1
|
Brown FF, Oliver R, Eddy R, Causer AJ, Emery A, Collier-Bain HD, Dutton D, Crowe J, Augustine D, Graby J, Rees D, Rothschild-Rodriguez D, Peacock OJ, Moore S, Murray J, Turner JE, Campbell JP. A 16-week progressive exercise training intervention in treatment-naïve chronic lymphocytic leukaemia: a randomised-controlled pilot study. Front Oncol 2024; 14:1472551. [PMID: 39703835 PMCID: PMC11655450 DOI: 10.3389/fonc.2024.1472551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Background Chronic lymphocytic leukaemia (CLL) typically presents with asymptomatic, early-stage disease that is monitored until disease progression ('treatment-naïve' CLL). The objective of this pilot study was to assess the feasibility and preliminary safety of an exercise program in treatment-naïve CLL. We also sought to preliminarily assess the impact of the exercise program on disease activity, as it has been proposed that exercise training may reduce disease outgrowth in treatment-naïve CLL. Methods A total of 40 treatment-naïve CLL patients were recruited into this randomised-controlled pilot study, and after screening, n = 28 were randomised into a 16-week, home-based, partially supervised, personalised, progressive exercise intervention (n = 14: mean ± SD: age = 62 ± 12 years) or 16 weeks of usual care, control group (n = 14: mean ± SD: age = 61 ± 10 years). The primary outcome measures were safety (number and severity of adverse events) and feasibility (uptake, retention, and adherence to the trial). Disease activity (CD5+/CD19+ CLL cells clonally restricted to kappa or lambda) and other immune cell phenotypes, with a principal focus on T cells, were measured by flow cytometry. Other secondary outcomes included DEXA-derived body composition, cardiorespiratory and functional fitness, resting cardiovascular measures. Results Trial uptake was 40%, and the overall retention rate was 86%, with 79% of the exercise group and 93% of the control group completing the trial. Adherence to the exercise intervention was 92 ± 8%. One serious adverse event was reported unrelated to the trial, and one adverse event related to the trial was reported. The exercise intervention elicited a 2% increase in DEXA-derived lean mass in the exercise group compared with a 0.4% decrease in the control group (p = 0.01). No between-group differences were observed over time for whole-body mass, BMI, bone mineral density, body fat, blood pressure resting heart rate, or measures of cardiorespiratory or functional fitness (all p > 0.05). No between-group differences were observed over time for clonal CLL cells and CD4+ or CD8+ T-cell subsets (all p > 0.05). Conclusion The exercise training program used in this study was feasible in people with treatment-naïve CLL who passed pre-trial screening, and we preliminarily conclude that the exercise training program was safe and also resulted in an increase in lean mass. Clinical trial registration https://doi.org/10.1186/ISRCTN55166064, identifier ISRCTN 55166064.
Collapse
Affiliation(s)
- Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Rachel Eddy
- Department for Health, University of Bath, Bath, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | | | - David Dutton
- Department for Haematology, Great Western Hospitals NHS Foundation Trust, Swindon, United Kingdom
| | - Josephine Crowe
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Daniel Augustine
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Cardiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - John Graby
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Cardiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Daniel Rees
- Department for Health, University of Bath, Bath, United Kingdom
| | | | | | - Sally Moore
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John P. Campbell
- Department for Health, University of Bath, Bath, United Kingdom
- School of Medical and Health Science, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
2
|
Adammek F, Wences Chirino TY, Walzik D, Trebing S, Belen S, Renpening D, Zimmer P, Joisten N. Kinetics of Immune Cell Mobilization during Acute Aerobic Exercise in Healthy Adults. Int J Sports Med 2024; 45:908-916. [PMID: 38834174 DOI: 10.1055/a-2338-5397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
While pre-post differences in immune cell mobilization after acute aerobic exercise are well investigated, less is known about when and to what extent immune cells are mobilized during acute aerobic exercise. This experimental trial aimed to investigate the detailed kinetics of circulating immune cells in twelve healthy adults (n=6 females) who completed a 40-min aerobic exercise bout at 60% of the participants' V̇O2peak on a bicycle ergometer. Cellular inflammation markers and sex-dependent differences in circulating immune cells were analyzed. Blood samples were taken immediately before, after warm-up, during exercise after 5 min, 10 min, 15 min, 30 min, 40 min (cessation), and 60 min post exercise. Significant increases in leukocytes (p<0.001), lymphocytes (p<0.001), neutrophils (p=0.003) and platelets (p=0.047) can be observed after 5 min of exercise. The cellular inflammation markers show significant alterations only post exercise. Significant sex differences were observed for neutrophils (p=0.049) and neutrophil-to-lymphocyte ratio (p=0.007) one hour post exercise. These results indicate that i) leukocytes are already mobilized after 5 min of moderate-to-vigorous aerobic exercise, ii) the magnitude of exercise induced leukocyte mobilization is dependent on exercise duration, iii) integrative cellular inflammation markers are only altered after exercise cessation, and iv) the observed effects might be sex-dependent.
Collapse
Affiliation(s)
- Frederike Adammek
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - David Walzik
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sina Trebing
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Division of Exercise and Movement Science, University of Göttingen Institute for Sport Science, Gottingen, Germany
| | - Daniel Renpening
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Department of Sport and Sport Science, TU Dortmund University, Dortmund, Germany
- Division of Exercise and Movement Science, University of Göttingen Institute for Sport Science, Gottingen, Germany
| |
Collapse
|
3
|
Joseph JM, Hillengass M, Cannioto R, Tario JD, Wallace PK, Attwood K, Groman A, Jacobson H, Wittmeyer B, Mohammadpour H, Abrams SI, Moysich KB, Hillengass J. T Cell Exhaustion Markers in Multiple Myeloma Patients are Lower After Physical Activity Intervention. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:621-628. [PMID: 38762420 DOI: 10.1016/j.clml.2024.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE There is compelling evidence that CD4+ and CD8+T cells are dysfunctional in multiple myeloma, compromising their ability to control disease progression. Pre-clinical models suggest that exercise represents a non-pharmacologic means to reduce immune exhaustion, but no studies to date have examined the relationship between an exercise intervention and biomarkers of immune exhaustion in multiple myeloma patients. PATIENTS AND METHODS The current study includes 24 multiple myeloma patients who participated in a six-month physical activity intervention, consisting of supervised strength training (n = 12) and unsupervised home-based walking arms (n = 12). Comprehensive flow cytometry was utilized to assess the frequency of CD4+ and CD8+T cells and subpopulations expressing the markers of exhaustion PD-1, TIGIT, TIM3 and/or LAG3. Ratios of exhausted to non-exhausted cell populations, and percentages of exhausted to total populations of the same lineage, were calculated for the baseline and final timepoints. RESULTS Eighteen of 20 exhaustion measures were lower at the end of the intervention than at baseline, and several were significantly or borderline significantly reduced in the entire sample or in one of the arms. The entire sample saw improvements in the ratios of CD4+ TIGIT+ to non-exhausted CD4+ (0.7 [0.6] to 0.6 [0.4], P = .04) and CD8+ PD1+ to non-exhausted CD8+ (1.8 [2.6] to 1.5 [2.0], P = .06), and in total exhausted CD8+ as a percent of total CD8+ (72.9 [21.9] to 68.3 [19.6], P < .01). CONCLUSIONS This pilot study suggests that physical activity induces changes in MM patients' immune systems, potentially rendering a less exhausted T cell state.
Collapse
Affiliation(s)
- Janine M Joseph
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and Control, Buffalo, NY.
| | - Michaela Hillengass
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and Control, Buffalo, NY
| | - Rikki Cannioto
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and Control, Buffalo, NY
| | - Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Department of Flow Cytometry Laboratory (Clinical), Buffalo, NY
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Department of Cell Stress Biology, Buffalo, NY
| | - Kristopher Attwood
- Roswell Park Comprehensive Cancer Center, Department of Biostatistics and Bioinformatics, Buffalo, NY
| | - Adrienne Groman
- Roswell Park Comprehensive Cancer Center, Department of Biostatistics and Bioinformatics, Buffalo, NY
| | - Hillary Jacobson
- Roswell Park Comprehensive Cancer Center, Department of Physical Therapy, Buffalo, NY
| | - Bryan Wittmeyer
- Roswell Park Comprehensive Cancer Center, Department of Physical Therapy, Buffalo, NY
| | - Hemn Mohammadpour
- Roswell Park Comprehensive Cancer Center, Department of Cell Stress Biology, Buffalo, NY
| | - Scott I Abrams
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, NY
| | - Kirsten B Moysich
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and Control, Buffalo, NY
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Department of Medicine - Myeloma, Buffalo, NY
| |
Collapse
|
4
|
Stordal B, Harvie M, Antoniou MN, Bellingham M, Chan DSM, Darbre P, Karlsson O, Kortenkamp A, Magee P, Mandriota S, Silva E, Turner JE, Vandenberg LN, Evans DG. Breast cancer risk and prevention in 2024: An overview from the Breast Cancer UK - Breast Cancer Prevention Conference. Cancer Med 2024; 13:e70255. [PMID: 39315735 PMCID: PMC11420941 DOI: 10.1002/cam4.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The Breast Cancer UK-Breast Cancer Prevention Conference addressed risk from environmental pollutants and health behaviour-related breast-cancer risk. Epidemiological studies examining individual chemicals and breast cancer risk have produced inconclusive results including endocrine disrupting chemicals (EDCs) Bisphenol A, per- and polyfluorinated alkyl substances as well as aluminium. However, laboratory studies have shown that multiple EDCs, can work together to exhibit effects, even when combined at levels that alone are ineffective. The TEXB-α/β assay measures total estrogenic load, and studies have provided evidence of a link between multiple-chemical exposures and breast cancer. However, prospective studies using TEXB-α/β are needed to establish a causative link. There is also a need to assess real-life exposure to environmental-chemical mixtures during pregnancy, and their potential involvement in programming adverse foetal health outcomes in later life. Higher rates of breast cancer have occurred alongside increases in potentially-modifiable risk factors such as obesity. Increasing body-mass index is associated with increased risk of developing postmenopausal breast cancer, but with decreased risk of premenopausal breast cancer. In contrast, lower rates of breast cancer in Asian compared to Western populations have been linked to soya/isoflavone consumption. Risk is decreased by breastfeeding, which is in addition to the decrease in risk observed for each birth and a young first-birth. Risk is lower in those with higher levels of self-reported physical activity. Current evidence suggests breast-cancer survivors should also avoid weight gain, be physically active, and eat a healthy diet for overall health. A broad scientific perspective on breast cancer risk requires focus on both environmental exposure to chemicals and health behaviour-related risk. Research into chemical exposure needs to focus on chemical mixtures and prospective epidemiological studies in order to test the effects on breast cancer risk. Behaviour-related research needs to focus on implementation as well as deeper understanding of the mechanisms of cancer prevention.
Collapse
Affiliation(s)
- Britta Stordal
- Department of Natural Sciences, Middlesex University London, The Burroughs Hendon, London, UK
| | - Michelle Harvie
- Manchester University Hospital Foundation NHS Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Doris S M Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Reading, UK
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pamela Magee
- Nutrition Innovation Centre for Food & Health (NICHE), Ulster University, Coleraine, UK
| | - Stefano Mandriota
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, Chêne-Bougeries, Switzerland
| | - Elisabete Silva
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
- The Francis Crick Institute, London, UK
| | - James E Turner
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Voltarelli VA, Amano MT, Tobias GC, Borges GS, Oliveira da Paixão A, Pereira MG, Saraiva Câmara NO, Caldeira W, Ribeiro AF, Otterbein LE, Negrão CE, Turner JE, Brum PC, Camargo AA. Moderate-intensity aerobic exercise training improves CD8 + tumor-infiltrating lymphocytes effector function by reducing mitochondrial loss. iScience 2024; 27:110121. [PMID: 38957793 PMCID: PMC11217614 DOI: 10.1016/j.isci.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mariane Tami Amano
- Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, SP, Brazil
| | - Gabriel Cardial Tobias
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Gabriela Silva Borges
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcelo Gomes Pereira
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Waldir Caldeira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - Alberto Freitas Ribeiro
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carlos Eduardo Negrão
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - James Edward Turner
- Department for Health, University of Bath, Bath, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Patricia Chakur Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
7
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
8
|
Collier-Bain HD, Emery A, Causer AJ, Brown FF, Oliver R, Dutton D, Crowe J, Augustine D, Graby J, Leach S, Eddy R, Rothschild-Rodriguez D, Gray JC, Cragg MS, Cleary KL, Moore S, Murray J, Turner JE, Campbell JP. A single bout of vigorous intensity exercise enhances the efficacy of rituximab against human chronic lymphocytic leukaemia B-cells ex vivo. Brain Behav Immun 2024; 118:468-479. [PMID: 38503395 DOI: 10.1016/j.bbi.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by the clonal proliferation and accumulation of mature B-cells and is often treated with rituximab, an anti-CD20 monoclonal antibody immunotherapy. Rituximab often fails to induce stringent disease eradication, due in part to failure of antibody-dependent cellular cytotoxicity (ADCC) which relies on natural killer (NK)-cells binding to rituximab-bound CD20 on B-cells. CLL cells are diffusely spread across lymphoid and other bodily tissues, and ADCC resistance in survival niches may be due to several factors including low NK-cell frequency and a suppressive stromal environment that promotes CLL cell survival. It is well established that exercise bouts induce a transient relocation of NK-cells and B-cells into peripheral blood, which could be harnessed to enhance the efficacy of rituximab in CLL by relocating both target and effector cells together with rituximab in blood. In this pilot study, n = 20 patients with treatment-naïve CLL completed a bout of cycling 15 % above anaerobic threshold for ∼ 30-minutes, with blood samples collected pre-, immediately post-, and 1-hour post-exercise. Flow cytometry revealed that exercise evoked a 254 % increase in effector (CD3-CD56+CD16+) NK-cells in blood, and a 67 % increase in CD5+CD19+CD20+ CLL cells in blood (all p < 0.005). NK-cells were isolated from blood samples pre-, and immediately post-exercise and incubated with primary isolated CLL cells with or without the presence of rituximab to determine specific lysis using a calcein-release assay. Rituximab-mediated cell lysis increased by 129 % following exercise (p < 0.001). Direct NK-cell lysis of CLL cells - independent of rituximab - was unchanged following exercise (p = 0.25). We conclude that exercise improved the efficacy of rituximab-mediated ADCC against autologous CLL cells ex vivo and propose that exercise should be explored as a means of enhancing clinical responses in patients receiving anti-CD20 immunotherapy.
Collapse
Affiliation(s)
| | | | - Adam J Causer
- Department for Health, University of Bath, United Kingdom
| | - Frankie F Brown
- Department for Health, University of Bath, United Kingdom; School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, United Kingdom; Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - David Dutton
- Department for Haematology, Great Western Hospitals NHS Foundation Trust, United Kingdom
| | - Josephine Crowe
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - Daniel Augustine
- Department of Cardiology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - John Graby
- Department for Health, University of Bath, United Kingdom; Department of Cardiology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - Shoji Leach
- Department for Health, University of Bath, United Kingdom
| | - Rachel Eddy
- Department for Health, University of Bath, United Kingdom
| | | | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, United Kingdom
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, United Kingdom
| | - Kirstie L Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, United Kingdom
| | - Sally Moore
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - James Murray
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, United Kingdom; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John P Campbell
- Department for Health, University of Bath, United Kingdom; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| |
Collapse
|
9
|
Campbell JP, Walzik D, Zimmer P. What dictates tumour cell sensitivity to exercise? Nat Rev Immunol 2024; 24:303. [PMID: 38337080 DOI: 10.1038/s41577-024-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- John P Campbell
- Department for Health, University of Bath, Bath, UK
- School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
10
|
Gouez M, Rébillard A, Thomas A, Beaumel S, Matera EL, Gouraud E, Orfila L, Martin B, Pérol O, Chaveroux C, Chirico EN, Dumontet C, Fervers B, Pialoux V. Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice. Front Immunol 2024; 15:1368550. [PMID: 38426110 PMCID: PMC10902641 DOI: 10.3389/fimmu.2024.1368550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Acute exercise induces transient modifications in the tumor microenvironment and has been linked to reduced tumor growth along with increased infiltration of immune cells within the tumor in mouse models. In this study, we aimed to evaluate the impact of acute exercise before treatment administration on tumor growth in a mice model of MC38 colorectal cancer receiving an immune checkpoint inhibitor (ICI) and chemotherapy. Six-week-old mice injected with colorectal cancer cells (MC38) were randomized in 4 groups: control (CTRL), immuno-chemotherapy (TRT), exercise (EXE) and combined intervention (TRT/EXE). Both TRT and TRT-EXE received ICI: anti-PD1-1 (1 injection/week) and capecitabine + oxaliplatin (5 times a week) for 1 week (experimentation 1), 3 weeks (experimentation 2). TRT-EXE and EXE groups were submitted to 50 minutes of treadmill exercise before each treatment administration. Over the protocol duration, tumor size has been monitored daily. Tumor growth and microenvironment parameters were measured after the intervention on Day 7 (D7) and Day 16 (D16). From day 4 to day 7, tumor volumes decreased in the EXE/TRT group while remaining stable in the TRT group (p=0.0213). From day 7 until day 16 tumor volume decreased with no significant difference between TRT and TRT/EXE. At D7 the TRT/EXE group exhibited a higher total infiltrate T cell (p=0.0118) and CD8+ cytotoxic T cell (p=0.0031). At D16, tumor marker of apoptosis, vascular integrity and inflammation were not significantly different between TRT and TRT/EXE. Our main result was that acute exercise before immuno-chemotherapy administration significantly decreased early-phase tumor growth (D0 to D4). Additionally, exercise led to immune cell infiltration changes during the first week after exercise, while no significant molecular alterations in the tumor were observed 3 weeks after exercise.
Collapse
Affiliation(s)
- Manon Gouez
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Amélie Rébillard
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
- Institut Universitaire de France, Paris, France
| | - Amandine Thomas
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Sabine Beaumel
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Eva-Laure Matera
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Etienne Gouraud
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Luz Orfila
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
| | - Brice Martin
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
| | - Olivia Pérol
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Cédric Chaveroux
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Erica N. Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Béatrice Fervers
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Vincent Pialoux
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| |
Collapse
|
11
|
Emery A, Moore S, Crowe J, Murray J, Peacock O, Thompson D, Betts F, Rapps S, Ross L, Rothschild-Rodriguez D, Arana Echarri A, Davies R, Lewis R, Augustine DX, Whiteway A, Afzal Z, Heaney J, Drayson MT, Turner JE, Campbell JP. The effects of short-term, progressive exercise training on disease activity in smouldering multiple myeloma and monoclonal gammopathy of undetermined significance: a single-arm pilot study. BMC Cancer 2024; 24:174. [PMID: 38317104 PMCID: PMC10840198 DOI: 10.1186/s12885-024-11817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND High levels of physical activity are associated with reduced risk of the blood cancer multiple myeloma (MM). MM is preceded by the asymptomatic stages of monoclonal gammopathy of undetermined significance (MGUS) and smouldering multiple myeloma (SMM) which are clinically managed by watchful waiting. A case study (N = 1) of a former elite athlete aged 44 years previously indicated that a multi-modal exercise programme reversed SMM disease activity. To build from this prior case study, the present pilot study firstly examined if short-term exercise training was feasible and safe for a group of MGUS and SMM patients, and secondly investigated the effects on MGUS/SMM disease activity. METHODS In this single-arm pilot study, N = 20 participants diagnosed with MGUS or SMM were allocated to receive a 16-week progressive exercise programme. Primary outcome measures were feasibility and safety. Secondary outcomes were pre- to post-exercise training changes to blood biomarkers of MGUS and SMM disease activity- monoclonal (M)-protein and free light chains (FLC)- plus cardiorespiratory and functional fitness, body composition, quality of life, blood immunophenotype, and blood biomarkers of inflammation. RESULTS Fifteen (3 MGUS and 12 SMM) participants completed the exercise programme. Adherence was 91 ± 11%. Compliance was 75 ± 25% overall, with a notable decline in compliance at intensities > 70% V̇O2PEAK. There were no serious adverse events. There were no changes to M-protein (0.0 ± 1.0 g/L, P =.903), involved FLC (+ 1.8 ± 16.8 mg/L, P =.839), or FLC difference (+ 0.2 ± 15.6 mg/L, P =.946) from pre- to post-exercise training. There were pre- to post-exercise training improvements to diastolic blood pressure (- 3 ± 5 mmHg, P =.033), sit-to-stand test performance (+ 5 ± 5 repetitions, P =.002), and energy/fatigue scores (+ 10 ± 15%, P =.026). Other secondary outcomes were unchanged. CONCLUSIONS A 16-week progressive exercise programme was feasible and safe, but did not reverse MGUS/SMM disease activity, contrasting a prior case study showing that five years of exercise training reversed SMM in a 44-year-old former athlete. Longer exercise interventions should be explored in a group of MGUS/SMM patients, with measurements of disease biomarkers, along with rates of disease progression (i.e., MGUS/SMM to MM). REGISTRATION https://www.isrctn.com/ISRCTN65527208 (14/05/2018).
Collapse
Affiliation(s)
- A Emery
- Department for Health, University of Bath, Bath, UK
| | - S Moore
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - J Crowe
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - J Murray
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - O Peacock
- Department for Health, University of Bath, Bath, UK
| | - D Thompson
- Department for Health, University of Bath, Bath, UK
| | - F Betts
- Department for Health, University of Bath, Bath, UK
| | - S Rapps
- Department for Health, University of Bath, Bath, UK
| | - L Ross
- Department for Health, University of Bath, Bath, UK
| | | | | | - R Davies
- Department for Health, University of Bath, Bath, UK
| | - R Lewis
- Department for Physiotherapy, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - D X Augustine
- Department for Health, University of Bath, Bath, UK
- Department for Cardiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - A Whiteway
- Department for Haematology, North Bristol NHS Trust, Bristol, UK
| | - Z Afzal
- Clinical Immunology Service, Institute of Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jlj Heaney
- Clinical Immunology Service, Institute of Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M T Drayson
- Clinical Immunology Service, Institute of Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - J E Turner
- Department for Health, University of Bath, Bath, UK
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - J P Campbell
- Department for Health, University of Bath, Bath, UK.
- School of Medical and Health Sciences, Edith Cowan University, WA, Joondalup, Australia.
| |
Collapse
|
12
|
Qin B, He Z, Xie L, Feng S, Ye J, Gui J, Sun X, Sang M. The augmentation of cytotoxic immune cell functionality through physical exertion bolsters the potency of chemotherapy in models of mammary carcinoma. Cancer Med 2024; 13:e6951. [PMID: 38234174 PMCID: PMC10905332 DOI: 10.1002/cam4.6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mammary carcinoma, a pervasive and potentially lethal affliction, is conjectured to be profoundly influenced by physical exercise, both in prophylaxis and therapeutic contexts. This study endeavors to explore the repercussions of exercise training on the progression of mammary carcinoma, particularly the mechanisms by which the amalgamation of an exercise regimen and doxorubicin induces tumor cell apoptosis. METHODS Female BALB/c mice were categorized into four distinct groups: A sedentary group (SED), an exercise group (Ex), a doxorubicin group (Dox, 5 mg/kg), and a combined treatment group (Dox + Ex). The exercise training lasted for 21 days and included aerobic rotarod exercise and resistance training. The impact of exercise training on tumor growth, immune cell proportions, inflammatory factor levels, and cell apoptosis pathway was assessed. RESULTS Exercise training significantly curtailed tumor growth in a mouse model of breast cancer. Both the Ex and Dox groups exhibited significant reductions in tumor volume and weight (p < 0.01) in comparison to the SED group, while the Dox + Ex group had a significantly lower tumor volume and weight than the Dox group (p < 0.01). Exercise training also significantly increased the proportion of NK and T cells in various parts of the body and tumor tissue, while decreasing tumor blood vessels density. Exercise training also increased IL-6 and IL-15 levels in the blood and altered the expression of apoptosis-related proteins in tumor tissue, with the combined treatment group showing even more significant changes. CONCLUSIONS Physical training improves the effectiveness of doxorubicin in treating breast cancer by activating cytotoxic immune cells, releasing tumor suppressor factors, and initiating mt-apoptosis, all while mitigating the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Bingqing Qin
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Zhongshi He
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Lixia Xie
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Shenglan Feng
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Junjie Ye
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Jianjun Gui
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Xiaodong Sun
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Ming Sang
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| |
Collapse
|
13
|
Lyu DW. Immunomodulatory effects of exercise in cancer prevention and adjuvant therapy: a narrative review. Front Physiol 2024; 14:1292580. [PMID: 38239881 PMCID: PMC10794543 DOI: 10.3389/fphys.2023.1292580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Successful application of cancer immunotherapy has rekindled hope in cancer patients. However, a number of patients are unresponsive to immunotherapy and related treatments. This unresponsiveness in cancer patients toward different treatment regimens can be mainly attributed to severe immune dysfunction in such patients. Several reports indicate that physical exercise can significantly lead to improved cancer patient outcomes. Since exercise gets immense response from the immune system, it can be utilized to improve immune function. Leukocytes with enhanced functions are substantially mobilized into the circulation by a single bout of intense physical exercise. Chronic physical exercise results in greater muscle endurance and strength and improved cardiorespiratory function. This exercise regime is also useful in improving T-cell abundance and reducing dysfunctional T cells. The current available data strongly justify for future clinical trials to investigate physical exercise use as an adjuvant in cancer therapy; however, optimal parameters using exercise for a defined outcome are yet to be established. The components of the immune system associate with almost every tumorigenesis step. The inter-relationship between inflammation, cancer, and innate immunity has recently gained acceptance; however, the underlying cellular and molecular mechanisms behind this relationship are yet to be solved. Several studies suggest physical exercise-mediated induction of immune cells to elicit anti-tumorigenic effects. This indicates the potential of exercising in modulating the behavior of immune cells to inhibit tumor progression. However, further mechanistic details behind physical exercise-driven immunomodulation and anticancer effects have to be determined. This review aims to summarize and discuss the association between physical exercise and immune function modulation and the potential of exercise as an adjuvant therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Da-wei Lyu
- Physical Education and Health School, East China Jiaotong University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
McKenzie ND, Ahmad S. Impact of Lifestyle Interventions on Gynecologic Cancers: Beyond Diet and Exercise. Am J Lifestyle Med 2024; 18:7-20. [PMID: 39184272 PMCID: PMC11339763 DOI: 10.1177/15598276221123764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
A Lifestyle Medicine approach to compliment cancer care is less commonly researched or implemented for women with gynecologic cancers as compared to better funded malignancies such as breast, prostate, and colorectal. Yet, several gynecologic malignancies are linked to obesity, estrogen/metabolic signaling pathways, and altered tumor microenvironment which could benefit greatly from a lifestyle medicine program. Lifestyle medicine, an evidenced-based branch of science, has expanded to the prevention and treatment of disorders caused by lifestyle factors (including cancer). Modifiable lifestyle factors such as obesity, lack of physical activity/nutrient density, microbial dysbiosis, sleep disturbance, and chronic stressors contribute greatly to cancer morbidity and mortality worldwide. This overarching area of research is evolving with some subtopics in their infancy requiring further investigation. Modern tools have allowed for better understanding of mechanisms by which adiposity and inactivity affect tumor promoting signaling pathways as well as the local tumor environment. Through the evolving use of these sophisticated techniques, novel prognostic biomarkers have emerged to explore efficacy of pharmacologic and lifestyle interventions in cancer. This state-of-the-art review article appraises recent evidence for a lifestyle medicine approach, beyond diet and exercise, to optimize survivorship and quality of life for patients with gynecologic cancers and introduces the 8-week web-based comprehensive HEAL-GYN program.
Collapse
Affiliation(s)
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL, USA
| |
Collapse
|
15
|
Brummer C, Pukrop T, Wiskemann J, Bruss C, Ugele I, Renner K. Can Exercise Enhance the Efficacy of Checkpoint Inhibition by Modulating Anti-Tumor Immunity? Cancers (Basel) 2023; 15:4668. [PMID: 37760634 PMCID: PMC10526963 DOI: 10.3390/cancers15184668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer therapy. However, response to ICI is often limited to selected subsets of patients or not durable. Tumors that are non-responsive to checkpoint inhibition are characterized by low anti-tumoral immune cell infiltration and a highly immunosuppressive tumor microenvironment. Exercise is known to promote immune cell circulation and improve immunosurveillance. Results of recent studies indicate that physical activity can induce mobilization and redistribution of immune cells towards the tumor microenvironment (TME) and therefore enhance anti-tumor immunity. This suggests a favorable impact of exercise on the efficacy of ICI. Our review delivers insight into possible molecular mechanisms of the crosstalk between muscle, tumor, and immune cells. It summarizes current data on exercise-induced effects on anti-tumor immunity and ICI in mice and men. We consider preclinical and clinical study design challenges and discuss the role of cancer type, exercise frequency, intensity, time, and type (FITT) and immune sensitivity as critical factors for exercise-induced impact on cancer immunosurveillance.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Joachim Wiskemann
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| | - Kathrin Renner
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| |
Collapse
|
16
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
17
|
Lavín-Pérez AM, Collado-Mateo D, Abbasi S, Ferreira-Júnior JB, Hekmatikar AHA. Effects of exercise on immune cells with tumor-specific activity in breast cancer patients and survivors: a systematic review and meta-analysis. Support Care Cancer 2023; 31:507. [PMID: 37542543 DOI: 10.1007/s00520-023-07968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Exercise is effective for improving the physical and psychological health of breast cancer patients. However, there is still controversy around its role on the immune system. Therefore, this systematic review and meta-analysis is aimed to evaluate the effect of chronic exercise on the number and activity of the immune cells that can contribute to anti-tumor immune responses, such as natural killers (NK) cells, CD + 4, or CD + 8. The main hypothesis of this study was that exercise could improve the immune system or, at least, there will not be a reduction in the number or activity of immune cells because of exercise. The search was conducted in the PubMed and Web of Science databases. Out of 244 studies reviewed, 10 studies met the inclusion criteria. The studies included in the meta-analyses showed mixed results and no significant (p > 0.05) positive or negative effects of exercise interventions in women with breast cancer. Therefore, the current evidence indicates that exercise does not significantly improve or reduce the immune system; thus, the prescription of exercise must not be discouraged due to the effects on the number and activity of immune system cells, but should be recommended due to the well-known benefits in quality of life, physical function or fatigue, and the absence of negative effects on the immune system. Further studies are needed to evaluate the effects according to the type of exercise, the type of cancer, or the timing of the intervention.
Collapse
Affiliation(s)
- Ana Myriam Lavín-Pérez
- Centre for Sport Studies, Rey Juan Carlos University, 28043 Fuenlabrada, Spain and GO fit LAB, Ingesport, 28003, Madrid, Spain
| | - Daniel Collado-Mateo
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28043, Spain.
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, 10600, Iran
| | | | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran.
| |
Collapse
|
18
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Jones RH, Thompson D, Turner JE. Immune cell status, cardiorespiratory fitness and body composition among breast cancer survivors and healthy women: a cross sectional study. Front Physiol 2023; 14:1107070. [PMID: 37324393 PMCID: PMC10267418 DOI: 10.3389/fphys.2023.1107070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Methods: We examined whether immune cell profiles differ between healthy women (n = 38) and breast cancer survivors (n = 27) within 2 years of treatment, and whether any group-differences were influenced by age, cytomegalovirus infection, cardiorespiratory fitness and body composition. Using flow cytometry, CD4+ and CD8+ T cell subsets, including naïve (NA), central memory (CM) and effector cells (EM and EMRA) were identified using CD27/CD45RA. Activation was measured by HLA-DR expression. Stem cell-like memory T cells (TSCMs) were identified using CD95/CD127. B cells, including plasmablasts, memory, immature and naïve cells were identified using CD19/CD27/CD38/CD10. Effector and regulatory Natural Killer cells were identified using CD56/CD16. Results: Compared to healthy women, CD4+ CM were +Δ21% higher among survivors (p = 0.028) and CD8+ NA were -Δ25% lower (p = 0.034). Across CD4+ and CD8+ subsets, the proportion of activated (HLA-DR+) cells was +Δ31% higher among survivors: CD4+ CM (+Δ25%), CD4+ EM (+Δ32%) and CD4+ EMRA (+Δ43%), total CD8+ (+Δ30%), CD8+ EM (+Δ30%) and CD8+ EMRA (+Δ25%) (p < 0.046). The counts of immature B cells, NK cells and CD16+ NK effector cells were higher among survivors (+Δ100%, +Δ108% and +Δ143% respectively, p < 0.04). Subsequent analyses examined whether statistically significant differences in participant characteristics, influenced immunological differences between groups. Compared to healthy women, survivors were older (56 ± 6 y vs. 45 ± 11 y), had lower cardiorespiratory fitness (V˙O2max mL kg-1 min-1: 28.8 ± 5.0 vs. 36.2 ± 8.5), lower lean mass (42.3 ± 5.0 kg vs. 48.4 ± 15.8 kg), higher body fat (36.3% ± 5.3% vs. 32.7% ± 6.4%) and higher fat mass index (FMI kg/m2: 9.5 ± 2.2 vs. 8.1 ± 2.7) (all p < 0.033). Analysis of covariance revealed divergent moderating effects of age, CMV serostatus, cardiorespiratory fitness and body composition on the differences in immune cell profiles between groups, depending on the cell type examined. Moreover, across all participants, fat mass index was positively associated with the proportion of HLA-DR+ CD4+ EMRA and CD8+ EM/EMRA T cells (Pearson correlation: r > 0.305, p < 0.019). The association between fat mass index and HLA-DR+ CD8+ EMRA T cells withstood statistical adjustment for all variables, including age, CMV serostatus, lean mass and cardiorespiratory fitness, potentially implicating these cells as contributors to inflammatory/immune-dysfunction in overweight/obesity.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Velindre Cancer Centre and Cardiff University, Cardiff, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Hanson ED, Sakkal S, Bates-Fraser LC, Que S, Cho E, Spielmann G, Kadife E, Violet JA, Battaglini CL, Stoner L, Bartlett DB, McConell GK, Hayes A. Acute exercise induces distinct quantitative and phenotypical T cell profiles in men with prostate cancer. Front Sports Act Living 2023; 5:1173377. [PMID: 37325799 PMCID: PMC10266416 DOI: 10.3389/fspor.2023.1173377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background Reduced testosterone levels can influence immune system function, particularly T cells. Exercise during cancer reduces treatment-related side effects and provide a stimulus to mobilize and redistribute immune cells. However, it is unclear how conventional and unconventional T cells (UTC) respond to acute exercise in prostate cancer survivors compared to healthy controls. Methods Age-matched prostate cancer survivors on androgen deprivation therapy (ADT) and those without ADT (PCa) along with non-cancer controls (CON) completed ∼45 min of intermittent cycling with 3 min at 60% of peak power interspersed by 1.5 min of rest. Fresh, unstimulated immune cell populations and intracellular perforin were assessed before (baseline), immediately following (0 h), 2 h, and 24 h post-exercise. Results At 0 h, conventional T cell counts increased by 45%-64% with no differences between groups. T cell frequency decreased by -3.5% for CD3+ and -4.5% for CD4+ cells relative to base at 0 h with CD8+ cells experiencing a delayed decrease of -4.5% at 2 h with no group differences. Compared to CON, the frequency of CD8+CD57+ cells was -18.1% lower in ADT. Despite a potential decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+ counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell counts increased by 127% and were preferentially mobilized (+1.7%) immediately following the acute cycling bout. There were no UTC group differences. Cell counts and frequencies returned to baseline by 24 h. Conclusion Following acute exercise, prostate cancer survivors demonstrate normal T cell and UTC responses that were comparable to CON. Independent of exercise, ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that suggests a less mature phenotype. However, higher perforin GMFI may attenuate these changes, with the functional implications of this yet to be determined.
Collapse
Affiliation(s)
- Erik D. Hanson
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Lauren C. Bates-Fraser
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Shadney Que
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John A. Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Claudio L. Battaglini
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Lee Stoner
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - David B. Bartlett
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Glenn K. McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Thompson D, Turner JE. The effects of exercise training for eight weeks on immune cell characteristics among breast cancer survivors. Front Sports Act Living 2023; 5:1163182. [PMID: 37252426 PMCID: PMC10211347 DOI: 10.3389/fspor.2023.1163182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Methods This study examined the effects of exercise training for 8 weeks on blood immune cell characteristics among 20 breast cancer survivors (age 56 ± 6 years, Body Mass Index 25.4 ± 3.0 kg m2) within two years of treatment. Participants were randomly allocated to a partly-supervised or a remotely-supported exercise group (n = 10 each). The partly supervised group undertook 2 supervised (laboratory-based treadmill walking and cycling) and 1 unsupervised session per week (outdoor walking) progressing from 35 to 50 min and 55% to 70% V˙O2max. The remotely-supported group received weekly exercise/outdoor walking targets (progressing from 105 to 150 min per week 55% to 70% V˙O2max) via weekly telephone calls discussing data from a fitness tracker. Immune cell counts were assessed using flow cytometry: CD4+ and CD8+ T cells (Naïve, NA; Central memory, CM; and Effector cells, EM and EMRA; using CD27/CD45RA), Stem cell-like memory T cells (TSCMs; using CD95/CD127), B cells (plasmablasts, memory, immature and naïve cells using CD19/CD27/CD38/CD10) and Natural Killer cells (effector and regulatory cells, using CD56/CD16). T cell function was assessed by unstimulated HLA-DR expression or interferon gamma (IFN-γ) production with Enzyme-linked ImmunoSpot assays following stimulation with virus or tumour-associated antigens. Results Total leukocyte counts, lymphocytes, monocytes and neutrophils did not change with training (p > 0.425). Most CD4+ and CD8+ T cell subtypes, including TSCMs, and B cell and NK cell subtypes did not change (p > 0.127). However, across groups combined, the CD4+ EMRA T cell count was lower after training (cells/µl: 18 ± 33 vs. 12 ± 22, p = 0.028) and these cells were less activated on a per cell basis (HLA-DR median fluorescence intensity: 463 ± 138 vs. 420 ± 77, p = 0.018). Furthermore, the partly-supervised group showed a significant decrease in the CD4+/CD8+ ratio (3.90 ± 2.98 vs. 2.54 ± 1.29, p = 0.006) and a significant increase of regulatory NK cells (cells/µl: 16 ± 8 vs. 21 ± 10, p = 0.011). T cell IFN-γ production did not change with exercise training (p > 0.515). Discussion In summary, most immune cell characteristics are relatively stable with 8 weeks of exercise training among breast cancer survivors. The lower counts and activation of CD4+ EMRA T cells, might reflect an anti-immunosenescence effect of exercise.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Batatinha H, Diak DM, Niemiro GM, Baker FL, Smith KA, Zúñiga TM, Mylabathula PL, Seckeler MD, Lau B, LaVoy EC, Gustafson MP, Katsanis E, Simpson RJ. Human lymphocytes mobilized with exercise have an anti-tumor transcriptomic profile and exert enhanced graft-versus-leukemia effects in xenogeneic mice. Front Immunol 2023; 14:1067369. [PMID: 37077913 PMCID: PMC10109447 DOI: 10.3389/fimmu.2023.1067369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundEvery bout of exercise mobilizes and redistributes large numbers of effector lymphocytes with a cytotoxic and tissue migration phenotype. The frequent redistribution of these cells is purported to increase immune surveillance and play a mechanistic role in reducing cancer risk and slowing tumor progression in physically active cancer survivors. Our aim was to provide the first detailed single cell transcriptomic analysis of exercise-mobilized lymphocytes and test their effectiveness as a donor lymphocyte infusion (DLI) in xenogeneic mice engrafted with human leukemia.MethodsPeripheral blood mononuclear cells (PBMCs) were collected from healthy volunteers at rest and at the end of an acute bout of cycling exercise. Flow cytometry and single-cell RNA sequencing was performed to identify phenotypic and transcriptomic differences between resting and exercise-mobilized cells using a targeted gene expression panel curated for human immunology. PBMCs were injected into the tail vein of xenogeneic NSG-IL-15 mice and subsequently challenged with a luciferase tagged chronic myelogenous leukemia cell line (K562). Tumor growth (bioluminescence) and xenogeneic graft-versus-host disease (GvHD) were monitored bi-weekly for 40-days.ResultsExercise preferentially mobilized NK-cell, CD8+ T-cell and monocyte subtypes with a differentiated and effector phenotype, without significantly mobilizing CD4+ regulatory T-cells. Mobilized effector lymphocytes, particularly effector-memory CD8+ T-cells and NK-cells, displayed differentially expressed genes and enriched gene sets associated with anti-tumor activity, including cytotoxicity, migration/chemotaxis, antigen binding, cytokine responsiveness and alloreactivity (e.g. graft-versus-host/leukemia). Mice receiving exercise-mobilized PBMCs had lower tumor burden and higher overall survival (4.14E+08 photons/s and 47%, respectively) at day 40 compared to mice receiving resting PBMCs (12.1E+08 photons/s and 22%, respectively) from the same donors (p<0.05). Human immune cell engraftment was similar for resting and exercise-mobilized DLI. However, when compared to non-tumor bearing mice, K562 increased the expansion of NK-cell and CD3+/CD4-/CD8- T-cells in mice receiving exercise-mobilized but not resting lymphocytes, 1-2 weeks after DLI. No differences in GvHD or GvHD-free survival was observed between groups either with or without K562 challenge.ConclusionExercise in humans mobilizes effector lymphocytes with an anti-tumor transcriptomic profile and their use as DLI extends survival and enhances the graft-versus-leukemia (GvL) effect without exacerbating GvHD in human leukemia bearing xenogeneic mice. Exercise may serve as an effective and economical adjuvant to increase the GvL effects of allogeneic cell therapies without intensifying GvHD.
Collapse
Affiliation(s)
- Helena Batatinha
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Douglass M. Diak
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Grace M. Niemiro
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Forrest L. Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Kyle A. Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Tiffany M. Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Preteesh L. Mylabathula
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Michael D. Seckeler
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Branden Lau
- University of Arizona Genetics Core, The University of Arizona, Tucson, AZ, United States
| | - Emily C. LaVoy
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Michael P. Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Richard J. Simpson,
| |
Collapse
|
22
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Schauer T, Djurhuus SS, Simonsen C, Brasso K, Christensen JF. The effects of acute exercise and inflammation on immune function in early-stage prostate cancer. Brain Behav Immun Health 2022; 25:100508. [PMID: 36133956 PMCID: PMC9483738 DOI: 10.1016/j.bbih.2022.100508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background The immune system plays a vital role in cancer development and progression. Strategies mobilizing cytotoxic cells of the immune system to combat immunosuppression in cancer may help to improve the treatment response of patients. To this end, we aimed to characterize the anti-cancer effect of acute exercise, including the involvement of inflammatory signals. Patients and methods Twenty patients with early-stage prostate cancer (PCa) scheduled to undergo prostatectomy performed one bout of acute exercise consisting of a watt-max test and four high-intensity intervals. Natural Killer (NK), NKT-like and T cell phenotype, NK cell cytotoxic activity (NKCA), and NKCA per-cell against cell lines of leukemia (K562) and prostate cancer origin (LNCaP and PC-3) were assessed. Inflammatory markers (TNF-α, IL-6, and CRP) were measured in plasma. Results Exercise increased NK, NKT-like, and CD8 T cell concentration in the circulation. Furthermore, exercise shifted immune cells towards a mature and cytotoxic phenotype e.g., NK cells exhibited higher CD57 as well as lower NKG2A expression. NKT-like and CD8 cells exhibited elevated CD57, TIGIT and Granzyme-B expression. Exercise significantly improved NKCA against K562 (+16% [5%; 27%]; p = 0.002) and LNCaP (+24% [14%; 34%]; p < 0.001) but not PC-3. NKCA per NK cell decreased during exercise and increased 1-h post exercise compared to baseline in K562, LNCap, and PC-3 cell lines. Baseline IL-6 correlated with lymphocyte, monocyte and T cell concentration pre-exercise and inversely correlated with the fold-change of mobilized lymphocytes and CD8 T cells during exercise. Furthermore, baseline IL-6 and TNF-α inversely correlated with NKCA against PC-3 cells during exercise. Conclusions Acute exercise mobilized cytotoxic immune cells and improved NKCA in patients with PCa whereas low-grade inflammation might impair the response. Whether the observed improvements impact long-term outcomes warrant further investigation. Clinical trial number NCT03675529.
Collapse
Affiliation(s)
- Tim Schauer
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Casper Simonsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Exercise and Biomechanics, University of Southern Denmark, Denmark
- Digestive Disease Center, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|