diverse roles in the progression of several cancers. However, its function in ovarian cancer is unknown. Here, decreased expression of angiopoietin-like protein 3 was observed in ovarian cancer tissues and cells. Moreover, patients with high expression of angiopoietin-like protein 3 had longer overall survival and progression-free survival, indicating a good prognosis for patients. Furthermore, angiopoietin-like protein 3 overexpression inhibited ovarian cancer cell proliferation. Concomitantly, high invasion and the occurrence of epithelial-to-mesenchymal transition of cancer cells were restrained after angiopoietin-like protein 3 elevation. Up-regulation of angiopoietin-like protein 3 expression further increased interleukin 2-treated natural killer cell activation by increasing CD69 expression and production of interferon gamma and tumor necrosis factor-alpha when natural killer cells were co-cultured with ovarian cancer cells. Importantly, angiopoietin-like protein 3 overexpression enhanced natural killer cell-evoked cytotoxicity and apoptosis of cancer cells, indicating the pro-tumor killing ability of angiopoietin-like protein 3 for natural killer cells. Mechanistically, angiopoietin-like protein 3 elevation inhibited activation of the Janus Kinase/Signal transducer and activator of transcription 3 signaling in ovarian cancer cells by inhibiting protein expression of phospho-Janus Kinase 2, phospho-Signal transducer and activator of transcription 3, downstream matrix metallopeptidase 2 and programmed cell death 1. Moreover, blocking the Janus Kinase/Signal transducer and activator of transcription 3 pathway via their inhibitor Stattic restrained ovarian cancer cell proliferation, invasion, epithelial-to-mesenchymal transition, and promoted natural killer cell killing to ovarian cancer cells. Thus, these findings reveal that angiopoietin-like protein 3 may act as an anti-oncogenic regulator to inhibit the metastatic potential and enhance the susceptibility of ovarian cancer cells to natural killer cell-mediated killing. Consequently, angiopoietin-like protein 3 may regulate metastatic potential and immune escape from natural killer cells, indicating a promising therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Yuxian Wu
- Department of Obstetrics and Gynaecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, PR China
| | - Yaqun Zheng
- Department of Obstetrics and Gynaecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, PR China
| | - Zhijun Jin
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| |
Collapse
|
27
|
Pathak U, Pal RB, Malik N. The Viral Knock: Ameliorating Cancer Treatment with Oncolytic Newcastle Disease Virus. Life (Basel) 2023; 13:1626. [PMID: 37629483 PMCID: PMC10455894 DOI: 10.3390/life13081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The prospect of cancer treatment has drastically transformed over the last four decades. The side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and radiotherapy through the years highlight the prospect for a novel, complementary, and alternative cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses (OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune response. Newcastle disease virus (NDV) provides a very high safety profile compared to other oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent and discusses current preclinical and clinical research scenarios involving various NDV strains.
Collapse
Affiliation(s)
- Upasana Pathak
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| | - Ramprasad B. Pal
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
| | - Nagesh Malik
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| |
Collapse
|
28
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
29
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
30
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
31
|
Faeq MH, Al-Haideri M, Mohammad TAM, Gharebakhshi F, Marofi F, Tahmasebi S, Modaresahmadi S. CAR-modified immune cells as a rapidly evolving approach in the context of cancer immunotherapies. Med Oncol 2023; 40:155. [PMID: 37083979 PMCID: PMC10119530 DOI: 10.1007/s12032-023-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Nowadays, one of the main challenges clinicians face is malignancies. Through the progression of technology in recent years, tumor nature and tumor microenvironment (TME) can be better understood. Because of immune system involvement in tumorigenesis and immune cell dysfunction in the tumor microenvironment, clinicians encounter significant challenges in patient treatment and normal function recovery. The tumor microenvironment can stop the development of tumor antigen-specific helper and cytotoxic T cells in the tumor invasion process. Tumors stimulate the production of proinflammatory and immunosuppressive factors and cells that inhibit immune responses. Despite the more successful outcomes, the current cancer therapeutic approaches, including surgery, chemotherapy, and radiotherapy, have not been effective enough for tumor eradication. Hence, developing new treatment strategies such as monoclonal antibodies, adaptive cell therapies, cancer vaccines, checkpoint inhibitors, and cytokines helps improve cancer treatment. Among adoptive cell therapies, the interaction between the immune system and malignancies and using molecular biology led to the development of chimeric antigen receptor (CAR) T cell therapy. CAR-modified immune cells are one of the modern cancer therapeutic methods with encouraging outcomes in most hematological and solid cancers. The current study aimed to discuss the structure, formation, subtypes, and application of CAR immune cells in hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Mohammed Hikmat Faeq
- Student of General Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysoon Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Pharmacology, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shadan Modaresahmadi
- Department of Immunology and Biotechnology, Texas Tech University Health Siences Center, Abilene, TX, USA
| |
Collapse
|
32
|
Li Y, Xie S, Chen M, Li H, Wang Y, Fan Y, An K, Wu Y, Xiao W. Development of an antibody-ligand fusion protein scFvCD16A -sc4-1BBL in Komagataella phaffii with stimulatory activity for Natural Killer cells. Microb Cell Fact 2023; 22:67. [PMID: 37041591 PMCID: PMC10091686 DOI: 10.1186/s12934-023-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Siqi Xie
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Minhua Chen
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yehai Wang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yan Fan
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang An
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yu Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
33
|
Dong Y, Hung Y, Zhang Z, Chen A, Li L, Tian M, Shen J, Shao J. iRGD-modified memory-like NK cells exhibit potent responses to hepatocellular carcinoma. J Transl Med 2023; 21:205. [PMID: 36932395 PMCID: PMC10022190 DOI: 10.1186/s12967-023-04024-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Cytokine-induced memory-like natural killer (CIML NK) cells have been found to possess potent antitumor responses and induce complete remissions in patients with leukemia. However, the poor infiltration of transferred NK cells is a major obstacle in developing adoptive cell immunotherapy for solid tumors. In our study, we explored the potential of using the tumor-penetrating peptide iRGD to deliver activated CIML NK cells deep into tumor tissues. METHODS After being briefly stimulated with interleukin-12 (IL-12), IL-15, and IL-18, CIML NK cells were assessed for their phenotype and function with flow cytometry. The penetrating and killing capability of iRGD-modified CIML NK cells in tumor spheroids was revealed by confocal microscopy. The anti-tumor efficacy of these modified CIML NK cells was tested in hepatocellular carcinoma (HCC) xenograft mouse models. RESULTS Treating NK cells with cytokines led to a substantial activation, which was evidenced by the upregulation of CD25 and CD137. After a resting period of six days, CIML NK cells were still able to display strong activation when targeting HepG2 and SK-Hep-1 HCC cell lines. Additionally, CIML NK cells produced increased amounts of cytokines (interferon-gamma and tumor necrosis factor alpha) and exhibited heightened cytotoxicity towards HCC cell lines. The iRGD modification enabled CIML NK cells to infiltrate multicellular spheroids (MCSs) and, consequently, to induce cytotoxicity against the target cancer cells. Moreover, the CIML NK cells modified with iRGD significantly decreased tumor growth in a HCC xenograft mouse model. CONCLUSION Our findings demonstrate that CIML NK cells possess augmented potency and durability against HCC cell lines in vitro. Additionally, we have seen that the incorporation of iRGD to CIML NK cells facilitates enhanced infiltration and targeted destruction of MCSs. Moreover, the application of iRGD-modified CIML NK cells reveal remarkable anti-tumor efficacy against HCC in vivo.
Collapse
Affiliation(s)
- Yanbing Dong
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ying Hung
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Oncology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Zhe Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Aoxing Chen
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Lin Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Manman Tian
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jie Shen
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Jie Shao
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China.
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
34
|
Chu Y, Gardenswartz A, Diorio C, Marks LJ, Lowe E, Teachey DT, Cairo MS. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101442. [PMID: 36907635 DOI: 10.1016/j.beha.2023.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The prognosis is dismal (2-year overall survival less than 25%) for childhood, adolescent, and young adult (CAYA) with relapsed and/or refractory (R/R) non-Hodgkin lymphoma (NHL). Novel targeted therapies are desperately needed for this poor-risk population. CD19, CD20, CD22, CD79a, CD38, CD30, LMP1 and LMP2 are attractive targets for immunotherapy in CAYA patients with R/R NHL. Novel anti-CD20 monoclonal antibodies, anti-CD38 monoclonal antibody, antibody drug conjugates and T and natural killer (NK)-cell bispecific and trispecific engagers are being investigated in the R/R setting and are changing the landscape of NHL therapy. A variety of cellular immunotherapies such as viral activated cytotoxic T-lymphocyte, chimeric antigen receptor (CAR) T-cells, NK and CAR NK-cells have been investigated and provide alternative options for CAYA patients with R/R NHL. Here, we provide an update and clinical practice guidance of utilizing these cellular and humoral immunotherapies in CAYA patients with R/R NHL.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Caroline Diorio
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lianna J Marks
- Division of Pediatric Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, VA, USA
| | - David T Teachey
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA; Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, USA; Department of Medicine, New York Medical College, Valhalla, NY, USA; Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology, New York Medical College, Valhalla, NY, USA; Department of Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
35
|
Floerchinger A, Klein JE, Finkbeiner MSC, Schäfer TE, Fuchs G, Doerner J, Zirngibl H, Ackermann M, Kvasnicka HM, Chester KA, Jäger D, Ball CR, Ungerechts G, Engeland CE. A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death Dis 2023; 14:104. [PMID: 36765035 PMCID: PMC9918448 DOI: 10.1038/s41419-023-05624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.
Collapse
Affiliation(s)
- Alessia Floerchinger
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Jessica E Klein
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maximiliane S C Finkbeiner
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Gwendolin Fuchs
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Francis Crick Institute, London, UK
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Hubert Zirngibl
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
36
|
Ziegler AE, Fittje P, Müller LM, Ahrenstorf AE, Hagemann K, Hagen SH, Hess LU, Niehrs A, Poch T, Ravichandran G, Löbl SM, Padoan B, Brias S, Hennesen J, Richard M, Richert L, Peine S, Oldhafer KJ, Fischer L, Schramm C, Martrus G, Bunders MJ, Altfeld M, Lunemann S. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56 bright NK cells. Front Immunol 2023; 14:1117320. [PMID: 36845105 PMCID: PMC9948018 DOI: 10.3389/fimmu.2023.1117320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.
Collapse
Affiliation(s)
- Annerose E. Ziegler
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Fittje
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Luisa M. Müller
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika E. Ahrenstorf
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerri Hagemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sven H. Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Leonard U. Hess
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Tobias Poch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian M. Löbl
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sébastien Brias
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Myrtille Richard
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Laura Richert
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J. Oldhafer
- Department of General and Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glòria Martrus
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Madeleine J. Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| |
Collapse
|
37
|
Efficient Redirection of NK Cells by Genetic Modification with Chemokine Receptors CCR4 and CCR2B. Int J Mol Sci 2023; 24:ijms24043129. [PMID: 36834542 PMCID: PMC9967507 DOI: 10.3390/ijms24043129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are a subset of lymphocytes that offer great potential for cancer immunotherapy due to their natural anti-tumor activity and the possibility to safely transplant cells from healthy donors to patients in a clinical setting. However, the efficacy of cell-based immunotherapies using both T and NK cells is often limited by a poor infiltration of immune cells into solid tumors. Importantly, regulatory immune cell subsets are frequently recruited to tumor sites. In this study, we overexpressed two chemokine receptors, CCR4 and CCR2B, that are naturally found on T regulatory cells and tumor-resident monocytes, respectively, on NK cells. Using the NK cell line NK-92 as well as primary NK cells from peripheral blood, we show that genetically engineered NK cells can be efficiently redirected using chemokine receptors from different immune cell lineages and migrate towards chemokines such as CCL22 or CCL2, without impairing the natural effector functions. This approach has the potential to enhance the therapeutic effect of immunotherapies in solid tumors by directing genetically engineered donor NK cells to tumor sites. As a future therapeutic option, the natural anti-tumor activity of NK cells at the tumor sites can be increased by co-expression of chemokine receptors with chimeric antigen receptors (CAR) or T cell receptors (TCR) on NK cells can be performed in the future.
Collapse
|
38
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|
39
|
Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, Yang A, Duan J, Yang N, Yang Z, Che Q, Yang Y, Guo T, Zi D, Ouyang W, Yang W, Zeng Z, Zhao X. NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol 2023; 13:1087689. [PMID: 36741396 PMCID: PMC9892755 DOI: 10.3389/fimmu.2022.1087689] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Exosomes are membranous vesicles actively secreted by almost all cells and they deliver certain intracellular molecules, including nucleic acids, proteins, and lipids, to target cells. They are also considered to be good carriers for drug delivery due to their biocompatibility, high permeability, low immunogenicity, and low toxicity. Exosomes from immune cells were also reported to have immunomodulatory activities. Herein we evaluated the application of exosomes derived from expanded natural killer cells (eNK-EXO) for the treatment of ovarian cancer (OC). We demonstrate that eNK-EXO express typical protein markers of natural killer (NK) cells, can be preferentially uptaken by SKOV3 cells, and display cytotoxicity against OC cells. Furthermore, eNK-EXO loaded with cisplatin could sensitize drug-resistant OC cells to the anti-proliferation effect of cisplatin. In addition, we show that eNK-EXO could activate NK cells from immunosuppressive tumor microenvironment, the mechanism of which is explored by transcriptional analysis. In summary, eNK-EXO exhibit anti-tumor activity against OC on its own, could be used to deliver cisplatin and enhance its cytotoxic effect against drug-resistant OC cells and also reverse the immunosuppression of NK cells, which may lead to great prospect of using eNK-EXO in the treatment of OC in the clinic. Our work also builds a strong foundation for further evaluation of eNK-EXO in other solid tumor therapies.
Collapse
Affiliation(s)
- Heyong Luo
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanhua Zhou
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
| | - Jing Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shiqi Long
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anqing Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiangyao Duan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiru Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiyuan Che
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxin Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Guo
- Department of gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Zi
- Department of gynaecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, The Affiliated Hospital/The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Department of Oncology, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Engineering Research Center of Cellular Immunotherapy of Guizhou Province/Department of Biology and Engineering, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China,*Correspondence: Xing Zhao, ; Zhu Zeng,
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Xing Zhao, ; Zhu Zeng,
| |
Collapse
|
40
|
Zhang D, Zhao Y. Identification of natural killer cell associated subtyping and gene signature to predict prognosis and drug sensitivity of lung adenocarcinoma. Front Genet 2023; 14:1156230. [PMID: 37091780 PMCID: PMC10119412 DOI: 10.3389/fgene.2023.1156230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: This research explored the immune characteristics of natural killer (NK) cells in lung adenocarcinoma (LUAD) and their predictive role on patient survival and immunotherapy response. Material and methods: Molecular subtyping of LUAD samples was performed by evaluating NK cell-associated pathways and genes in The Cancer Genome Atlas (TCGA) dataset using consistent clustering. 12 programmed cell death (PCD) patterns were acquired from previous study. Riskscore prognostic models were constructed using Least absolute shrinkage and selection operator (Lasso) and Cox regression. The model stability was validated in Gene Expression Omnibus database (GEO). Results: We classified LUAD into three different molecular subgroups based on NK cell-related genes, with the worst prognosis in C1 patients and the optimal in C3. Homologous Recombination Defects, purity and ploidy, TMB, LOH, Aneuploidy Score, were the most high-expressed in C1 and the least expressed in C3. ImmuneScore was the highest in C3 type, suggesting greater immune infiltration in C3 subtype. C1 subtypes had higher TIDE scores, indicating that C1 subtypes may benefit less from immunotherapy. Generally, C3 subtype presented highest PCD patterns scores. With four genes, ANLN, FAM83A, RHOV and PARP15, we constructed a LUAD risk prediction model with significant differences in immune cell composition, cell cycle related pathways between the two risk groups. Samples in C1 and high group were more sensitive to chemotherapy drug. The score of PCD were differences in high- and low-groups. Finally, we combined Riskscore and clinical features to improve the performance of the prediction model, and the calibration curve and decision curve verified that the great robustness of the model. Conclusion: We identified three stable molecular subtypes of LUAD and constructed a prognostic model based on NK cell-related genes, maybe have a greater potential for application in predicting immunotherapy response and patient prognosis.
Collapse
Affiliation(s)
- Dexin Zhang
- Respiratory Department of the Second Affiliated Hospital of Xi’an Jiaotong University Medical College, Xi’an, China
- *Correspondence: Dexin Zhang,
| | - Yujie Zhao
- Regional Marketing Department, Yuce Biotechnology Co, Ltd., Dabaihui Center, Shenzhen, China
| |
Collapse
|
41
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
42
|
Aggarwal P, Luo W, Pehlivan KC, Hoang H, Rajappa P, Cripe TP, Cassady KA, Lee DA, Cairo MS. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front Immunol 2022; 13:1038096. [PMID: 36483545 PMCID: PMC9722734 DOI: 10.3389/fimmu.2022.1038096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
High grade gliomas are identified as malignant central nervous tumors that spread rapidly and have a universally poor prognosis. Historically high grade gliomas in the pediatric population have been treated similarly to adult high grade gliomas. For the first time, the most recent classification of central nervous system tumors by World Health Organization has divided adult from pediatric type diffuse high grade gliomas, underscoring the biologic differences between these tumors in different age groups. The objective of our review is to compare high grade gliomas in the adult versus pediatric patient populations, highlighting similarities and differences in epidemiology, etiology, pathogenesis and therapeutic approaches. High grade gliomas in adults versus children have varying clinical presentations, molecular biology background, and response to chemotherapy, as well as unique molecular targets. However, increasing evidence show that they both respond to recently developed immunotherapies. This review summarizes the distinctions and commonalities between the two in disease pathogenesis and response to therapeutic interventions with a focus on immunotherapy.
Collapse
Affiliation(s)
- Payal Aggarwal
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | | | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Prajwal Rajappa
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|
43
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
44
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
45
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
46
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
47
|
Engineered Oncolytic Adenoviruses: An Emerging Approach for Cancer Therapy. Pathogens 2022; 11:pathogens11101146. [PMID: 36297203 PMCID: PMC9608483 DOI: 10.3390/pathogens11101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is among the major leading causes of mortality globally, and chemotherapy is currently one of the most effective cancer therapies. Unfortunately, chemotherapy is invariably accompanied by dose-dependent cytotoxic side effects. Recently, genetically engineered adenoviruses emerged as an alternative gene therapy approach targeting cancers. This review focuses on the characteristics of genetically modified adenovirus and oncology clinical studies using adenovirus-mediated gene therapy strategies. In addition, modulation of the tumor biology and the tumor microenvironment as well as the immunological responses associated with adenovirus-mediate cancer therapy are discussed.
Collapse
|
48
|
Yusubalieva GM, Dashinimaev EB, Gorchakov AA, Kulemzin SV, Brovkina OA, Kalinkin AA, Vinokurov AG, Shirmanova MV, Taranin AV, Baklaushev VP. Enhanced Natural Killers with CISH and B2M Gene Knockouts Reveal Increased Cytotoxicity in Glioblastoma Primary Cultures. Mol Biol 2022; 56:770-779. [DOI: 10.1134/s0026893322050156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 03/07/2025]
|
49
|
Kim KS, Choi B, Choi H, Ko MJ, Kim DH, Kim DH. Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. J Nanobiotechnology 2022; 20:428. [PMID: 36175895 PMCID: PMC9523925 DOI: 10.1186/s12951-022-01635-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Ferroptosis provides an opportunity to overcome the cancer cell therapeutic resistance and modulate the immune system. Here an interaction between ferroptosis of cancer cells and natural killer (NK) cells was investigated with a clinical grade iron oxide nanoparticle (ferumoxytol) for potential synergistic anti-cancer effect of ferroptosis and NK cell therapy in prostate cancer. When ferumoxytol mediated ferroptosis of cancer cells was combined with NK cells, the NK cells' cytotoxic function was increased. Observed ferroptosis mediated NK cell activation was also confirmed with IFN-γ secretion and lytic degranulation. Upregulation of ULBPs, which is one of the ligands for NK cell activating receptor NKG2D, was observed in the co-treatment of ferumoxytol mediated ferroptosis and NK cells. Additionally, HMGB1 and PD-L1 expression of cancer cells were observed in the treatment of ferroptosis + NK cells. Finally, in vivo therapeutic efficacy of ferumoxytol mediated ferroptosis and NK cell therapy was observed with significant tumor volume regression in a prostate cancer mice model. These results suggest that the NK cells' function can be enhanced with ferumoxytol mediated ferroptosis.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
| | - Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
50
|
Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More Than a Promise? Cancers (Basel) 2022; 14:cancers14184439. [PMID: 36139598 PMCID: PMC9496735 DOI: 10.3390/cancers14184439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary NK cell anti-tumor activity against hematological malignancies is well-established and many studies support their role in the control of solid tumor growth and metastasis generation. However, tumor microenvironment may affect NK cell function. Ongoing studies are aimed to design novel immunotherapeutic protocols to combine NK cell-based immunotherapy with other therapeutic strategies to improve the anti-tumor NK cell response. In this context, UCB is one of the main sources of both mature NK cells and of CD34+ HSPC that can generate NK cells, both in-vivo and in-vitro. UCB-derived NK cells represent a valuable tool to perform in-vitro and preclinical analyses and are already used in several clinical settings, particularly against hematological malignancies. The present review describes the characteristics of different types of UCB-derived NK cells and the in-vitro models to expand them, both for research and clinical purposes in the context of cancer immunotherapy. Abstract In the last 20 years, Natural Killer (NK) cell-based immunotherapy has become a promising approach to target various types of cancer. Indeed, NK cells play a pivotal role in the first-line defense against tumors through major histocompatibility complex-independent immunosurveillance. Their role in the control of leukemia relapse has been clearly established and, moreover, the presence of NK cells in the tumor microenvironment (TME) generally correlates with good prognosis. However, it has also been observed that, often, NK cells poorly infiltrate the tumor tissue, and, in TME, their functions may be compromised by immunosuppressive factors that contribute to the failure of anti-cancer immune response. Currently, studies are focused on the design of effective strategies to expand NK cells and enhance their cytotoxic activity, exploiting different cell sources, such as peripheral blood (PB), umbilical cord blood (UCB) and NK cell lines. Among them, UCB represents an important source of mature NK cells and CD34+ Hematopoietic Stem and Progenitor Cells (HSPCs), as precursors of NK cells. In this review, we summarize the UCB-derived NK cell activity in the tumor context, review the different in-vitro models to expand NK cells from UCB, and discuss the importance of their exploitation in anti-tumor immunotherapy protocols.
Collapse
|