1
|
Almeida JS, Sousa LM, Couceiro P, Andrade TF, Alves V, Martinho A, Rodrigues J, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Casanova JM, Rodrigues-Santos P. Peripheral immune profiling of soft tissue sarcoma: perspectives for disease monitoring. Front Immunol 2024; 15:1391840. [PMID: 39502689 PMCID: PMC11536262 DOI: 10.3389/fimmu.2024.1391840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Studying the tumor microenvironment and surrounding lymph nodes is the main focus of current immunological research on soft tissue sarcomas (STS). However, due to the restricted opportunity to examine tumor samples, alternative approaches are required to evaluate immune responses in non-surgical patients. Therefore, the purpose of this study was to evaluate the peripheral immune profile of STS patients, characterize patients accordingly and explore the impact of peripheral immunotypes on patient survival. Blood samples were collected from 55 STS patients and age-matched healthy donors (HD) controls. Deep immunophenotyping and gene expression analysis of whole blood was analyzed using multiparametric flow cytometry and real-time RT-qPCR, respectively. Using xMAP technology, proteomic analysis was also carried out on plasma samples. Unsupervised clustering analysis was used to classify patients based on their immune profiles to further analyze the impact of peripheral immunotypes on patient survival. Significant differences were found between STS patients and HD controls. It was found a contraction of B cells and CD4 T cells compartment, along with decreased expression levels of ICOSLG and CD40LG; a major contribution of suppressor factors, as increased frequency of M-MDSC and memory Tregs, increased expression levels of ARG1, and increased plasma levels of IL-10, soluble VISTA and soluble TIMD-4; and a compromised cytotoxic potential associated with NK and CD8 T cells, namely decreased frequency of CD56dim NK cells, and decreased levels of PRF1, GZMB, and KLRK1. In addition, the patients were classified into three peripheral immunotype groups: "immune-high," "immune-intermediate," and "immune-low." Furthermore, it was found a correlation between these immunotypes and patient survival. Patients classified as "immune-high" exhibited higher levels of immune-related factors linked to cytotoxic/effector activity and longer survival times, whereas patients classified as "immune-low" displayed higher levels of immune factors associated with immunosuppression and shorter survival times. In conclusion, it can be suggested that STS patients have a compromised systemic immunity, and the correlation between immunotypes and survival emphasizes the importance of studying peripheral blood samples in STS. Assessing the peripheral immune response holds promise as a useful method for monitoring and forecasting outcomes in STS.
Collapse
Affiliation(s)
- Jani Sofia Almeida
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Patrícia Couceiro
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Tânia Fortes Andrade
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - António Martinho
- Portuguese Institute for Blood and Transplantation (IPST), Blood and Transplantation Center of Coimbra, Coimbra, Portugal
| | - Joana Rodrigues
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Ruben Fonseca
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - José Manuel Casanova
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
2
|
Qin H, Qi T, Xu J, Wang T, Zeng H, Yang J, Yu F. Integration of ubiquitination-related genes in predictive signatures for prognosis and immunotherapy response in sarcoma. Front Oncol 2024; 14:1446522. [PMID: 39469643 PMCID: PMC11513255 DOI: 10.3389/fonc.2024.1446522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Background Ubiquitination is one of the most prevalent and complex post-translational modifications of proteins in eukaryotes, playing a critical role in regulating various physiological and pathological processes. Targeting ubiquitination pathways, either through inhibition or activation, holds promise as a novel therapeutic approach for cancer treatment. However, the expression patterns, prognostic significance, and underlying mechanisms of ubiquitination-related genes (URGs) in sarcoma (SARC) remain unclear. Methods We analyzed URG expression patterns and prognostic implications in TCGA-SARC using public databases, identifying DEGs related to ubiquitination among SARC molecular subtypes. Functional enrichment analysis elucidated their biological significance. Prognostic signatures were developed using LASSO-Cox regression, and a predictive nomogram was constructed. External validation was performed using GEO datasets and clinical tissue samples. The association between URG risk scores and various clinical parameters, immune response, drug sensitivity, and RNA modification regulators was investigated. Integration of data from multiple sources and RT-qPCR confirmed upregulated expression of prognostic URGs in SARC. Single-cell RNA sequencing data analyzed URG distribution across immune cell types. Prediction analysis identified potential target genes of microRNAs and long non-coding RNAs. Results We identified five valuable genes (CALR, CASP3, BCL10, PSMD7, PSMD10) and constructed a prognostic model, simultaneously identifying two URG-related subtypes in SARC. The UEGs between subtypes in SARC are mainly enriched in pathways such as Cell cycle, focal adhesion, and ECM-receptor interaction. Analysis of URG risk scores reveals that patients with a low-risk score have better prognoses compared to those with high-risk scores. There is a significant correlation between DRG riskscore and clinical features, immune therapy response, drug sensitivity, and genes related to pan-RNA epigenetic modifications. High-risk SARC patients were identified as potential beneficiaries of immune checkpoint inhibitor therapy. We established regulatory axes in SARC, including CALR/hsa-miR-29c-3p/LINC00943, CASP3/hsa-miR-143-3p/LINC00944, and MIR503HG. RT-qPCR data further confirmed the upregulation of prognostic URGs in SARC. Finally, we validated the prognostic model's excellent predictive performance in predicting outcomes for SARC patients. Conclusion We discovered a significant correlation between aberrant expression of URGs and prognosis in SARC patients, identifying a prognostic model related to ubiquitination. This model provides a basis for individualized treatment and immunotherapy decisions for SARC patients.
Collapse
Affiliation(s)
- Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Tianbing Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Shukla S, Dalai P, Agrawal-Rajput R. Metabolic crosstalk: Extracellular ATP and the tumor microenvironment in cancer progression and therapy. Cell Signal 2024; 121:111281. [PMID: 38945420 DOI: 10.1016/j.cellsig.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.
Collapse
Affiliation(s)
- Sourav Shukla
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
4
|
Pasquali S, Vallacchi V, Lalli L, Collini P, Barisella M, Romagosa C, Bague S, Coindre JM, Dei Tos AP, Palmerini E, Quagliuolo V, Martin-Broto J, Lopez-Pousa A, Grignani G, Blay JY, Beveridge RD, Casiraghi E, Brich S, Renne SL, Bergamaschi L, Vergani B, Sbaraglia M, Casali PG, Rivoltini L, Stacchiotti S, Gronchi A. Spatial distribution of tumour immune infiltrate predicts outcomes of patients with high-risk soft tissue sarcomas after neoadjuvant chemotherapy. EBioMedicine 2024; 106:105220. [PMID: 39018755 PMCID: PMC11287012 DOI: 10.1016/j.ebiom.2024.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Anthracycline-based neoadjuvant chemotherapy (NAC) may modify tumour immune infiltrate. This study characterized immune infiltrate spatial distribution after NAC in primary high-risk soft tissue sarcomas (STS) and investigate association with prognosis. METHODS The ISG-STS 1001 trial randomized STS patients to anthracycline plus ifosfamide (AI) or a histology-tailored (HT) NAC. Four areas of tumour specimens were sampled: the area showing the highest lymphocyte infiltrate (HI) at H&E; the area with lack of post-treatment changes (highest grade, HG); the area with post-treatment changes (lowest grade, LG); and the tumour edge (TE). CD3, CD8, PD-1, CD20, FOXP3, and CD163 were analyzed at immunohistochemistry and digital pathology. A machine learning method was used to generate sarcoma immune index scores (SIS) that predict patient disease-free and overall survival (DFS and OS). FINDINGS Tumour infiltrating lymphocytes and PD-1+ cells together with CD163+ cells were more represented in STS histologies with complex compared to simple karyotype, while CD20+ B-cells were detected in both these histology groups. PD-1+ cells exerted a negative prognostic value irrespectively of their spatial distribution. Enrichment in CD20+ B-cells at HI and TE areas was associated with better patient outcomes. We generated a prognostic SIS for each tumour area, having the HI-SIS the best performance. Such prognostic value was driven by treatment with AI. INTERPRETATION The different spatial distribution of immune populations and their different association with prognosis support NAC as a modifier of tumour immune infiltrate in STS. FUNDING Pharmamar; Italian Ministry of Health [RF-2019-12370923; GR-2016-02362609]; 5 × 1000 Funds-2016, Italian Ministry of Health; AIRC Grant [ID#28546].
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Viviana Vallacchi
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Luca Lalli
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | | | - Cleofe Romagosa
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Silvia Bague
- Pathology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean Michel Coindre
- Department of Pathology, Institut Bergonié, 33000, Bordeaux, France; INSERM U1218 ACTION, Institut Bergonié, 33000, Bordeaux, France
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Javier Martin-Broto
- Oncology Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Antonio Lopez-Pousa
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041, Barcelona, Spain
| | - Giovanni Grignani
- Medical Oncology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Jean-Yves Blay
- Centre Léon Bérard & Université Claude Bernard Lyon 1, Lyon, France
| | - Robert Diaz Beveridge
- Department of Cancer Medicine, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Elena Casiraghi
- AnacletoLab, Department of Computer Science "Giovanni degli Antoni", Università degli Studi di Milano, Milan, Italy
| | - Silvia Brich
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Salvatore Lorenzo Renne
- Pathology Department, IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Laura Bergamaschi
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Marta Sbaraglia
- Surgical Pathology & Cytopathology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Paolo Giovanni Casali
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Licia Rivoltini
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| |
Collapse
|
5
|
Jirovec A, Flaman A, Godbout E, Serrano D, Werier J, Purgina B, Diallo JS. Immune profiling of dedifferentiated liposarcoma and identification of novel antigens for targeted immunotherapy. Sci Rep 2024; 14:11254. [PMID: 38755218 PMCID: PMC11099179 DOI: 10.1038/s41598-024-61860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.
Collapse
Affiliation(s)
- Anna Jirovec
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada.
| | - Ashley Flaman
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Elena Godbout
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Joel Werier
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Bibianna Purgina
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
6
|
Knoedler L, Huelsboemer L, Hollmann K, Alfertshofer M, Herfeld K, Hosseini H, Boroumand S, Stoegner VA, Safi AF, Perl M, Knoedler S, Pomahac B, Kauke-Navarro M. From standard therapies to monoclonal antibodies and immune checkpoint inhibitors - an update for reconstructive surgeons on common oncological cases. Front Immunol 2024; 15:1276306. [PMID: 38715609 PMCID: PMC11074450 DOI: 10.3389/fimmu.2024.1276306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024] Open
Abstract
Malignancies represent a persisting worldwide health burden. Tumor treatment is commonly based on surgical and/or non-surgical therapies. In the recent decade, novel non-surgical treatment strategies involving monoclonal antibodies (mAB) and immune checkpoint inhibitors (ICI) have been successfully incorporated into standard treatment algorithms. Such emerging therapy concepts have demonstrated improved complete remission rates and prolonged progression-free survival compared to conventional chemotherapies. However, the in-toto surgical tumor resection followed by reconstructive surgery oftentimes remains the only curative therapy. Breast cancer (BC), skin cancer (SC), head and neck cancer (HNC), and sarcoma amongst other cancer entities commonly require reconstructive surgery to restore form, aesthetics, and functionality. Understanding the basic principles, strengths, and limitations of mAB and ICI as (neo-) adjuvant therapies and treatment alternatives for resectable or unresectable tumors is paramount for optimized surgical therapy planning. Yet, there is a scarcity of studies that condense the current body of literature on mAB and ICI for BC, SC, HNC, and sarcoma. This knowledge gap may result in suboptimal treatment planning, ultimately impairing patient outcomes. Herein, we aim to summarize the current translational endeavors focusing on mAB and ICI. This line of research may serve as an evidence-based fundament to guide targeted therapy and optimize interdisciplinary anti-cancer strategies.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Katharina Hollmann
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Faculty of Medicine, University of Wuerzbuerg, Wuerzburg, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin Herfeld
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Helia Hosseini
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Sam Boroumand
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Markus Perl
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Samuel Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Burkhard-Meier A, Jurinovic V, Berclaz LM, Albertsmeier M, Dürr HR, Klein A, Knösel T, Di Gioia D, Unterrainer LM, Schmidt-Hegemann NS, Ricke J, von Bergwelt-Baildon M, Kunz WG, Lindner LH. Differentiation of benign and metastatic lymph nodes in soft tissue sarcoma. Clin Exp Metastasis 2024; 41:131-141. [PMID: 38421522 PMCID: PMC10973039 DOI: 10.1007/s10585-024-10273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Lymph node metastasis (LNM) occurs in less than 5% of soft tissue sarcoma (STS) patients and indicates an aggressive course of disease. Suspicious lymph nodes (LN) in staging imaging are a frequent topic of discussion in multidisciplinary tumor boards. Predictive markers are needed to facilitate stratification and improve treatment of STS patients. In this study, 56 STS patients with radiologically suspicious and subsequently histologically examined LN were reviewed. Patients with benign (n = 26) and metastatic (n = 30) LN were analyzed with regard to clinical, laboratory and imaging parameters. Patients with LNM exhibited significantly larger short axis diameter (SAD) and long axis diameter (LAD) vs. patients with benign LN (median 22.5 vs. 14 mm, p < 0.001 and median 29.5 vs. 21 mm, p = 0.003, respectively). Furthermore, the presence of central necrosis and high maximal standardized uptake value (SUVmax) in FDG-PET-CT scans were significantly associated with LNM (60 vs. 11.5% of patients, p < 0.001 and median 8.59 vs. 3.96, p = 0.013, respectively). With systemic therapy, a slight median size regression over time was observed in both metastatic and benign LN. Serum LDH and CRP levels were significantly higher in patients with LNM (median 247 vs. 187.5U/L, p = 0.005 and 1.5 vs. 0.55 mg/dL, p = 0.039, respectively). This study shows significant associations between LNM and imaging features as well as laboratory parameters of STS patients. The largest SAD, SUVmax in FDG-PET-CT scan, the presence of central necrosis, and high serum LDH level are the most important parameters to distinguish benign from metastatic LNs.
Collapse
Affiliation(s)
| | - Vindi Jurinovic
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, University Hospital, LMU Munich, Munich, Germany
| | - Luc M Berclaz
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Markus Albertsmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Hans Roland Dürr
- Department of Orthopedics and Trauma Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Klein
- Department of Orthopedics and Trauma Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, University Hospital, LMU Munich, Munich, Germany
| | - Dorit Di Gioia
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Zhang QS, Hayes JP, Gondi V, Pollack SM. Immunotherapy and Radiotherapy Combinations for Sarcoma. Semin Radiat Oncol 2024; 34:229-242. [PMID: 38508787 DOI: 10.1016/j.semradonc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sarcomas are a heterogeneous group of bone and soft tissue tumors. Survival outcomes for advanced (unresectable or metastatic) disease remain poor, so therapeutic improvements are needed. Radiotherapy plays an integral role in the neoadjuvant and adjuvant treatment of localized disease as well as in the treatment of metastatic disease. Combining radiotherapy with immunotherapy to potentiate immunotherapy has been used in a variety of cancers other than sarcoma, and there is opportunity to further investigate combining immunotherapy with radiotherapy to try to improve outcomes in sarcoma. In this review, we describe the diversity of the tumor immune microenvironments for sarcomas and describe the immunomodulatory effects of radiotherapy. We discuss studies on the timing of radiotherapy relative to immunotherapy and studies on the radiotherapy dose and fractionation regimen to be used in combination with immunotherapy. We describe the impact of radiotherapy on the tumor immune microenvironment. We review completed and ongoing clinical trials combining radiotherapy with immunotherapy for sarcoma and propose future directions for studies combining immunotherapy with radiotherapy in the treatment of sarcoma.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seth M Pollack
- Division of Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL..
| |
Collapse
|
9
|
Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP, Piras R, Gala B, Tessaro FHG, Karlstaedt A, Orsulic S, Lund AW, Chan KS, Guarnerio J. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat Commun 2024; 15:2498. [PMID: 38509063 PMCID: PMC10954767 DOI: 10.1038/s41467-024-46504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
T cell-based immunotherapies have exhibited promising outcomes in tumor control; however, their efficacy is limited in immune-excluded tumors. Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the tumor microenvironment and modulating immune infiltration. Despite the identification of distinct CAF subtypes using single-cell RNA-sequencing (scRNA-seq), their functional impact on hindering T-cell infiltration remains unclear, particularly in soft-tissue sarcomas (STS) characterized by low response rates to T cell-based therapies. In this study, we characterize the STS microenvironment using murine models (in female mice) with distinct immune composition by scRNA-seq, and identify a subset of CAFs we termed glycolytic cancer-associated fibroblasts (glyCAF). GlyCAF rely on GLUT1-dependent expression of CXCL16 to impede cytotoxic T-cell infiltration into the tumor parenchyma. Targeting glycolysis decreases T-cell restrictive glyCAF accumulation at the tumor margin, thereby enhancing T-cell infiltration and augmenting the efficacy of chemotherapy. These findings highlight avenues for combinatorial therapeutic interventions in sarcomas and possibly other solid tumors. Further investigations and clinical trials are needed to validate these potential strategies and translate them into clinical practice.
Collapse
Affiliation(s)
- Marina T Broz
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emily Y Ko
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristin Ishaya
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jinfen Xiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marco De Simone
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xen Ping Hoi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberta Piras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Basia Gala
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fernando H G Tessaro
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen Medical School, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Sandra Orsulic
- David Geffen Medical School, Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Keith Syson Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Jlenia Guarnerio
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- David Geffen Medical School, Department of Medicine, University of California, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
van Oost S, Meijer DM, Ijsselsteijn ME, Roelands JP, van den Akker BEMW, van der Breggen R, Briaire-de Bruijn IH, van der Ploeg M, Wijers-Koster PM, Polak SB, Peul WC, van der Wal RJP, de Miranda NFCC, Bovee JVMG. Multimodal profiling of chordoma immunity reveals distinct immune contextures. J Immunother Cancer 2024; 12:e008138. [PMID: 38272563 PMCID: PMC10824073 DOI: 10.1136/jitc-2023-008138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Chordomas are rare cancers from the axial skeleton which present a challenging clinical management with limited treatment options due to their anatomical location. In recent years, a few clinical trials demonstrated that chordomas can respond to immunotherapy. However, an in-depth portrayal of chordoma immunity and its association with clinical parameters is still lacking. METHODS We present a comprehensive characterization of immunological features of 76 chordomas through application of a multimodal approach. Transcriptomic profiling of 20 chordomas was performed to inform on the activity of immune-related genes through the immunologic constant of rejection (ICR) signature. Multidimensional immunophenotyping through imaging mass cytometry was applied to provide insights in the different immune contextures of 32 chordomas. T cell infiltration was further evaluated in all 76 patients by means of multispectral immunofluorescence and then associated with clinical parameters through univariate and multivariate Cox proportional hazard models as well as Kaplan-Meier estimates. Moreover, distinct expression patterns of human leukocyte antigen (HLA) class I were assessed by immunohistochemical staining in all 76 patients. Finally, clonal enrichment of the T cell receptor (TCR) was sought through profiling of the variable region of TCRB locus of 24 patients. RESULTS Chordomas generally presented an immune "hot" microenvironment in comparison to other sarcomas, as indicated by the ICR transcriptional signature. We identified two distinct groups of chordomas based on T cell infiltration which were independent from clinical parameters. The highly infiltrated group was further characterized by high dendritic cell infiltration and the presence of multicellular immune aggregates in tumors, whereas low T cell infiltration was associated with lower overall cell densities of immune and stromal cells. Interestingly, patients with higher T cell infiltration displayed a more pronounced clonal enrichment of the TCR repertoire compared with those with low T cell counts. Furthermore, we observed that the majority of chordomas maintained HLA class I expression. CONCLUSION Our findings shed light on the natural immunity against chordomas through the identification of distinct immune contextures. Understanding their immune landscape could guide the development and application of immunotherapies in a tailored manner, ultimately leading to an improved clinical outcome for patients with chordoma.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Debora M Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jessica P Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Samuel B Polak
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Robert J P van der Wal
- Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, Vrana M, Cechova H, Ransdorfova S, Valerianova M, Smetana K, Vannucci L, Smrz D. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep 2023; 13:19079. [PMID: 37925511 PMCID: PMC10625569 DOI: 10.1038/s41598-023-46305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
Collapse
Affiliation(s)
- Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Karolina Strnadova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Lukas Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University, and General University Hospital, Prague, Czech Republic
| | - Barbora Dvorankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milena Vrana
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Cechova
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Sarka Ransdorfova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Valerianova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic.
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Lima CF, Tamegnon A, Rodriguez S, Maru D, Martin PL, Cooper ZA, Rodriguez-Canales J, Parra ER. Exploring the Expression of Adenosine Pathway-Related Markers CD73 and CD39 in Colorectal and Pancreatic Carcinomas Characterized by Multiplex Immunofluorescence: A Pilot Study. Pathobiology 2023; 91:205-218. [PMID: 37926083 PMCID: PMC11524541 DOI: 10.1159/000534677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Generating high levels of immunosuppressive adenosine (ADO) in the tumor microenvironment contributes to cancer immune evasion. CD39 and CD73 hydrolyze adenosine triphosphate into ADO; thus, efforts have been made to target this pathway for cancer immunotherapy. Our objective was optimizing a multiplex immunofluorescence (mIF) panel to explore the role of CD39 and CD73 within the tumor microenvironment. MATERIALS AND METHODS In three-time points, a small cohort (n = 8) of colorectal and pancreatic adenocarcinomas were automated staining using an mIF panel against CK, CD3, CD8, CD20, CD39, CD73, and CD68 to compare them with individual markers immunohistochemistry (IHC) for internal panel validation. Densities of immune cells and distances from different tumor-associated immune cells to tumor cells were exploratory assessment and compared with clinicopathologic variables and outcomes. RESULTS Comparing the three-time points and individual IHC staining results, we demonstrated high reproducibility of the mIF panel. CD39 and CD73 expression was low in malignant cells; the exploratory analysis showed higher densities of CD39 expression by various cells, predominantly stromal cells, followed by T cells, macrophages, and B cells. No expression of CD73 by B cells or macrophages was detected. Distance analysis revealed proximity of cytotoxic T cells, macrophages, and T cells expressing CD39 to malignant cells, suggesting a close regulatory signal driven by this ADO marker. CONCLUSIONS We optimized an mIF panel for detection of markers in the ADO pathway, an emerging clinically relevant pathway. The densities and spatial distribution demonstrated that this pathway may modulate aspects of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Cibelle Freitas Lima
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| | - Auriole Tamegnon
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saxon Rodriguez
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen Maru
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip L Martin
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Zachary A Cooper
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Edwin Roger Parra
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Rupp L, Resag A, Potkrajcic V, Warm V, Wehner R, Jöhrens K, Bösmüller H, Eckert F, Schmitz M. Prognostic impact of the post-treatment T cell composition and spatial organization in soft tissue sarcoma patients treated with neoadjuvant hyperthermic radio(chemo)therapy. Front Immunol 2023; 14:1185197. [PMID: 37261361 PMCID: PMC10228739 DOI: 10.3389/fimmu.2023.1185197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Soft tissue sarcomas (STS) form a heterogeneous group of tumors sharing a mesenchymal origin. Despite good local control of the disease, the occurrence of distant metastases often limits survival of STS patients with localized, high-risk tumors of the extremities. Accumulating evidence suggests a central role for the tumor immune microenvironment in determining the clinical outcome and response to therapy. Thus, it has been reported that STS patients with a high immune signature and especially presence of B cells and tertiary lymphoid structures display improved overall survival and response to checkpoint inhibitor treatment. Here, we explored the effect of curative multimodal therapy on the T cell landscape of STS using multiplex immunohistochemistry. We analyzed the phenotype, frequency, and spatial distribution of STS-infiltrating CD8+ T cells by staining for CD8, 4-1BB, Granzyme B, Ki67, PD-1, and LAG-3 as well as CD3+ T helper cells using a panel consisting of CD3, T-bet, GATA3, RORγT, FoxP3, and Ki67. All patients received neoadjuvant radiotherapy plus locoregional hyperthermia with or without chemotherapy. While the treatment-naïve biopsy sample allows an analysis of baseline T cell infiltration levels, both intra- and peritumoral areas of the matched resected tissue were analyzed to assess composition and spatial distribution of the T cell compartment and its therapeutic modulation. Generally, post-treatment tissues displayed lower frequencies of CD3+ and CD8+ T cells. Association with clinical data revealed that higher post-treatment frequencies of peritumoral and intratumoral CD3+ T cells and intratumoral PD-1+ CD8+ T cells were significantly associated with improved disease-free survival (DFS), while these densities had no prognostic significance in the biopsy. Upon spatial analysis, a high ratio of intratumoral to peritumoral CD8+ T cells emerged as an independent prognostic marker for longer DFS. These results indicate that the STS T cell landscape is altered by multimodal therapy and may influence the clinical outcome of patients. An enhanced understanding of the STS immune architecture and its modulation by neoadjuvant therapy may pave the way towards novel treatment modalities and improve the long-term clinical outcome of STS patients.
Collapse
Affiliation(s)
- Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Antonia Resag
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Verena Warm
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Korinna Jöhrens
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hans Bösmüller
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Radiation Oncology, Medical University of Vienna, Comprehensive Cancer Center Vienna, Vienna, Austria
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Graves L, Jeck WR, Grilley-Olson JE. A League of Its Own? Established and Emerging Therapies in Undifferentiated Pleomorphic Sarcoma. Curr Treat Options Oncol 2023; 24:212-228. [PMID: 36729198 DOI: 10.1007/s11864-023-01054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 02/03/2023]
Abstract
OPINION STATEMENT Over the last decade in soft tissue sarcoma (STS) research, the shifting landscape towards more precise subtype classification and the increasing study of novel therapeutic strategies has prompted a need to highlight current knowledge of effective subtype specific therapies. Undifferentiated pleomorphic sarcoma (UPS), formerly known as malignant fibrous histiocytoma (MFH), is among the most common subtypes of STS arising in the trunk or extremities of adults. Administration of systemic chemotherapy is the primary management in locally advanced and metastatic UPS. While anthracycline-based chemotherapy continues to be standard of care in this setting, outcomes in locally advanced or metastatic UPS remain poor. Recent studies highlight the unique characteristics of UPS that may contribute to its greater sensitivity to immune checkpoint inhibition (ICI) compared to other STS subtypes. With the promise of benefit from novel therapies, including ICI or ICI plus chemotherapy, for a subset of patients with UPS comes the need to identify biomarkers predictive of response to therapy. Ongoing and future clinical trials should place strong emphasis on correlative biomarker studies to learn more about the unique biology of UPS and to identify patients for whom ICI-based therapy will be effective.
Collapse
Affiliation(s)
- Laurie Graves
- Division of Pediatric Hematology & Oncology, Duke University, Hanes House, Room 378, DUMC Box 102382, 315 Trent Drive, Durham, NC, 27710, USA.
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Juneko E Grilley-Olson
- Duke Cancer Institute, Durham, NC, 27710, USA
- Division of Medical Oncology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
15
|
Connolly EA, Grimison PS, Horvath LG, Robinson PJ, Reddel RR. Quantitative proteomic studies addressing unmet clinical needs in sarcoma. Front Oncol 2023; 13:1126736. [PMID: 37197427 PMCID: PMC10183589 DOI: 10.3389/fonc.2023.1126736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcoma is a rare and complex disease comprising over 80 malignant subtypes that is frequently characterized by poor prognosis. Challenges in clinical management include uncertainties in diagnosis and disease classification, limited prognostic and predictive biomarkers, incompletely understood disease heterogeneity among and within subtypes, lack of effective treatment options, and limited progress in identifying new drug targets and novel therapeutics. Proteomics refers to the study of the entire complement of proteins expressed in specific cells or tissues. Advances in proteomics have included the development of quantitative mass spectrometry (MS)-based technologies which enable analysis of large numbers of proteins with relatively high throughput, enabling proteomics to be studied on a scale that has not previously been possible. Cellular function is determined by the levels of various proteins and their interactions, so proteomics offers the possibility of new insights into cancer biology. Sarcoma proteomics therefore has the potential to address some of the key current challenges described above, but it is still in its infancy. This review covers key quantitative proteomic sarcoma studies with findings that pertain to clinical utility. Proteomic methodologies that have been applied to human sarcoma research are briefly described, including recent advances in MS-based proteomic technology. We highlight studies that illustrate how proteomics may aid diagnosis and improve disease classification by distinguishing sarcoma histologies and identify distinct profiles within histological subtypes which may aid understanding of disease heterogeneity. We also review studies where proteomics has been applied to identify prognostic, predictive and therapeutic biomarkers. These studies traverse a range of histological subtypes including chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma, liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which can potentially be addressed with proteomics are outlined.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- *Correspondence: Elizabeth A. Connolly,
| | - Peter S. Grimison
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phillip J. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R. Reddel
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|