1
|
DiPeso L, Pendyala S, Huang HZ, Fowler DM, Hatch EM. Image-based identification and isolation of micronucleated cells to dissect cellular consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.04.539483. [PMID: 37205341 PMCID: PMC10187275 DOI: 10.1101/2023.05.04.539483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in isolating cells based on visual phenotypes have transformed our ability to identify the mechanisms and consequences of complex traits. Micronucleus (MN) formation is a frequent outcome of genome instability, triggers extensive disease-associated changes in genome structure and signaling coincident with MN rupture, and is almost exclusively defined by visual analysis. Automated MN detection in microscopy images has proved extremely challenging, limiting unbiased discovery of the mechanisms and consequences of MN formation and rupture. In this study we describe two new MN segmentation modules: a rapid model for classifying micronucleated cells and their rupture status (VCS MN), and a robust model for accurate MN segmentation (MNFinder) from a broad range of fluorescence microscopy images. As a proof-of- concept, we define the transcriptome of non-transformed human cells with intact or ruptured MN after inducing chromosome missegregation by combining VCS MN with photoactivation-based cell isolation and RNASeq. Surprisingly, we find that neither MN formation nor rupture triggers a strong unique transcriptional response. Instead, transcriptional changes appear correlated with small increases in aneuploidy in these cell classes. Our MN segmentation modules overcome a significant challenge with reproducible MN quantification, and, joined with visual cell sorting, enable the application of powerful functional genomics assays, including pooled CRISPR screens and time-resolved analyses of cellular and genetic consequences, to a wide-range of questions in MN biology.
Collapse
|
2
|
Høye E, Kanduri C, Torgunrud A, Lorenz S, Edwin B, Larsen SG, Fretland ÅA, Dagenborg VJ, Flatmark K, Lund-Andersen C. Enrichment of Cancer-Associated Fibroblasts, Macrophages, and Up-Regulated TNF-α Signaling in the Tumor Microenvironment of CMS4 Colorectal Peritoneal Metastasis. Cancer Med 2025; 14:e70521. [PMID: 39739693 DOI: 10.1002/cam4.70521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors. This study aimed to explore the metastatic tumor microenvironment (TME) by comparing cell populations in colorectal liver (CLM), lung (mLu), and peritoneal (PM) metastases. METHODS RNA isolated from 20 CLM, 15 mLu, and 35 PM samples was subjected to mRNA sequencing and explored through TME deconvolution tools, consensus molecular subtyping (CMS), and differential gene expression and gene set enrichment analysis, with respect to the metastatic sites. Clinical data and KRAS/BRAF hotspot mutation status were also obtained for all the cases. RESULTS The cell type fractions in the TME were relatively similar between the metastatic sites, except for cancer-associated fibroblasts (CAFs), B cells, endothelial cells, and CD4+ T cells. Notably, PM showed enrichment for CAFs and endothelial cells, consistent with distinct pathways associated with metastatic growth and progression in the peritoneal cavity. PM with the mesenchymal subtype, CMS4, had increased CAFs, endothelial cells, and macrophages, along with up-regulated genes related to TNF-α signaling via NF-κB, EMT, and angiogenesis. CONCLUSIONS Tumor samples from different metastatic sites exhibited a broadly similar TME in terms of immune cell composition, with some intriguing differences. Targeting CAF-associated pathways, macrophages, and TNF-α signaling through NR4A could represent potential novel therapeutic approaches in CMS4 PM.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Annette Torgunrud
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Stein G Larsen
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Åsmund A Fretland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Vegar J Dagenborg
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Innamorati G, Sanchez-Petidier M, Bergafora G, Codazzi C, Palma V, Camera F, Merla C, André FM, Pedraza M, Moreno Manzano V, Caramazza L, Colella M, Marracino P, Balucani M, Apollonio F, Liberti M, Consales C. Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation. Int J Mol Sci 2024; 26:147. [PMID: 39796006 PMCID: PMC11720446 DOI: 10.3390/ijms26010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation. This study aims to characterize the effect of a specific microsecond electric pulse stimulation (bipolar pulses of 100 µs + 100 µs, delivered for 30 min at an intensity of 250 V/cm) to induce an increase in cell proliferation on mesenchymal stem cells (MSCs) and induced neural stem cells (iNSCs). The effect was evaluated in terms of (i) cell counting, (ii) cell cycle, (iii) gene expression, and (iv) apoptosis. The results show that 24 h after the stimulation, cell proliferation, cell cycle, and apoptosis are not affected, but variation in the expression of specific genes involved in these processes is observed. These results led us to investigate cell proliferation until 72 h from the stimulation, observing an increase in the iNSCs number at this time point. The main outcome of this study is that the microsecond electric pulses can modulate stem cell proliferation.
Collapse
Affiliation(s)
- Giorgia Innamorati
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Marina Sanchez-Petidier
- Neural Circuits and Behaviour Laboratory, Fundación Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Giulia Bergafora
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Camilla Codazzi
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Valentina Palma
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Francesca Camera
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Caterina Merla
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Franck M. André
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Maria Pedraza
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Laura Caramazza
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micol Colella
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | | | | | - Francesca Apollonio
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micaela Liberti
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Claudia Consales
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| |
Collapse
|
4
|
Tian M, Tang M, Chen C, Lin Y, Chen H, Xu Y. Macrophage Infiltration Correlated with IFI16, EGR1 and MX1 Expression in Renal Tubular Epithelial Cells Within Lupus Nephritis-Associated Tubulointerstitial Injury via Bioinformatics Analysis. J Inflamm Res 2024; 17:11469-11483. [PMID: 39735896 PMCID: PMC11681807 DOI: 10.2147/jir.s489087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Objective A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells. Methods The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT. Finally, Western blotting, quantitative real-time polymerase chain reaction, and multiple immunofluorescence methods were used to confirm the significance of these feature genes in MRL/lpr mice and patients with LN. Results Seventeen DEGs were identified, of which 11 were considerably upregulated and six were markedly downregulated. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment in pertussis, complement and coagulation cascades, systemic lupus erythematosus, and other pathways. Based on the machine learning results, we identified IFI16, EGR1 and MX1 were key diagnostic genes for tubulointerstitial injury associated with LN. Immune cell infiltration analysis revealed that IFI16, EGR1 and MX1 were associated with M1 macrophages. Finally, the association between IFI16, EGR1, MX1 and macrophages in MRL/lpr mice and patients with LN were verified. Conclusion This study suggests that IFI16, EGR1 and MX1 which are highly expressed in renal tubular epithelial cells in LN and are associated with macrophage infiltration, may be a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ming Tian
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Min Tang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yufang Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| |
Collapse
|
5
|
Taheri S, Javadmanesh A, Zerehdaran S. Identification of selective sweep and associated QTL traits in Iranian Ovis aries and Ovis orientalis populations. Front Genet 2024; 15:1414717. [PMID: 39748948 PMCID: PMC11693725 DOI: 10.3389/fgene.2024.1414717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Identifying genomic regions under selection is the most challenging issue for improving important traits in animals. Few studies have focused on identifying genomic regions under selection in sheep. The aim of this study was to identify selective sweeps and to explore the relationship between these and quantitative trait loci (QTL) in both domestic and wild sheep species using single nucleotide polymorphism markers (SNPs). Methods Genomic data were obtained from the NextGen project, which included genotyping 20 domestic and 14 wild sheep using the Illumina Ovine SNP50K BeadChip. The XP-EHH, iHS, and RSB methods were employed to detect signatures of positive selection. Results The results of the iHS method indicated 405 and 275 selective sweeps in domestic and wild sheep, respectively. Additionally, RSB and XP-EHH analyses revealed approximately 398 and 479 selective sweeps in domestic and wild sheep, respectively. Some of the genes associated with important QTL traits in domestic sheep include ADGRB3, CADM1, CAPN2, GALNT10, MTR, RELN, and USP25, while in wild sheep, the relevant genes include ACAN, ACO1, GADL1, MGST3, and PRDM16. Selective sweeps identified in domestic sheep were associated with body weight, muscle weight, milk protein percentage, and milk yield. In contrast, selective sweeps found in wild sheep were linked to average daily gain, bone weight, carcass fat percentage, and dressing percentage. Discussion These results indicate that selection by humans and the environment have largely progressed in harmony, highlighting the importance of both economic and environmental traits for survival. Additionally, the identification of potential candidate genes associated with economic traits and genomic regions that have experienced selection can be utilized in sheep breeding programs. However, due to the incomplete information regarding the functional annotation of genes in sheep and the limited sample size, further research with a larger sample group is essential to gain a deeper understanding of the candidate genes linked to economic traits in both domestic and wild sheep. Advancing knowledge in this area can significantly enhance the effectiveness of breeding strategies. The quantitative trait loci identified in this study have the potential to be incorporated into breeding plans for both domestic and wild sheep.
Collapse
Affiliation(s)
| | | | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Zhang X, Zhang Y, Du W. Alleviating role of ketamine in breast cancer cell-induced osteoclastogenesis and tumor bone metastasis-induced bone cancer pain through an SRC/EGR1/CST6 axis. BMC Cancer 2024; 24:1535. [PMID: 39695463 DOI: 10.1186/s12885-024-13290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The analgesic effect of ketamine in cancer pain remains controversial. This research investigates the role of ketamine in bone metastasis-induced cancer pain in breast cancer (BC) and its associated molecular network. METHODS BC cell lines MDA-MB-231 and ZR-75-1 were treated with ketamine and malignant behaviors were assessed through CCK-8, colony formation, and Transwell assays. To evaluate the pro-osteoclastic effect in vitro, BC cells were co-cultured with RAW 264.7 cells. Alterations in the expression of SRC proto-oncogene (SRC), early growth response 1 (EGR1), and cystatin E/M (CST6) were induced in BC cells using lentivirus. MDA-MB-231 cells were injected intracardially into nude mice to examine tumor bone metastasis in vivo. Molecular interactions between SRC and EGR1, as well as between EGR1 and CST6 were analyzed via immunoprecipitation and luciferase assays. RESULTS Ketamine treatment suppressed viability, proliferation, migration and invasiveness, epithelial-mesenchymal transition, and pro-osteoclastic effect in BC cells. Ketamine also reduced osteoclastogenesis and tumor bone metastasis burden and alleviated pain in nude mice. SRC was identified as a target of ketamine. Overexpression of SRC in BC cells blocked the effects of ketamine. SRC bound to the EGR1 promoter, suppressing EGR1 transcription, whereas EGR1 activated CST6 transcription. Either EGR1 or CST6 overexpression counteracted the function of SRC overexpression and decreased the viability of BC cells and their pro-osteoclastic effect in vitro and in vivo. CONCLUSION This study demonstrates that ketamine alleviates BC cell-induced osteoclastogenesis and tumor bone metastasis by suppressing SRC and restoring the EGR1/CST6 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yanmei Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
7
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. RESEARCH SQUARE 2024:rs.3.rs-5449794. [PMID: 39711575 PMCID: PMC11661378 DOI: 10.21203/rs.3.rs-5449794/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH), to investigate protease activity (e.g., calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. We used a rat model of OSA known as chronic intermittent hypoxia (CIH) to investigate protease activity (calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. Methods Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. Results CIH dysregulated calpain activity in male ETC and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. Conclusions Overall, these data show that CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- University of North Texas Health Science Center
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hill CM, Indeglia A, Picone F, Murphy ME, Cipriano C, Maki RG, Gardini A. NAB2-STAT6 drives an EGR1-dependent neuroendocrine program in Solitary Fibrous Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589533. [PMID: 38659891 PMCID: PMC11042251 DOI: 10.1101/2024.04.15.589533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.
Collapse
Affiliation(s)
- Connor M Hill
- The Wistar Institute, Philadelphia, PA, US
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | - Alexandra Indeglia
- The Wistar Institute, Philadelphia, PA, US
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | | | | | - Cara Cipriano
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
| | - Robert G Maki
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S. Present address: Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Weill Cornell Medical College, Cornell University, New York, NY, U.S
| | | |
Collapse
|
9
|
Zhang B, Guo B, Kong H, Yang L, Yan H, Liu J, Zhou Y, An R, Wang F. Decoding the Ferroptosis-Related Gene Signatures and Immune Infiltration Patterns in Ovarian Cancer: Bioinformatic Prediction Integrated with Experimental Validation. J Inflamm Res 2024; 17:10333-10346. [PMID: 39654865 PMCID: PMC11626233 DOI: 10.2147/jir.s498740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Background Ovarian cancer is a type of gynecological cancer with extremely high fatality rate. Ferroptosis, an iron-dependent regulated cell death, inhibits the immune infiltration of tumor cells. Therefore, it is worthwhile to explore the effects of ferroptosis-related gene signatures and immune infiltration patterns on the clinical prognosis of ovarian cancer. Methods In this study, we used the mRNA expression matrix and related medical information of those who suffer from ovarian cancer in the TCGA database. After that, we established a ferroptosis-related gene signature based on LASSO Cox regression model, and employed several specific enrichment analyses to explore the bioinformatics functions of differentially expressed genes (DEGs). Additionally, we analyzed the link between ferroptosis and immune cells by single-sample gene set enrichment analysis (ssGSEA) to create a heatmap of gene-immune cell correlation. We then examined the expression of immune checkpoints and verified the gene expression in ovarian cancer tissues by qPCR assays. Finally, we induced ferroptosis in ovarian cancer cells using drugs and analyzed their migration, invasion and gene expression. Results According to LASSO Cox regression analysis, 9 prognostic DEGs were in association with overall survival (OS), which was utilized to construct a 9-gene signature for patients. Patients were divided into two groups, in which high-risk group's OS was markedly shorter than that of low-risk group (Log-rank p<0.001). KEGG enrichment analysis showed that these DEGs were linked to human cytomegalovirus (HCMV) infection. The ssGSEA analysis revealed significant differences in immune cell type and expression between ALOX12 and GLRX5 groups (p<0.05). Heatmap showed high correlation of prognostic genes with various immune cells. qPCR assay confirmed the 9 gene expression signature in ovarian cancer tissues. The ovarian cancer cell invasion and migration were significantly inhibited after induction of ferroptosis. Conclusion We decoded the ferroptosis-related gene signatures and immune infiltration patterns that can be used to predict the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Beilei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Bin Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Hancun Kong
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Linwei Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Hui Yan
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Jierui Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Yichen Zhou
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Fu Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi, 712046, People’s Republic of China
| |
Collapse
|
10
|
Ni T, Zhao RH, Wu JF, Li CY, Xue G, Lin X. KLK7, KLK10, and KLK11 in Papillary Thyroid Cancer: Bioinformatic Analysis and Experimental Validation. Biochem Genet 2024; 62:4446-4471. [PMID: 38316654 DOI: 10.1007/s10528-024-10679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
Despite many studies on papillary thyroid carcinoma (PTC) in the past few decades, some critical and significant genes remain undiscovered. To explore genes that may play crucial roles in PTC, a detailed analysis of the expression levels, mutations, and clinical significance of Kallikrein-related peptidases (KLKs) family genes in PTC was undertaken to provide new targets for the precise treatment of the disease. A comprehensive analysis of KLK family genes was performed using various online tools, such as GEPIA, Kaplan-Meier Plotter, LinkedOmics, GSCA, TIMER, and Cluego. KLK7, KLK10, and KLK11 were critical factors of KLK family genes. Then, functional assays were carried out on KLK7/10/11 to determine their proliferation, migration, and invasion capabilities in PTC. The mRNA expression levels of KLK7, KLK10, KLK11, and KLK13 were significantly elevated in thyroid carcinoma, while KLK1, KLK2, KLK3 and KLK4 mRNA levels were decreased compared to normal tissues. Correlations between KLK2/7-12/15 expression levels and tumor stage were also observed in thyroid carcinoma. Survival analysis demonstrated that KLK4/5/7/9-12/14 was associated with overall survival in patients with thyroid cancer. Not only were KLK genes strongly associated with cancer-related pathways, but also KLK7/10/11 was associated with immune-cell infiltration. Finally, silencing KLK7/10/11 impaired human papillary thyroid carcinoma cells' growth, migration ability, and invasiveness. The increased expression of KLK7, KLK10, and KLK11 may serve as molecular markers to identify PTC patients. KLK7, KLK10, and KLK11 could be potential prognostic indicators and targets for precision therapy against PTC.
Collapse
Affiliation(s)
- Tao Ni
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ru-Hua Zhao
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Chao-You Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xu Lin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China.
| |
Collapse
|
11
|
Ren C, D'Amato G, Hornicek FJ, Tao H, Duan Z. Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications. Cancer Metastasis Rev 2024; 43:1337-1352. [PMID: 39120790 PMCID: PMC11554739 DOI: 10.1007/s10555-024-10204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.
Collapse
Affiliation(s)
- Chongmin Ren
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
- The Orthopedic Hospital, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China
| | - Gina D'Amato
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
| | - Hao Tao
- The Orthopedic Hospital, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Min X, Lin F, Zhao X, Yu J, Ge C, Zhang S, Li X, Zhao F, Chen T, Tian H, Yan M, Li J, Li H. TENT5A mediates the cancer-inhibiting effects of EGR1 by suppressing the protein stability of RPL35 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2247-2264. [PMID: 39570560 DOI: 10.1007/s13402-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated. METHODS The transcription level of TENT5A and clinical correlation were analyzed using the LIRI-JP cohort, the TCGA-LIHC cohort, and clinical tissue samples of HCC patients in our laboratory. Proliferation, migration, and invasion were detected with stably TENT5A overexpressing and knockdown HCC cells in vitro and in vivo. Chromatin immunoprecipitation and dual-luciferase reporter assay were performed to verify the binding of the target protein to DNA. Co-immunoprecipitation and GST pull-down assay combined with mass spectrometry (MS) were used to identify protein interactions. RESULTS Our study presented here shows that TENT5A is downregulated in HCC tissues, suggesting a shorter overall survival for patients. Gain- and loss-of-function experiments reveal that TENT5A suppresses the proliferation and metastasis, and the residue Gly122 is of great importance to the role of TENT5A in HCC. More importantly, EGR1 (Early growth response 1) directly binds to the TENT5A promoter and promotes TENT5A expression. By interacting with RPL35, TENT5A is involved in ribosome biogenesis and exerts a negative regulatory effect on the mTOR pathway. CONCLUSIONS Our findings illustrate the role of the oncosuppressive function of TENT5A in HCC and suggest that the EGR1/TENT5A/RPL35 regulatory axis may be a promising target for therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xuejie Min
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Fen Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Xinge Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Junming Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Saihua Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Xianxian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Taoyang Chen
- Department of Pathology, Qi Dong Liver Cancer Institute, Qidong, 226220, China
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Jinjun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| | - Hong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Wang Y. Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05112-0. [PMID: 39607471 DOI: 10.1007/s12010-024-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Medical Oncology, Xinglongtai District, Panjin Central Hospital, No.32, Liaohe Middle RoadLiaoning Province 124010, Panjin City, China.
| |
Collapse
|
14
|
Shimojukkoku Y, Nguyen PT, Ishihata K, Ishida T, Kajiya Y, Oku Y, Kawaguchi K, Tsuchiyama T, Saijo H, Shima K, Sasahira T. Role of early growth response-1 as a tumor suppressor in oral squamous cell carcinoma. Discov Oncol 2024; 15:714. [PMID: 39589658 PMCID: PMC11599674 DOI: 10.1007/s12672-024-01611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) exhibits pronounced local invasiveness and a propensity for lymph node metastasis. Given its frequent detection at advanced stages and the consequential postoperative functional impairments, the identification of effective molecular markers for early detection and treatment is imperative. Early growth response-1 (EGR-1) serves as a versatile transcription factor expressed across various cell types. Its role in cancer is contentious, acting as either an oncogene or a tumor suppressor gene. METHODS This study undertook comprehensive analyses, including big data scrutiny, expression profiling using 50 OSCC samples, and in vitro functional assessments, to elucidate EGR-1's involvement in OSCC. RESULTS Comparative analysis revealed significantly reduced EGR-1 expression in oral cancer tissues compared to healthy controls or normal oral mucosa. In vitro experimentation with multiple OSCC cell lines demonstrated that EGR-1 curbed cell proliferation, migration, and invasion capabilities. Additionally, it was observed that EGR-1 prompted G0/G1 arrest in OSCC cells by modulating the activity of cell cycle regulators. CONCLUSIONS These findings strongly support EGR-1's tumor-suppressive role in OSCC and hint at the potential for novel OSCC therapies aimed at restoring aberrant EGR-1 function.
Collapse
Affiliation(s)
- Yudai Shimojukkoku
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Phuong Thao Nguyen
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayuki Ishida
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuka Kajiya
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yasunobu Oku
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koshiro Kawaguchi
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takahiro Tsuchiyama
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideto Saijo
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kaori Shima
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomonori Sasahira
- Department of Molecular Oral Pathology and Oncology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
15
|
Zerad L, Gacem N, Gayda F, Day L, Sinigaglia K, Richard L, Parisot M, Cagnard N, Mathis S, Bole-Feysot C, O'Connell MA, Pingault V, Dambroise E, Keegan LP, Vallat JM, Bondurand N. Overexpression of Egr1 Transcription Regulator Contributes to Schwann Cell Differentiation Defects in Neural Crest-Specific Adar1 Knockout Mice. Cells 2024; 13:1952. [PMID: 39682701 DOI: 10.3390/cells13231952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects.
Collapse
Affiliation(s)
- Lisa Zerad
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Nadjet Gacem
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Fanny Gayda
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Lucie Day
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Ketty Sinigaglia
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Laurence Richard
- Department of Neurology, Centre de Reference "Neuropathies Périphériques Rares", CHU Limoges, 87000 Limoges, France
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France
| | - Nicolas Cagnard
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Stephane Mathis
- Department of Neurology (Nerve-Muscle Unit) and 'Grand Sud-Ouest' National Reference Center for Neuromuscular Disorders, CHU Bordeaux, Pellegrin Hospital, 33000 Bordeaux, France
| | - Christine Bole-Feysot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France
| | - Mary A O'Connell
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Liam P Keegan
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Jean Michel Vallat
- Department of Neurology, Centre de Reference "Neuropathies Périphériques Rares", CHU Limoges, 87000 Limoges, France
| | - Nadege Bondurand
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
16
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
17
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
18
|
Zhou L, Pereiro MT, Li Y, Derigs M, Kuenne C, Hielscher T, Huang W, Kränzlin B, Tian G, Kobayashi K, Lu GHN, Roedl K, Schmidt C, Günther S, Looso M, Huber J, Xu Y, Wiech T, Sperhake JP, Wichmann D, Gröne HJ, Worzfeld T. Glucocorticoids induce a maladaptive epithelial stress response to aggravate acute kidney injury. Sci Transl Med 2024; 16:eadk5005. [PMID: 39356748 DOI: 10.1126/scitranslmed.adk5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Acute kidney injury (AKI) is a frequent and challenging clinical condition associated with high morbidity and mortality and represents a common complication in critically ill patients with COVID-19. In AKI, renal tubular epithelial cells (TECs) are a primary site of damage, and recovery from AKI depends on TEC plasticity. However, the molecular mechanisms underlying adaptation and maladaptation of TECs in AKI remain largely unclear. Here, our study of an autopsy cohort of patients with COVID-19 provided evidence that injury of TECs by myoglobin, released as a consequence of rhabdomyolysis, is a major pathophysiological mechanism for AKI in severe COVID-19. Analyses of human kidney biopsies, mouse models of myoglobinuric and gentamicin-induced AKI, and mouse kidney tubuloids showed that TEC injury resulted in activation of the glucocorticoid receptor by endogenous glucocorticoids, which aggravated tubular damage. The detrimental effect of endogenous glucocorticoids on injured TECs was exacerbated by the administration of a widely clinically used synthetic glucocorticoid, dexamethasone, as indicated by experiments in mouse models of myoglobinuric- and folic acid-induced AKI, human and mouse kidney tubuloids, and human kidney slice cultures. Mechanistically, studies in mouse models of AKI, mouse tubuloids, and human kidney slice cultures demonstrated that glucocorticoid receptor signaling in injured TECs orchestrated a maladaptive transcriptional program to hinder DNA repair, amplify injury-induced DNA double-strand break formation, and dampen mTOR activity and mitochondrial bioenergetics. This study identifies glucocorticoid receptor activation as a mechanism of epithelial maladaptation, which is functionally important for AKI.
Collapse
Affiliation(s)
- Luping Zhou
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Marc Torres Pereiro
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Yanqun Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Marcus Derigs
- Department of Urology, University Hospital, University of Marburg, Baldingerstraße, Marburg 35043, Germany
| | - Carsten Kuenne
- Bioinformatics, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Wei Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Bettina Kränzlin
- Core Facility Preclinical Models, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Straße 13-17, Mannheim 68167, Germany
| | - Gang Tian
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
| | - Kazuhiro Kobayashi
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Gia-Hue Natalie Lu
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Claudia Schmidt
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stefan Günther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Mario Looso
- Bioinformatics, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Johannes Huber
- Department of Urology, University Hospital, University of Marburg, Baldingerstraße, Marburg 35043, Germany
| | - Yong Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Jan-Peter Sperhake
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
- Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| |
Collapse
|
19
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
20
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
21
|
Lu Y, Berenson A, Lane R, Guelin I, Li Z, Chen Y, Shah S, Yin M, Soto-Ugaldi LF, Fiszbein A, Fuxman Bass JI. A large-scale cancer-specific protein-DNA interaction network. Life Sci Alliance 2024; 7:e202402641. [PMID: 39013578 PMCID: PMC11252446 DOI: 10.26508/lsa.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer development and progression are generally associated with gene dysregulation, often resulting from changes in the transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network, as well as an extensive promoter clone resource for future studies. Highly connected TFs bind to promoters of genes associated with either good or poor cancer prognosis, suggesting that strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene-targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activators or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF ESR1 in DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study broadens our knowledge of the TFs involved in cancer gene regulation and provides a valuable resource for future studies and therapeutics.
Collapse
Affiliation(s)
- Yunwei Lu
- Biology Department, Boston University, Boston, MA, USA
| | - Anna Berenson
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Ryan Lane
- Biology Department, Boston University, Boston, MA, USA
| | | | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Yilin Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Sakshi Shah
- Biology Department, Boston University, Boston, MA, USA
| | - Meimei Yin
- Biology Department, Boston University, Boston, MA, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Juan Ignacio Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Liu H, Liu G, Guo R, Li S, Chang T. Identification of Potential Key Genes for the Comorbidity of Myasthenia Gravis With Thymoma by Integrated Bioinformatics Analysis and Machine Learning. Bioinform Biol Insights 2024; 18:11779322241281652. [PMID: 39345724 PMCID: PMC11437577 DOI: 10.1177/11779322241281652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Thymoma is a key risk factor for myasthenia gravis (MG). The purpose of our study was to investigate the potential key genes responsible for MG patients with thymoma. Methods We obtained MG and thymoma dataset from GEO database. Differentially expressed genes (DEGs) were determined and functional enrichment analyses were conducted by R packages. Weighted gene co-expression network analysis (WGCNA) was used to screen out the crucial module genes related to thymoma. Candidate genes were obtained by integrating DEGs of MG and module genes. Subsequently, we identified several candidate key genes by machine learning for diagnosing MG patients with thymoma. The nomogram and receiver operating characteristics (ROC) curves were applied to assess the diagnostic value of candidate key genes. Finally, we investigated the infiltration of immunocytes and analyzed the relationship among key genes and immune cells. Results We obtained 337 DEGs in MG dataset and 2150 DEGs in thymoma dataset. Biological function analyses indicated that DEGs of MG and thymoma were enriched in many common pathways. Black module (containing 207 genes) analyzed by WGCNA was considered as the most correlated with thymoma. Then, 12 candidate genes were identified by intersecting with MG DEGs and thymoma module genes as potential causes of thymoma-associated MG pathogenesis. Furthermore, five candidate key genes (JAM3, MS4A4A, MS4A6A, EGR1, and FOS) were screened out through integrating least absolute shrinkage and selection operator (LASSO) regression and Random forest (RF). The nomogram and ROC curves (area under the curve from 0.833 to 0.929) suggested all five candidate key genes had high diagnostic values. Finally, we found that five key genes and immune cell infiltrations presented varying degrees of correlation. Conclusions Our study identified five key potential pathogenic genes that predisposed thymoma to the development of MG, which provided potential diagnostic biomarkers and promising therapeutic targets for MG patients with thymoma.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Geyu Liu
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Clinical Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Roointan A, Ghaeidamini M, Yavari P, Naimi A, Gheisari Y, Gholaminejad A. Transcriptome meta-analysis and validation to discovery of hub genes and pathways in focal and segmental glomerulosclerosis. BMC Nephrol 2024; 25:293. [PMID: 39232654 PMCID: PMC11375834 DOI: 10.1186/s12882-024-03734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS), a histologic pattern of injury in the glomerulus, is one of the leading glomerular causes of end-stage renal disease (ESRD) worldwide. Despite extensive research, the underlying biological alterations causing FSGS remain poorly understood. Studying variations in gene expression profiles offers a promising approach to gaining a comprehensive understanding of FSGS molecular pathogenicity and identifying key elements as potential therapeutic targets. This work is a meta-analysis of gene expression profiles from glomerular samples of FSGS patients. The main aims of this study are to establish a consensus list of differentially expressed genes in FSGS, validate these findings, understand the disease's pathogenicity, and identify novel therapeutic targets. METHODS After a thorough search in the GEO database and subsequent quality control assessments, seven gene expression datasets were selected for the meta-analysis: GSE47183 (GPL14663), GSE47183 (GPL11670), GSE99340, GSE108109, GSE121233, GSE129973, and GSE104948. The random effect size method was applied to identify differentially expressed genes (meta-DEGs), which were then used to construct a regulatory network (STRING, MiRTarBase, and TRRUST) and perform various pathway enrichment analyses. The expression levels of several meta-DEGs, specifically ADAMTS1, PF4, EGR1, and EGF, known as angiogenesis regulators, were analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The identified 2,898 meta-DEGs, including 665 downregulated and 669 upregulated genes, were subjected to various analyses. A co-regulatory network comprising 2,859 DEGs, 2,688 microRNAs (miRNAs), and 374 transcription factors (TFs) was constructed, and the top molecules in the network were identified based on degree centrality. Part of the pathway enrichment analysis revealed significant disruption in the angiogenesis regulatory pathways in the FSGS kidney. The RT-qPCR results confirmed an imbalance in angiogenesis pathways by demonstrating the differential expression levels of ADAMTS1 and EGR1, two key angiogenesis regulators, in the FSGS condition. CONCLUSION In addition to presenting a consensus list of differentially expressed genes in FSGS, this meta-analysis identified significant distortions in angiogenesis-related pathways and factors in the FSGS kidney. Targeting these factors may offer a viable strategy to impede the progression of FSGS.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Maryam Ghaeidamini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Parvin Yavari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Azar Naimi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran.
| |
Collapse
|
24
|
Rasras S, Akade E, Mohammadianinejad SE, Barahman M, Bahadoram M. Early growth response 1 transcription factor and its context-dependent functions in glioblastoma. Contemp Oncol (Pozn) 2024; 28:91-97. [PMID: 39421709 PMCID: PMC11480913 DOI: 10.5114/wo.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma is the most aggressive form of primary brain tumour in adults. This tumour employs numerous transcription factors to advance and sustain its progression. Current evidence suggest that early growth response 1 (EGR1) plays a dual role as both an oncogene and a tumour suppressor in glioblastoma. Early growth response 1 expression is prevalent in glioblastoma, affecting over 80% of cases. Early growth response 1 regulatory roles extend to angiogenesis, cell adhesion, and resistance to chemotherapy, notably influencing pathways like hypoxia-inducible factor 1α and vascular endothelial growth factor A. Early growth response 1 can also induce cell adhesion, migration, chemoresistance against temozolomide, stemness, and self-renewal in glioblastoma cells. Despite its oncogenic functions, EGR1 can also suppress tumours by upregulating non-steroidal anti-inflammatory drug-activated gene 1 and phosphatase and tensin homolog deleted on chromosome ten, and inhibiting invasion and metastasis. Additionally, EGR1 may have hypothetical implications in the viral hit-and-run theory, particularly regarding cytomegalovirus infection. The key findings of this review are the context- dependent nature of EGR1's actions and its potential as a prognostic marker in glioblastoma. Further research is needed to understand EGR1's role fully and exploit its potential in clinics.
Collapse
Affiliation(s)
- Saleh Rasras
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maedeh Barahman
- Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Imam Khomeini Hospital, Iran University of Medical Sciences, Iran
| | - Mohammad Bahadoram
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Schluter HM, Bariami H, Park HL. Potential Role of Glyphosate, Glyphosate-Based Herbicides, and AMPA in Breast Cancer Development: A Review of Human and Human Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1087. [PMID: 39200696 PMCID: PMC11354939 DOI: 10.3390/ijerph21081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024]
Abstract
The potential connection between exposure to glyphosate and glyphosate-based herbicides (GBHs) and breast cancer risk is a topic of research that is rapidly gaining the public's attention due to the conflicting reports surrounding glyphosate's potential carcinogenicity. In this review, we synthesize the current published biomedical literature works that have explored associations of glyphosate, its metabolite, aminomethylphosphonic acid (AMPA), and GBHs with breast cancer risk in humans and human cell-based models. Using PubMed as our search engine, we identified a total of 14 articles that were included in this review. In the four human studies, urinary glyphosate and/or AMPA were associated with breast cancer risk, endocrine disruption, oxidative stress biomarkers, and changes in DNA methylation patterns. Among most of the 10 human cell-based studies, glyphosate exhibited endocrine disruption, induced altered gene expression, increased DNA damage, and altered cell viability, while GBHs were more cytotoxic than glyphosate alone. In summary, numerous studies have shown glyphosate, AMPA, and GBHs to have potential carcinogenic, cytotoxic, or endocrine-disruptive properties. However, more human studies need to be conducted in order for more definitive and supported conclusions to be made on their potential effects on breast cancer risk.
Collapse
Affiliation(s)
| | | | - Hannah Lui Park
- Department of Pathology and Laboratory Medicine, University of California, 839 Health Sciences Road, 218 Sprague Hall, Irvine, CA 92697, USA; (H.M.S.); (H.B.)
| |
Collapse
|
26
|
Zhang L, Elkahal J, Wang T, Rimmer R, Genzelinakh A, Bassat E, Wang J, Perez D, Kain D, Lendengolts D, Winkler R, Bueno-Levy H, Umansky KB, Mishaly D, Shakked A, Miyara S, Sarusi-Portuguez A, Goldfinger N, Prior A, Morgenstern D, Levin Y, Addadi Y, Li B, Rotter V, Katz U, Tanaka EM, Krizhanovsky V, Sarig R, Tzahor E. Egr1 regulates regenerative senescence and cardiac repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:915-932. [PMID: 39196027 DOI: 10.1038/s44161-024-00493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice. We identified early growth response protein 1 (Egr1) as a regulator of regenerative senescence in both models. In the neonatal heart, Egr1 facilitates angiogenesis and cardiomyocyte proliferation. In adult hearts, agrin-induced senescence and repair require Egr1, activated by the integrin-FAK-ERK-Akt1 axis in cardiac fibroblasts. We also identified cathepsins as injury-induced senescence-associated secretory phenotype components that promote extracellular matrix degradation and potentially assist in reducing fibrosis. Altogether, we uncovered the molecular signature and functional benefits of regenerative senescence during heart regeneration, with Egr1 orchestrating the process.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tianzhen Wang
- Department of Bimolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Racheli Rimmer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Dahlia Perez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Winkler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Veterinary Resource, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Mishaly
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shoval Miyara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi-Portuguez
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Lu CL, Sha JJ, Ma RF, Dong XT, Su XR, Cong B, Wang SJ. Severe Hypothermia Induces Ferroptosis in Cerebral Cortical Nerve Cells. Int J Mol Sci 2024; 25:8086. [PMID: 39125656 PMCID: PMC11311695 DOI: 10.3390/ijms25158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Abnormal shifts in global climate, leading to extreme weather, significantly threaten the safety of individuals involved in outdoor activities. Hypothermia-induced coma or death frequently occurs in clinical and forensic settings. Despite this, the precise mechanism of central nervous system injury due to hypothermia remains unclear, hindering the development of targeted clinical treatments and specific forensic diagnostic indicators. The GEO database was searched to identify datasets related to hypothermia. Post-bioinformatics analyses, DEGs, and ferroptosis-related DEGs (FerrDEGs) were intersected. GSEA was then conducted to elucidate the functions of the Ferr-related genes. Animal experiments conducted in this study demonstrated that hypothermia, compared to the control treatment, can induce significant alterations in iron death-related genes such as PPARG, SCD, ADIPOQ, SAT1, EGR1, and HMOX1 in cerebral cortex nerve cells. These changes lead to iron ion accumulation, lipid peroxidation, and marked expression of iron death-related proteins. The application of the iron death inhibitor Ferrostatin-1 (Fer-1) effectively modulates the expression of these genes, reduces lipid peroxidation, and improves the expression of iron death-related proteins. Severe hypothermia disrupts the metabolism of cerebral cortex nerve cells, causing significant alterations in ferroptosis-related genes. These genetic changes promote ferroptosis through multiple pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, College of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Road, Shijiazhuang 050017, China; (C.-L.L.); (J.-J.S.); (R.-F.M.); (X.-T.D.); (X.-R.S.)
| | - Song-Jun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, College of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Road, Shijiazhuang 050017, China; (C.-L.L.); (J.-J.S.); (R.-F.M.); (X.-T.D.); (X.-R.S.)
| |
Collapse
|
28
|
Efentakis P, Symeonidi L, Gianniou DD, Mikropoulou EV, Giardoglou P, Valakos D, Vatsellas G, Tsota M, Kostomitsopoulos N, Smyrnioudis I, Trougakos IP, Halabalaki M, Dedoussis GV, Andreadou I. Antihypertensive Potential of Pistacia lentiscus var. Chia: Molecular Insights and Therapeutic Implications. Nutrients 2024; 16:2152. [PMID: 38999899 PMCID: PMC11243328 DOI: 10.3390/nu16132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Hypertension poses a significant global health burden and is associated with cardiovascular morbidity. Chios mastic gum (CMG), derived from Pistacia lentiscus var. Chia, shows potential as a phytotherapeutic agent, due to its multifaceted beneficial effects. However, its anti-hypertensive effects and vascular, circulatory, and renal-related dysfunction, have not been thoroughly investigated. Herein, we aimed to explore the antihypertensive potential of CMG, focusing on vascular and renal endothelium, in vivo. Methods: Two models of hypertension in male rats, induced by Angiotensin II and Deoxycorticosterone acetate (DOCA)-high-salt administration, were utilized. CMG was administered at 220 mg/kg daily for four weeks after hypertension onset and blood pressure was measured non-invasively. Whole blood RNA sequencing, metabolomics, real-time PCR, and Western blot analyses of kidney and aorta tissues were additionally performed. Results: CMG significantly lowered systolic, diastolic, and mean blood pressure in both models. RNA sequencing revealed that CMG modulated immunity in the Angiotensin II model and metabolism in the DOCA-HS model. CMG downregulated genes related to oxidative stress and endothelial dysfunction and upregulated endothelial markers such as Vegfa. Metabolomic analysis indicated improved endothelial homeostasis via lysophosphatidylinositol upregulation. Conclusions: CMG emerges as a potent natural antihypertensive therapy, demonstrating beneficial effects on blood pressure and renal endothelial function.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Lydia Symeonidi
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Panagiota Giardoglou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | - Giannis Vatsellas
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Maria Tsota
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Nikolaos Kostomitsopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Georgios V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| |
Collapse
|
29
|
Zheng SK, Zhao XK, Wu H, He DW, Xiong L, Cheng XG. Oxidative stress-induced EGR1 upregulation promotes NR4A3-mediated nucleus pulposus cells apoptosis in intervertebral disc degeneration. Aging (Albany NY) 2024; 16:10216-10238. [PMID: 38943627 PMCID: PMC11236312 DOI: 10.18632/aging.205920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 07/01/2024]
Abstract
This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.
Collapse
Affiliation(s)
- Si-Kuan Zheng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao-Kun Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ding-Wen He
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xi-Gao Cheng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
30
|
Yang Q, Murata K, Ikeda T, Minatoya K, Masumoto H. miR-124-3p downregulates EGR1 to suppress ischemia-hypoxia reperfusion injury in human iPS cell-derived cardiomyocytes. Sci Rep 2024; 14:14811. [PMID: 38926457 PMCID: PMC11208498 DOI: 10.1038/s41598-024-65373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic heart diseases are a major global cause of death, and despite timely revascularization, heart failure due to ischemia-hypoxia reperfusion (IH/R) injury remains a concern. The study focused on the role of Early Growth Response 1 (EGR1) in IH/R-induced apoptosis in human cardiomyocytes (CMs). Human induced pluripotent stem cell (hiPSC)-derived CMs were cultured under IH/R conditions, revealing higher EGR1 expression in the IH/R group through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Immunofluorescence analysis (IFA) showed an increased ratio of cleaved Caspase-3-positive apoptotic cells in the IH/R group. Using siRNA for EGR1 successfully downregulated EGR1, suppressing cleaved Caspase-3-positive apoptotic cell ratio. Bioinformatic analysis indicated that EGR1 is a plausible target of miR-124-3p under IH/R conditions. The miR-124-3p mimic, predicted to antagonize EGR1 mRNA, downregulated EGR1 under IH/R conditions in qRT-PCR and WB, as confirmed by IFA. The suppression of EGR1 by the miR-124-3p mimic subsequently reduced CM apoptosis. The study suggests that treatment with miR-124-3p targeting EGR1 could be a potential novel therapeutic approach for cardioprotection in ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Qiaoke Yang
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kozue Murata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
31
|
Lin Z, Liu Z, Pan Z, Zhang Y, Yang X, Feng Y, Zhang R, Zeng W, Gong C, Chen J. EGR1 Promotes Erastin-induced Ferroptosis Through Activating Nrf2-HMOX1 Signaling Pathway in Breast Cancer Cells. J Cancer 2024; 15:4577-4590. [PMID: 39006084 PMCID: PMC11242347 DOI: 10.7150/jca.95328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose: Early growth response 1 (EGR1) is a crucial transcription factor composed of zinc finger structures, inhibitory and activating regulatory regions. We identified the biological effect and molecular mechanisms of EGR1 in breast cancer (BC). Methods: We used qRT-PCR, western blot and immunohistochemistry to examine the expression of EGR1 in BC samples. CCK-8 and colony assay were performed to reveal the effect of EGR1 on the proliferation of BC cells. LDH release assay, MCB assay, MDA assay, C-AM assay and TMRE assay were performed to measure the levels of LDH release, GSH, MDA, LIP and mitochondrial membrane potential. The regulation of EGR1 on the expression of Nrf2 and HMOX1 was investigated through Western blot. Xenograft models were conducted to determine the impact of EGR1 overexpression on BC in vivo. Results: The expression of EGR1 was downregulated in BC tissues compared with the normal tissues, and lower expression of EGR1 associated with poorer clinical outcome in BC patients. Through in vitro experiments, we found that EGR1 downregulation facilitated the proliferation of BC cells, and overexpression of EGR1 inhibited the proliferation of BC cells. In addition, EGR1 knockdown alleviated erastin-induced ferroptosis and overexpression of EGR1 facilitated erastin-induced ferroptosis in BC cells. Moreover, overexpression of EGR1 facilitated the anti-tumor effect caused by erastin in vivo. Mechanistically, the phosphorylation levels of Nrf2 and the expression of HMOX1 were reduced due to the downregulation of EGR1, and increased due to the upregulation of EGR1. Additionally, the finding that EGR1 facilitated erastin-induced ferroptosis was alleviated by the inhibition of Nrf2-HMOX1. Conclusion: The expression of EGR1 is downregulated in BC, which is correlated with poor prognosis of BC patients. EGR1 suppresses the proliferation of BC cells and facilitates erastin-induced ferroptosis by activating Nrf2-HMOX1 signaling pathway in BC cells.
Collapse
Affiliation(s)
- Zhirong Lin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zifei Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhilong Pan
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunyi Zhang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyu Yang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaxin Feng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruihua Zhang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenfeng Zeng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
32
|
Tang H, Pang X, Li S, Tang L. The Double-Edged Effects of MLN4924: Rethinking Anti-Cancer Drugs Targeting the Neddylation Pathway. Biomolecules 2024; 14:738. [PMID: 39062453 PMCID: PMC11274557 DOI: 10.3390/biom14070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The neddylation pathway assumes a pivotal role in the initiation and progression of cancer. MLN4924, a potent small-molecule inhibitor of the NEDD8-activating enzyme (NAE), effectively intervenes in the early stages of the neddylation pathway. By instigating diverse cellular responses, such as senescence and apoptosis in cancer cells, MLN4924 also exerts regulatory effects on non-malignant cells within the tumor microenvironment (TME) and tumor virus-infected cells, thereby impeding the onset of tumors. Consequently, MLN4924 has been widely acknowledged as a potent anti-cancer drug. (2) Recent findings: Nevertheless, recent findings have illuminated additional facets of the neddylation pathway, revealing its active involvement in various biological processes detrimental to the survival of cancer cells. This newfound understanding underscores the dual role of MLN4924 in tumor therapy, characterized by both anti-cancer and pro-cancer effects. This dichotomy is herein referred to as the "double-edged effects" of MLN4924. This paper delves into the intricate relationship between the neddylation pathway and cancer, offering a mechanistic exploration and analysis of the causes underlying the double-edged effects of MLN4924-specifically, the accumulation of pro-cancer neddylation substrates. (3) Perspectives: Here, the objective is to furnish theoretical support and novel insights that can guide the development of next-generation anti-cancer drugs targeting the neddylation pathway.
Collapse
Affiliation(s)
- Haoming Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Xin Pang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| |
Collapse
|
33
|
Leśniczak-Staszak M, Pietras P, Ruciński M, Johnston R, Sowiński M, Andrzejewska M, Nowicki M, Gowin E, Lyons SM, Ivanov P, Szaflarski W. Stress granule-mediated sequestration of EGR1 mRNAs correlates with lomustine-induced cell death prevention. J Cell Sci 2024; 137:jcs261825. [PMID: 38940347 PMCID: PMC11234381 DOI: 10.1242/jcs.261825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Some chemotherapy drugs modulate the formation of stress granules (SGs), which are RNA-containing cytoplasmic foci contributing to stress response pathways. How SGs mechanistically contribute to pro-survival or pro-apoptotic functions must be better defined. The chemotherapy drug lomustine promotes SG formation by activating the stress-sensing eIF2α kinase HRI (encoded by the EIF2AK1 gene). Here, we applied a DNA microarray-based transcriptome analysis to determine the genes modulated by lomustine-induced stress and suggest roles for SGs in this process. We found that the expression of the pro-apoptotic EGR1 gene was specifically regulated in cells upon lomustine treatment. The appearance of EGR1-encoding mRNA in SGs correlated with a decrease in EGR1 mRNA translation. Specifically, EGR1 mRNA was sequestered to SGs upon lomustine treatment, probably preventing its ribosome translation and consequently limiting the degree of apoptosis. Our data support the model where SGs can selectively sequester specific mRNAs in a stress-specific manner, modulate their availability for translation, and thus determine the fate of a stressed cell.
Collapse
Affiliation(s)
- Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Ryan Johnston
- Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Ewelina Gowin
- Department of Health Promotion, Poznan University of Medical Sciences, Poznań 60-781, Poland
| | - Shawn M. Lyons
- Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań 60-781, Poland
| |
Collapse
|
34
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
35
|
Li Y, Mondaza-Hernandez JL, Moura DS, Revenko AS, Tolentino A, Nguyen JT, Tran N, Meyer CA, Merino-Garcia J, Ramos R, Di Lernia D, Martin-Broto J, Hayenga HN, Bleris L. STAT6-targeting antisense oligonucleotides against solitary fibrous tumor. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102154. [PMID: 38511173 PMCID: PMC10950871 DOI: 10.1016/j.omtn.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Solitary fibrous tumor (SFT) is a rare, non-hereditary soft tissue sarcoma thought to originate from fibroblastic mesenchymal stem cells. The etiology of SFT is thought to be due to an environmental intrachromosomal gene fusion between NGFI-A-binding protein 2 (NAB2) and signal transducer and activator protein 6 (STAT6) genes on chromosome 12, wherein the activation domain of STAT6 is fused with the DNA-binding domain of NAB2 resulting in the oncogenesis of SFT. All NAB2-STAT6 fusion variations discovered in SFTs contain the C-terminal of STAT6 transcript, and thus can serve as target site for antisense oligonucleotides (ASOs)-based therapies. Indeed, our in vitro studies show the STAT6 3' untranslated region (UTR)-targeting ASO (ASO 993523) was able to reduce expression of NAB2-STAT6 fusion transcripts in multiple SFT cell models with high efficiency (half-maximal inhibitory concentration: 116-300 nM). Encouragingly, in vivo treatment of SFT patient-derived xenograft mouse models with ASO 993523 resulted in acceptable tolerability profiles, reduced expression of NAB2-STAT6 fusion transcripts in xenograft tissues (21.9%), and, importantly, reduced tumor growth (32.4% decrease in tumor volume compared with the untreated control). Taken together, our study established ASO 993523 as a potential agent for the treatment of SFTs.
Collapse
Affiliation(s)
- Yi Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jose L. Mondaza-Hernandez
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS/FJD-UAM), 28049 Madrid, Spain
- University Hospital General de Villalba, 28400 Madrid, Spain
| | - David S. Moura
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS/FJD-UAM), 28049 Madrid, Spain
| | - Alexey S. Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA 92010, USA
| | - Angelica Tolentino
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA 92010, USA
| | - John T. Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nam Tran
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Clark A. Meyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jose Merino-Garcia
- Pathology Department, University Hospital Fundacion Jimenez Diaz, Universidad Autonoma, Av. Reyes Catolicos 2, 28040 Madrid, Spain
| | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Davide Di Lernia
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS/FJD-UAM), 28049 Madrid, Spain
| | - Javier Martin-Broto
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS/FJD-UAM), 28049 Madrid, Spain
- University Hospital General de Villalba, 28400 Madrid, Spain
- Medical Oncology Department, University Hospital Fundacion Jimenez Diaz, 28040 Madrid, Spain
| | - Heather N. Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Leonidas Bleris
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
36
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
38
|
Lasaad S, Crambert G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. Int J Mol Sci 2024; 25:5956. [PMID: 38892145 PMCID: PMC11172470 DOI: 10.3390/ijms25115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM), Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR 8228, F-75006 Paris, France
| |
Collapse
|
39
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
40
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Vera KR, Bretherton RC, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588191. [PMID: 38645065 PMCID: PMC11030224 DOI: 10.1101/2024.04.04.588191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biomechanical contributions of the ECM underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered - particularly in a reversible manner - are extremely valuable for studying these mechanobiological phenomena. Herein, we introduce a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct bacterial transpeptidases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa - 6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network was achieved via mask-based and two-photon lithography; these stiffened patterned regions could be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, we investigated the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell (hMSC) morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory at the global transcriptome level via RNAseq. We expect this platform to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, as well as disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
41
|
Jin R, Xu H, Zhou M, Lin F, Xu W, Xu A. EGR1 Mediated Reduction of Fibroblast Secreted-TGF-β1 Exacerbated CD8 + T Cell Inflammation and Migration in Vitiligo. Inflammation 2024; 47:503-512. [PMID: 37880426 DOI: 10.1007/s10753-023-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Vitiligo is a T cell-mediated depigment skin disease caused by the complex interplay between melanocyte dysfunction, environmental stimulation, and dysregulated immune signals. Transforming growth factor-β1 (TGF-β1), which typically derives from regulatory T cells, has long been identified at low levels in the peripheral system of vitiligo patients. Here, through RNA-sequencing and transcription factor enrichment, we revealed that in response to CD8+ T cell-secreted interferon-gamma (IFN-γ), stromal fibroblast downregulates early growth response 1 (EGR1) activity, leading to TGF-β1 deficiency. The defective immune regulation loop further exacerbated local CD8+ T cell inflammation and promoted inflammatory cell migration in vitiligo. Thus, fibroblast-derived TGF-β1 plays an important stromal signal in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Rong Jin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Hao Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China.
| |
Collapse
|
42
|
Abe M, Asada N, Kimura M, Fukui C, Yamada D, Wang Z, Miyake M, Takarada T, Ono M, Aoe M, Kitamura W, Matsuda M, Moriyama T, Matsumura A, Maeda Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci 2024; 115:1317-1332. [PMID: 38279512 PMCID: PMC11007008 DOI: 10.1111/cas.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaya Abe
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Noboru Asada
- Department of Hematology and OncologyOkayama University HospitalOkayamaJapan
| | - Maiko Kimura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chie Fukui
- Division of Hematology, Department of MedicineKobe University HospitalKobeJapan
| | - Daisuke Yamada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Ziyi Wang
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Miyake
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Takeshi Takarada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Mitsuaki Ono
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michinori Aoe
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Wataru Kitamura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Matsuda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takashi Moriyama
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Akifumi Matsumura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
43
|
Peng N, Zheng M, Song B, Jiao R, Wang W. Transcription Factor EGR1 Facilitates Neovascularization in Mice with Retinopathy of Prematurity by Regulating the miR-182-5p/EFNA5 Axis. Biochem Genet 2024; 62:1070-1086. [PMID: 37530910 DOI: 10.1007/s10528-023-10433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Neovascularization is the hallmark of retinopathy of prematurity (ROP). Early growth response 1 (EGR1) has been reported as an angiogenic factor. This study was conducted to probe the regulatory mechanism of EGR1 in neovascularization in ROP model mice. The ROP mouse model was established, followed by determination of EGR1 expression and assessment of neovascularization [vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor (PEDF)]. Retinal vascular endothelial cells were cultured and treated with hypoxia, followed by the tube formation assay. The state of oxygen induction was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay to determine hypoxia-inducible factor 1-alpha (HIF-1A). The levels of microRNA (miRNA)-182-5p and ephrin-A5 (EFNA5) in tissues and cells were determined by RT-qPCR. Chromatin immunoprecipitation and dual-luciferase assay were used to validate gene interaction. EGR1 and EFNA5 were upregulated in the retina of ROP mice while miR-182-5p was downregulated. EGR1 knockdown decreased VEGF-A and HIF-1A expression and increased PEDF expression in the retina of ROP mice. In vitro, EGR1 knockdown also reduced neovascularization. EGR1 binding to the miR-182-5p promoter inhibited miR-182-5p transcription and further promoted EFNA5 transcription. miR-182-5p downregulation or EFNA5 overexpression averted the inhibition of neovascularization caused by EGR1 downregulation. Overall, EGR1 bound to the miR-182-5p promoter to inhibit miR-182-5p transcription and further promoted EFNA5 transcription, thus promoting retinal neovascularization in ROP mice.
Collapse
Affiliation(s)
- Ningning Peng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Mei Zheng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Bei Song
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Rong Jiao
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Wenxiang Wang
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
44
|
Chowdhury B, Garg S, Ni W, Sattler M, Sanchez D, Meng C, Akatsu T, Stone R, Forrester W, Harrington E, Buhrlage SJ, Griffin JD, Weisberg E. Synergy between BRD9- and IKZF3-Targeting as a Therapeutic Strategy for Multiple Myeloma. Cancers (Basel) 2024; 16:1319. [PMID: 38610997 PMCID: PMC11010819 DOI: 10.3390/cancers16071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical SWI/SNF chromatin remodeling complex, plays a role in MM cell survival, and targeting BRD9 selectively blocks MM cell proliferation and synergizes with IMiDs. We found that synergy in vitro is associated with the downregulation of MYC and Ikaros proteins, including IKZF3, and overexpression of IKZF3 or MYC could partially reverse synergy. RNA-seq analysis revealed synergy to be associated with the suppression of pathways associated with MYC and E2F target genes and pathways, including cell cycle, cell division, and DNA replication. Stimulated pathways included cell adhesion and immune and inflammatory response. Importantly, combining IMiD treatment and BRD9 targeting, which leads to the downregulation of MYC protein and upregulation of CRBN protein, was able to override IMiD resistance of cells exposed to iberdomide in long-term culture. Taken together, our results support the notion that combination therapy based on agents targeting BRD9 and IKZF3, two established dependencies in MM, represents a promising novel therapeutic strategy for MM and IMiD-resistant disease.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Swati Garg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Sanchez
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Taisei Akatsu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Archana CA, Sekar YS, Suresh KP, Subramaniam S, Sagar N, Rani S, Anandakumar J, Pandey RK, Barman NN, Patil SS. Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance. Genes (Basel) 2024; 15:426. [PMID: 38674361 PMCID: PMC11049084 DOI: 10.3390/genes15040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.
Collapse
Affiliation(s)
- Chamalapura Ashwathama Archana
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | - Yamini Sri Sekar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | - Kuralayanapalya Puttahonnappa Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | | | - Ningegowda Sagar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | - Swati Rani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | - Jayashree Anandakumar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Solna, Sweden;
| | - Nagendra Nath Barman
- College of Veterinary Science, Assam Agricultural University (AAU), Guwahati 781022, India;
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, India; (C.A.A.); (Y.S.S.); (N.S.); (S.R.); (J.A.); (S.S.P.)
| |
Collapse
|
46
|
Liu X, Wang S, Tang H, Li M, Gao P, Peng X, Chen M. Uridine Diphosphate-Glycosyltransferase RpUGT344D38 Contributes to λ-Cyhalothrin Resistance in Rhopalosiphum padi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5165-5175. [PMID: 38437009 DOI: 10.1021/acs.jafc.3c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
47
|
He H, Liang L, Jiang S, Liu Y, Huang J, Sun X, Li Y, Jiang Y, Cong L. GINS2 regulates temozolomide chemosensitivity via the EGR1/ECT2 axis in gliomas. Cell Death Dis 2024; 15:205. [PMID: 38467631 PMCID: PMC10928080 DOI: 10.1038/s41419-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.
Collapse
Affiliation(s)
- Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
48
|
Yang Z, Chen F, Wei D, Chen F, Jiang H, Qin S. EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer. BMC Cancer 2024; 24:268. [PMID: 38408959 PMCID: PMC10895816 DOI: 10.1186/s12885-024-12005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. METHODS The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry. FINDINGS We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group. CONCLUSIONS Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Gastroenterology, Guangxi Medical University Cancer Hospital, No 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Feiran Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dafu Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Fengping Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
49
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
50
|
Di Cosimo S, Pizzamiglio S, Ciniselli CM, Duroni V, Cappelletti V, De Cecco L, De Marco C, Silvestri M, De Santis MC, Vingiani A, Paolini B, Orlandi R, Iorio MV, Pruneri G, Verderio P. A gene expression-based classifier for HER2-low breast cancer. Sci Rep 2024; 14:2628. [PMID: 38297001 PMCID: PMC10830477 DOI: 10.1038/s41598-024-52148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In clinical trials evaluating antibody-conjugated drugs (ADCs), HER2-low breast cancer is defined through protein immunohistochemistry scoring (IHC) 1+ or 2+ without gene amplification. However, in daily practice, the accuracy of IHC is compromised by inter-observer variability. Herein, we aimed to identify HER2-low breast cancer primary tumors by leveraging gene expression profiling. A discovery approach was applied to gene expression profile of institutional INT1 (n = 125) and INT2 (n = 84) datasets. We identified differentially expressed genes (DEGs) in each specific HER2 IHC category 0, 1+, 2+ and 3+. Principal Component Analysis was used to generate a HER2-low signature whose performance was evaluated in the independent INT3 (n = 95), and in the publicly available TCGA and GSE81538 datasets. The association between the HER2-low signature and HER2 IHC categories was evaluated by Kruskal-Wallis test with post hoc pair-wise comparisons. The HER2-low signature discriminatory capability was assessed by estimating the area under the receiver operating characteristic curve (AUC). Gene Ontology and KEGG analyses were performed to evaluate the HER2-low signature genes functional enrichment. A HER2-low signature was computed based on HER2 IHC category-specific DEGs. The twenty genes included in the signature were significantly enriched with lipid and steroid metabolism pathways, peptidase regulation, and humoral immune response. The HER2-low signature values showed a bell-shaped distribution across IHC categories (low values in 0 and 3+; high values in 1+ and 2+), effectively distinguishing HER2-low from 0 (p < 0.001) to 3+ (p < 0.001). Notably, the signature values were higher in tumors scored with 1+ as compared to 0. The HER2-low signature association with IHC categories and its bell-shaped distribution was confirmed in the independent INT3, TCGA and GSE81538 datasets. In the combined INT1 and INT3 datasets, the HER2-low signature achieved an AUC value of 0.74 (95% confidence interval, CI 0.67-0.81) in distinguishing HER2-low vs. the other categories, outperforming the individual ERBB2 mRNA AUC value of 0.52 (95% CI 0.43-0.60). These results represent a proof-of-concept for an observer-independent gene-expression-based classifier of HER2-low status. The herein identified 20-gene signature shows promise in distinguishing between HER2 0 and HER2-low expressing tumors, including those scored as 1+ at IHC, and in developing a selection approach for ADCs candidates.
Collapse
Affiliation(s)
- Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Valeria Duroni
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Vera Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Cinzia De Marco
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marco Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Maria Carmen De Santis
- Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Biagio Paolini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marilena Valeria Iorio
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|