1
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
2
|
Ochiai Y, Suzuki-Karasaki M, Ando T, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Nitric oxide-dependent cell death in glioblastoma and squamous cell carcinoma via prodeath mitochondrial clustering. Eur J Cell Biol 2024; 103:151422. [PMID: 38795505 DOI: 10.1016/j.ejcb.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM. Time-lapse analysis revealed a time-dependent increase in NO accompanied by MPMC. In contrast, APAM caused minimal increases in MPMC and NO levels in nontransformed cells. NO, hydroxyl radicals, and lipid peroxide levels increased near the damaged nuclear periphery, possibly within mitochondria. NO scavenging prevented tubulin remodeling, MPMC, perinuclear oxidant production, nuclear damage, and cell death. Conversely, synthetic NO donors augmented all the prodeath events and acted synergistically with APAM. Salinomycin, an emerging drug against multidrug-resistant cancers, had similar NO-dependent effects. These results suggest that APAM and salinomycin induce NO-dependent cell death, where MPMC and oxidative mitochondria play critical roles. Our findings encourage further investigations on MPMC as a potential target for NO-driven anticancer agents against drug-resistant cancers.
Collapse
Affiliation(s)
- Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Ando
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
3
|
Suzuki-Karasaki M, Ochiai Y, Innami S, Okajima H, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Ozone mediates the anticancer effect of air plasma by triggering oxidative cell death caused by H 2O 2 and iron. Eur J Cell Biol 2023; 102:151346. [PMID: 37572557 DOI: 10.1016/j.ejcb.2023.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Cold atmospheric plasmas and plasma-treated solutions (PTSs) have emerged as promising approaches in cancer treatment because of their tumor-selective actions. While oxidative stress is critical for their effects, the precise mechanisms, including chemical mediators, remain obscure. Previously, we reported that air plasma-activated medium (APAM) exhibited tumor-selective anticancer activity. The fragmentation of mitochondria and their asymmetrical assembly around the peripheral regions of the damaged nucleus, namely, monopolar perinuclear mitochondrial clustering (MPMC), proceed to the effect. Subsequently, we found that APAM had a substantial amount of O3 in addition to hydrogen peroxide (H2O2), nitrile (NO2-), and nitrate (NO3-). In the present study, we investigated the possible role of O3 in the anticancer effect. For this purpose, we created a nitrogen oxide-free ozonated medium ODM. ODM exhibited potent cytotoxicity against various cancer but not nonmalignant cells. ODM also increased MPMC, hydroxyl radicals, lipid peroxides, and their shifts to perinuclear sites in cancer cells. Catalase and iron chelation prevented these events and cytotoxicity. ODM also decreases the intracellular labile irons while increasing those within mitochondria. ODM had substantial H2O2, but this oxidant failed to cause MPMC and cytotoxicity. These results show that ODM can mimic the effects of APAM, including MPMC and tumor-selective anticancer effects. The findings suggest that O3 is critical in mediating the anticancer effects of APAM by triggering oxidative cell death caused by H2O2 and iron.
Collapse
Affiliation(s)
- Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Shizuka Innami
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Hiroshi Okajima
- Communication&Control Systems Company, Tokyo Keiki Incorporation, Tokyo, Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
4
|
Wang X, Tian X, Yan H, Zhu T, Ren H, Zhou Y, Zhao D, Xu D, Lian X, Fang L, Yu Y, Liao X, Liu Y, Sun J. Exposure to salinomycin dysregulates interplay between mitophagy and oxidative response to damage the porcine jejunal cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166441. [PMID: 37604367 DOI: 10.1016/j.scitotenv.2023.166441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Salinomycin (SAL) has caused widespread pollution as a feed additive and growth promoter in livestock such as pigs, exerting a negative impact on public health. The toxicity mechanism of SAL has been widely studied in chickens, but the underlying mechanisms of SAL-induced toxicity to pigs and the ecosystem remain undefined. In this study, we explored the potential damage of SAL in IPEC-J2 cells to identify the effects of excessive SAL on the interplay between mitophagy and oxidative stress. The results showed that a concentration-dependent response was observed for SAL in altering cellular morphology and inducing cell death in IPEC-J2 cells, including the induction of cell cycle arrest and lactic dehydrogenase (LDH) release. Meanwhile, we found that excessive SAL led to oxidative damage by activating the Nrf2/Keap1/HO-1 pathway, accompanied by reactive oxygen species (ROS) elevation and the reduction of antioxidant enzyme activity. We also found that PINK1/Parkin-dependent mitophagy was activated by SAL exposure, particularly with mitochondrial membrane potential reduction. Interestingly, SAL-induced oxidative damages were prevented after the autophagy inhibitor 3-methyladenine (3-MA) treatment, and mitophagy was alleviated following ROS scavenger (N-acetylcysteine, NAC) treatment. Overall, our findings showed that SAL stimulated oxidative stress and mitophagy in IPEC-J2 cells resulting in cellular injury, and there was a strong connection between SAL-induced oxidative stress and mitophagy. Targeting ROS/PINK1/Parkin-dependent mitophagy and oxidative stress could be a novel protective mechanism in SAL-induced cell damage.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaomin Tian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Huilin Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Tingting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yufeng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Donghao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Dan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Liangxing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China..
| |
Collapse
|
5
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
6
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
7
|
Dong L, Vargas CPD, Tian X, Chu X, Yin C, Wong A, Yang Y. Harnessing the Potential of Non-Apoptotic Cell Death Processes in the Treatment of Drug-Resistant Melanoma. Int J Mol Sci 2023; 24:10376. [PMID: 37373523 DOI: 10.3390/ijms241210376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma.
Collapse
Affiliation(s)
- Linyinxue Dong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | | | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Xiayu Chu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Chenqi Yin
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Aloysius Wong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- School of Natural Sciences, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| |
Collapse
|
8
|
Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of Plasma-activated solutions for potential cancer therapy. Free Radic Res 2023:1-12. [PMID: 36944223 DOI: 10.1080/10715762.2023.2193308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g., culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.Key Policy HighlightsPotential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to non-malignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Nagoya
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| |
Collapse
|
9
|
Gas plasma-oxidized sodium chloride acts via hydrogen peroxide in a model of peritoneal carcinomatosis. Proc Natl Acad Sci U S A 2022; 119:e2200708119. [PMID: 35901213 PMCID: PMC9351543 DOI: 10.1073/pnas.2200708119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gas plasma technology generates reactive oxygen and nitrogen species (ROS/RNS), inducing lethal oxidative damage in tumor cells. The transfer of gas plasma-derived ROS/RNS into liquids has been proposed as an innovative anti-cancer strategy targeting peritoneal carcinomatosis (PC). However, the mechanism of action is under debate. To this end, we compared gas plasma-oxidized medical-grade sodium chloride (oxNaCl) with a concentration-matched control (cmc) of NaCl enriched with equivalent concentrations of H2O2 and NO3- in several cell lines and models of PC. Strikingly, oxNaCl and cmc performed equally well in oxidation and cytotoxic activity in tumor cells in two-dimensional cultures, three-dimensional (3D) tumor spheroids, vascularized 3D tumors grown on chicken-embryo chorioallantoic membranes, and a syngeneic PC mouse model in vivo. Given the importance of immunotherapies in oncology today, we focused on immunological consequences of the treatment. Again, to a similar extent, oxNaCl and cmc increased tumor cell immunogenicity and enhanced uptake by and maturation of peripheral blood monocyte-derived dendritic cells together with an inflammatory secretion profile. Furthermore, NanoString gene expression profiling revealed immune system processes and unfolded protein response-related pathways as being linked to the observed anti-tumor effects for both oxNaCl and cmc. In conclusion, gas plasma-generated oxNaCl and cmc showed equal therapeutic efficacy in our PC-related models. In light of the many promising anti-cancer studies of gas plasma-oxidized liquids and the convenient production of corresponding cmcs in large quantities as needed in clinics, our findings may spur research lines based on low-dose oxidants in peritoneal cancer therapy.
Collapse
|
10
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
11
|
Miebach L, Freund E, Cecchini AL, Bekeschus S. Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer's Lactate Solutions in a Model of Peritoneal Carcinomatosis. Antioxidants (Basel) 2022; 11:antiox11081439. [PMID: 35892641 PMCID: PMC9331608 DOI: 10.3390/antiox11081439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil;
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Correspondence: ; Tel.: +49-3834-554-3948
| |
Collapse
|
12
|
Zhao L, Yan C, Kong S, Jia T, Chu Z, Yang L, Wu J, Geng S, Guo K. Biosafety and differentially expressed genes analysis of melanoma cells treated with cold atmospheric plasma. JOURNAL OF BIOPHOTONICS 2022; 15:e202100403. [PMID: 35261164 DOI: 10.1002/jbio.202100403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cold atmospheric plasma (CAP) has attracted increasing attention due to its anti-bacterial and anti-tumor effects. Melanoma is an aggressive malignancy with increasing incidence rate and poor prognosis. Evaluating cell viability, apoptosis rate and reactive species injection efficiency of melanoma cells and human keratinocyte cells (HaCaT) treated with CAP to analyze biological safety of CAP. RNA-sequencing (RNA-seq) of A875 cells before and after treatment was performed to further explore the anti-tumor mechanism of CAP. CAP had a more significant biological effect on melanoma cells than HaCaT cells by inhibiting proliferation and promoting apoptosis. RNA-sequencing analysis showed that besides MAPK and p53 apoptotic signaling pathways, necroptosis and autophagy also played important roles in CAP-induced melanoma cells death. CAP can selectively kill melanoma cells and has good biosafety cytologically. Besides apoptosis, CAP can induce cell death via autophagy and necroptosis.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Air Plasma-Activated Medium Evokes a Death-Associated Perinuclear Mitochondrial Clustering. Int J Mol Sci 2022; 23:ijms23031124. [PMID: 35163042 PMCID: PMC8835529 DOI: 10.3390/ijms23031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.
Collapse
|
14
|
Braný D, Dvorská D, Strnádel J, Matáková T, Halašová E, Škovierová H. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy. Int J Mol Sci 2021; 22:ijms222212252. [PMID: 34830132 PMCID: PMC8617606 DOI: 10.3390/ijms222212252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cold atmospheric plasma has great potential for use in modern medicine. It has been used in the clinical treatment of skin diseases and chronic wounds, and in laboratory settings it has shown effects on selective decrease in tumour-cell viability, reduced tumour mass in animal models and stem-cell proliferation. Many researchers are currently focusing on its application to internal structures and the use of plasma-activated liquids in tolerated and effective human treatment. There has also been analysis of plasma's beneficial synergy with standard pharmaceuticals to enhance their effect. Cold atmospheric plasma triggers various responses in tumour cells, and this can result in epigenetic changes in both DNA methylation levels and histone modification. The expression and activity of non-coding RNAs with their many important cell regulatory functions can also be altered by cold atmospheric plasma action. Finally, there is ongoing debate whether plasma-produced radicals can directly affect DNA damage in the nucleus or only initiate apoptosis or other forms of cell death. This article therefore summarises accepted knowledge of cold atmospheric plasma's influence on epigenetic changes, the expression and activity of non-coding RNAs, and DNA damage and its effect in synergistic treatment with routinely used pharmaceuticals.
Collapse
Affiliation(s)
- Dušan Braný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
- Correspondence:
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Tatiana Matáková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| |
Collapse
|
15
|
Nastasa V, Pasca AS, Malancus RN, Bostanaru AC, Ailincai LI, Ursu EL, Vasiliu AL, Minea B, Hnatiuc E, Mares M. Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice. Int J Mol Sci 2021; 22:ijms222111534. [PMID: 34768973 PMCID: PMC8583710 DOI: 10.3390/ijms222111534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAW on the health of CD1 mice. PAW was prepared from distilled water with a GlidArc reactor according to a previously published protocol. The pH was 2.78. The mice received PAW (experimental group) or tap water (control group) daily for 90 days as the sole water source. After 90 days, the following investigations were performed on the euthanatized animals: gross necropsy, teeth mineral composition, histopathology, immunohistochemistry, hematology, blood biochemistry, methemoglobin level and cytokine profile. Mice tolerated PAW very well and no adverse effects were observed during the entire period of the experiment. Histopathological examination of the organs and tissues did not reveal any structural changes. Moreover, the expression of proliferation markers PCNA and Ki67 has not been identified in the epithelium of the upper digestive tract, indicating the absence of any pre- or neoplastic transformations. The results of our study demonstrated that long-term exposure to PAW caused no toxic effects and could be used as oral antiseptic solution in dental medicine.
Collapse
Affiliation(s)
- Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Aurelian-Sorin Pasca
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Razvan-Nicolae Malancus
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Andra-Cristina Bostanaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Luminita-Iuliana Ailincai
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Elena-Laura Ursu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica-Voda, 700487 Iasi, Romania; (E.-L.U.); (A.-L.V.)
| | - Ana-Lavinia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica-Voda, 700487 Iasi, Romania; (E.-L.U.); (A.-L.V.)
| | - Bogdan Minea
- Department of Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iași, Romania
- Correspondence:
| | - Eugen Hnatiuc
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (R.-N.M.); (A.-C.B.); (L.-I.A.); (E.H.); (M.M.)
| |
Collapse
|