1
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Bi D, Van Hal A, Aschmann D, Shen M, Zhang H, Su L, Arias-Alpizar G, Kros A, Barz M, Bussmann J. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310781. [PMID: 38488770 DOI: 10.1002/smll.202310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Indexed: 08/09/2024]
Abstract
Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Anneke Van Hal
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Mengjie Shen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gabriela Arias-Alpizar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
3
|
Satheesan S, Gehrig J, Thomas LS. Virtual Orientation Tools (VOTj): Fiji plugins for object centering and alignment. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001221. [PMID: 38911438 PMCID: PMC11193110 DOI: 10.17912/micropub.biology.001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Standardizing image datasets is essential for facilitating overall visual comparisons and enhancing compatibility with image-processing workflows. One way to achieve homogeneity for images containing a single object is to align the object to a common orientation. Here, we propose the Virtual Orientation Tools (VOTj): a set of Fiji plugins to center and align an object of interest in images to a vertical or horizontal orientation. To process an image, the plugin requires either a mask outlining the object or a rough annotation of the object directly drawn by the user in the image. The current object orientation is retrieved using Principal Component Analysis (PCA), from which the optimal alignment is derived. The plugins support multi-dimensional images to allow, e.g., aligning individual time points of a time-lapse. The tools can be used for a variety of samples and imaging modalities. Besides, the plugins enable the interactive alignment of a list of images from a directory for batch execution and can be included in custom image-processing workflows using macro-recording.
Collapse
Affiliation(s)
- Sankeert Satheesan
- Acquifer, Luxendo GmbH, Heidelberg, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
5
|
Jia PP, Li Y, Zhang LC, Wu MF, Li TY, Pei DS. Metabolome evidence of CKDu risks after chronic exposure to simulated Sri Lanka drinking water in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116149. [PMID: 38412632 DOI: 10.1016/j.ecoenv.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lan-Chen Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Fei Wu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
11
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney. Cells 2023; 12:666. [PMID: 36831333 PMCID: PMC9955091 DOI: 10.3390/cells12040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Buvall L, Menzies RI, Williams J, Woollard KJ, Kumar C, Granqvist AB, Fritsch M, Feliers D, Reznichenko A, Gianni D, Petrovski S, Bendtsen C, Bohlooly-Y M, Haefliger C, Danielson RF, Hansen PBL. Selecting the right therapeutic target for kidney disease. Front Pharmacol 2022; 13:971065. [DOI: 10.3389/fphar.2022.971065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD. This review describes some of the latest advances in the field and brings them together in a more holistic framework as applied to identification and validation of disease drivers in CKD. It uses high-resolution ‘patient-centric’ omics data sets, advanced in silico tools (systems biology, connectivity mapping, and machine learning) and ‘state-of-the-art‘ experimental systems (complex 3D systems in vitro, CRISPR gene editing, and various model biological systems in vivo). Application of such a framework is expected to increase the likelihood of successful identification of novel drug candidates based on strong human target validation and a better scientific understanding of underlying mechanisms.
Collapse
|
15
|
A low-molecular-weight chitosan fluorometric-based assay for evaluating antiangiogenic drugs. Int J Biol Macromol 2022; 224:927-937. [DOI: 10.1016/j.ijbiomac.2022.10.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
16
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 DOI: 10.1101/2021.07.19.452884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
17
|
Lim S, Kang H, Kwon B, Lee JP, Lee J, Choi K. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113842. [PMID: 35810668 DOI: 10.1016/j.ecoenv.2022.113842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.
Collapse
Affiliation(s)
- Soyoung Lim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Bareum Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
19
|
Li P, Zhang J, Liu X, Gan L, Xie Y, Zhang H, Si J. The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Front Microbiol 2022; 13:903471. [PMID: 35722341 PMCID: PMC9201518 DOI: 10.3389/fmicb.2022.903471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota has become a topical issue in unraveling the research mechanisms underlying disease onset and progression. As an important and potential "organ," gut microbiota plays an important role in regulating intestinal epithelial cell differentiation, proliferation, metabolic function and immune response, angiogenesis and host growth. More recently, zebrafish models have been used to study the interactions between gut microbiota and hosts. It has several advantages, such as short reproductive cycle, low rearing cost, transparent larvae, high genomic similarity to humans, and easy construction of germ-free (GF) and transgenic zebrafish. In our review, we reviewed a large amount of data focusing on the close relationship between gut microbiota and host health. Moreover, we outlined the functions of gut microbiota in regulating intestinal epithelial cell differentiation, intestinal epithelial cell proliferation, metabolic function, and immune response. More, we summarized major factors that can influence the composition, abundance, and diversity of gut microbiota, which will help us to understand the significance of gut microbiota in regulating host biological functions and provide options for maintaining the balance of host health.
Collapse
Affiliation(s)
- Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
20
|
Elsaid HO, Furriol J, Blomqvist M, Diswall M, Leh S, Gharbi N, Anonsen JH, Babickova J, Tøndel C, Svarstad E, Marti HP, Krause M. Reduced α-galactosidase A activity in zebrafish ( Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep 2022; 31:100851. [PMID: 35242583 PMCID: PMC8857658 DOI: 10.1016/j.ymgmr.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 10/28/2022] Open
Abstract
Fabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current in vivo models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish. Zebrafish GLA gene encoding α-GAL enzyme presents a high (>70%) homology with its human counterpart, and the corresponding protein has a similar tissue distribution, as evaluated by immunohistochemistry. Moreover, a similar enzymatic activity in different life stages could be demonstrated. By using CRISPR/Cas9 technology, we generated a mutant zebrafish with decreased GLA gene expression, and decreased expression of the specific gene product in the kidney. Mutant animals showed higher plasma creatinine levels and proteinuria. Transmission electron microscopy (TEM) studies documented an increased podocyte foot process width (FPW) in mutant, as compared to wild type zebrafish. This zebrafish model reliably mirrors distinct features of human FD and could be advantageously used for the identification of novel biomarkers and for an effective screening of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mette Diswall
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Naouel Gharbi
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Jan Haug Anonsen
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars Centre for Molecular Marine Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Otterstrom JJ, Lubin A, Payne EM, Paran Y. Technologies bringing young Zebrafish from a niche field to the limelight. SLAS Technol 2022; 27:109-120. [PMID: 35058207 DOI: 10.1016/j.slast.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fundamental life science and pharmaceutical research are continually striving to provide physiologically relevant context for their biological studies. Zebrafish present an opportunity for high-content screening (HCS) to bring a true in vivo model system to screening studies. Zebrafish embryos and young larvae are an economical, human-relevant model organism that are amenable to both genetic engineering and modification, and direct inspection via microscopy. The use of these organisms entails unique challenges that new technologies are overcoming, including artificial intelligence (AI). In this perspective article, we describe the state-of-the-art in terms of automated sample handling, imaging, and data analysis with zebrafish during early developmental stages. We highlight advances in orienting the embryos, including the use of robots, microfluidics, and creative multi-well plate solutions. Analyzing the micrographs in a fast, reliable fashion that maintains the anatomical context of the fluorescently labeled cells is a crucial step. Existing software solutions range from AI-driven commercial solutions to bespoke analysis algorithms. Deep learning appears to be a critical tool that researchers are only beginning to apply, but already facilitates many automated steps in the experimental workflow. Currently, such work has permitted the cellular quantification of multiple cell types in vivo, including stem cell responses to stress and drugs, neuronal myelination and macrophage behavior during inflammation and infection. We evaluate pro and cons of proprietary versus open-source methodologies for combining technologies into fully automated workflows of zebrafish studies. Zebrafish are poised to charge into HCS with ever-greater presence, bringing a new level of physiological context.
Collapse
Affiliation(s)
| | - Alexandra Lubin
- Research Department of Hematology, Cancer Institute, University College London, London, UK
| | - Elspeth M Payne
- Research Department of Hematology, Cancer Institute, University College London, London, UK
| | | |
Collapse
|
22
|
Rivera BN, Wilson LB, Kim DN, Pande P, Anderson KA, Tilton SC, Tanguay RL. A Comparative Multi-System Approach to Characterizing Bioactivity of Commonly Occurring Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3829. [PMID: 35409514 PMCID: PMC8998123 DOI: 10.3390/ijerph19073829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/10/2022]
Abstract
A 2019 retrospective study analyzed wristband personal samplers from fourteen different communities across three different continents for over 1530 organic chemicals. Investigators identified fourteen chemicals (G14) detected in over 50% of personal samplers. The G14 represent a group of chemicals that individuals are commonly exposed to, and are mainly associated with consumer products including plasticizers, fragrances, flame retardants, and pesticides. The high frequency of exposure to these chemicals raises questions of their potential adverse human health effects. Additionally, the possibility of exposure to mixtures of these chemicals is likely due to their co-occurrence; thus, the potential for mixtures to induce differential bioactivity warrants further investigation. This study describes a novel approach to broadly evaluate the hazards of personal chemical exposures by coupling data from personal sampling devices with high-throughput bioactivity screenings using in vitro and non-mammalian in vivo models. To account for species and sensitivity differences, screening was conducted using primary normal human bronchial epithelial (NHBE) cells and early life-stage zebrafish. Mixtures of the G14 and most potent G14 chemicals were created to assess potential mixture effects. Chemical bioactivity was dependent on the model system, with five and eleven chemicals deemed bioactive in NHBE and zebrafish, respectively, supporting the use of a multi-system approach for bioactivity testing and highlighting sensitivity differences between the models. In both NHBE and zebrafish, mixture effects were observed when screening mixtures of the most potent chemicals. Observations of BMC-based mixtures in NHBE (NHBE BMC Mix) and zebrafish (ZF BMC Mix) suggested antagonistic effects. In this study, consumer product-related chemicals were prioritized for bioactivity screening using personal exposure data. High-throughput high-content screening was utilized to assess the chemical bioactivity and mixture effects of the most potent chemicals.
Collapse
Affiliation(s)
- Brianna N. Rivera
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.N.R.); (L.B.W.); (K.A.A.); (S.C.T.)
| | - Lindsay B. Wilson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.N.R.); (L.B.W.); (K.A.A.); (S.C.T.)
| | - Doo Nam Kim
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99354, USA; (D.N.K.); (P.P.)
| | - Paritosh Pande
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99354, USA; (D.N.K.); (P.P.)
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.N.R.); (L.B.W.); (K.A.A.); (S.C.T.)
| | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.N.R.); (L.B.W.); (K.A.A.); (S.C.T.)
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.N.R.); (L.B.W.); (K.A.A.); (S.C.T.)
| |
Collapse
|
23
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
24
|
Ren Z, Zhang Z, Liu TM, Ge W. Novel zebrafish polycystic kidney disease models reveal functions of the Hippo pathway in renal cystogenesis. Dis Model Mech 2021; 14:272239. [PMID: 34545930 PMCID: PMC8592019 DOI: 10.1242/dmm.049027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is a kinase cascade that plays an important role in organ size control. As the main effectors of the Hippo pathway, transcription coactivators Yap1/Wwtr1 are regulated by the upstream kinase Stk3. Recent studies in mammals have implicated the Hippo pathway in kidney development and kidney diseases. To further illustrate its roles in vertebrate kidney, we generated a series of zebrafish mutants targeting stk3, yap1 and wwtr1 genes. The stk3−/− mutant exhibited edema, formation of glomerular cysts and pronephric tubule dilation during the larval stage. Interestingly, disruption of wwtr1, but not yap1, significantly alleviated the renal phenotypes of the stk3−/− mutant, and overexpression of Wwtr1 with the CMV promoter also induced pronephric phenotypes, similar to those of the stk3−/− mutant, during larval stage. Notably, adult fish with Wwtr1 overexpression developed phenotypes similar to those of human polycystic kidney disease (PKD). Overall, our analyses revealed roles of Stk3 and Wwtr1 in renal cyst formation. Using a pharmacological approach, we further demonstrated that Stk3-deficient zebrafish could serve as a PKD model for drug development. Summary: A zebrafish stk3 mutant line and Wwtr1 overexpression line provide evidence for functions of the Hippo signaling pathway in renal cyst formation and represent potential models for polycystic kidney disease.
Collapse
Affiliation(s)
- Zhiqin Ren
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tzu-Ming Liu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
25
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
26
|
Subendran S, Wang YC, Lu YH, Chen CY. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics. Sci Rep 2021; 11:13801. [PMID: 34226579 PMCID: PMC8257654 DOI: 10.1038/s41598-021-93078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study proposed a new experimental approach for the vascular and phenotype evaluation of the non-anesthetized zebrafish with representative imaging orientations for heart, pectoral fin beating, and vasculature views by means of the designed microfluidic device through inducing the optomotor response and hydrodynamic pressure control. In order to provide the visual cues for better positioning of zebrafish, computer-animated moving grids were generated by an in-house control interface which was powered by the larval optomotor response, in conjunction with the pressure suction control. The presented platform provided a comprehensive evaluation of internal circulation and the linked external behaviors of zebrafish in response to the cardiovascular parameter changes. The insights from these imaging sections was extended to identify the linkage between the cardiac parameters and behavioral endpoints. In addition, selected chemicals such as ethanol and caffeine were employed for the treatment of zebrafish. The obtained findings can be applicable for future investigation in behavioral drug screening serving as the forefront in psychopharmacological and cognition research.
Collapse
Affiliation(s)
- Satishkumar Subendran
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan
| | - Yi-Chieh Wang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan
| | - Yueh-Hsun Lu
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
27
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
28
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
29
|
Almurshidi BH, Van Court R, Vega Gutierrez SM, Harper S, Harper B, Robinson SC. Preliminary Examination of the Toxicity of Spalting Fungal Pigments: A Comparison between Extraction Methods. J Fungi (Basel) 2021; 7:155. [PMID: 33671668 PMCID: PMC7926312 DOI: 10.3390/jof7020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Spalting fungal pigments have shown potential in technologies ranging from green energy generation to natural colorants. However, their unknown toxicity has been a barrier to industrial adoption. In order to gain an understanding of the safety of the pigments, zebrafish embryos were exposed to multiple forms of liquid media and solvent-extracted pigments with concentrations of purified pigment ranging from 0 to 50 mM from Chlorociboria aeruginosa, Chlorociboria aeruginascens, and Scytalidium cuboideum. Purified xylindein from Chlorociboria sp. did not show toxicity at any tested concentration, while the red pigment dramada from S. cuboideum was only associated with significant toxicity above 23.2 uM. However, liquid cultures and pigment extracted into dichloromethane (DCM) showed toxicity, suggesting the co-production of bioactive secondary metabolites. Future research on purification and the bioavailability of the red dramada pigment will be important to identify appropriate use; however, purified forms of the blue-green pigment xylindein are likely safe for use across industries. This opens the door to the adoption of green technologies based on these pigments, with potential to replace synthetic colorants and less stable natural pigments.
Collapse
Affiliation(s)
- Badria H. Almurshidi
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - R.C. Van Court
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - Sarath M. Vega Gutierrez
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - Stacey Harper
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (B.H.)
| | - Bryan Harper
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (B.H.)
| | - Seri C. Robinson
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| |
Collapse
|
30
|
Cheng WC, Liu WJ, Hu KH, Tan YL, Lin YT, Chen WA, Lo LC. Rapid Synthesis of a Natural Product-Inspired Uridine Containing Library. ACS COMBINATORIAL SCIENCE 2020; 22:600-607. [PMID: 32833425 DOI: 10.1021/acscombsci.0c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The preparation of natural product-inspired nucleoside analogs using solution-phase parallel synthesis is described. The key intermediates containing alkyne and N-protected amino moieties were developed to allow for further skeleton and substituent diversity using click chemistry and urea or amide bond formation. Rapid purification was accomplished using solid-phase extraction. The obtained library comprised 80 molecules incorporating two diversity positions and one chiral center, each of which was efficiently prepared in good purity and acceptable overall yield. A bacterial morphology study was also performed.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Applied Chemistry, National Chiayi University, Chiayi 600, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Ju Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Kung-Hsiang Hu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Ling Tan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ting Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-An Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
31
|
Trigueiro NSDS, Canedo A, Braga DLDS, Luchiari AC, Rocha TL. Zebrafish as an Emerging Model System in the Global South: Two Decades of Research in Brazil. Zebrafish 2020; 17:412-425. [PMID: 33090089 DOI: 10.1089/zeb.2020.1930] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is an emerging model system in several research areas worldwide, especially in the Global South. In this context, the present study revised the historical use and trends of zebrafish as experimental models in Brazil. The data concerning the bibliometric parameters, research areas, geographic distribution, experimental design, zebrafish strain, and reporter lines, as well as recent advances were revised. In addition, the comparative trends of Brazilian and global research were discussed. Revised data showed the rapid growth of Brazilian scientific production using zebrafish as a model, especially in three main research areas (Neuroscience &and Behavior, Pharmacology and Toxicology, and Environment/Ecology). Studies were conducted in 19 Brazilian states (70.37%), confirming the wide geographic distribution and importance of zebrafish research. Results indicated that research related to toxicological approaches are widespread in Global South countries such as Brazil. Studies were performed mainly using in vivo tests (89.58%) with adult fish (59.75%) and embryos (30.67%). Moreover, significant research gaps and recommendations for future research are presented. The present study shows that the zebrafish is a suitable vertebrate model system in the Global South.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Lôbo de Siqueira Braga
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
32
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
33
|
The hepatoprotective effects of squid gonad phospholipids on fatty liver disease in zebrafish. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varão AM, Aschner M, Smith DR, Mukhopadhyay S. Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. J Nutr 2020; 150:1360-1369. [PMID: 32211802 PMCID: PMC7269748 DOI: 10.1093/jn/nxaa066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Karin Tuschl
- Department of Cell and Developmental Biology, University College London, London, United Kingdom,Department of Developmental Neurobiology, King's College London, London, United Kingdom,Address correspondence to KT (e-mail: )
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami-LIKA, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Postgraduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Alexandre M Varão
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA,Address correspondence to SM (e-mail: )
| |
Collapse
|
35
|
Steenbergen PJ, Heigwer J, Pandey G, Tönshoff B, Gehrig J, Westhoff JH. A Multiparametric Assay Platform for Simultaneous In Vivo Assessment of Pronephric Morphology, Renal Function and Heart Rate in Larval Zebrafish. Cells 2020; 9:E1269. [PMID: 32443839 PMCID: PMC7290829 DOI: 10.3390/cells9051269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Automated high-throughput workflows allow for chemical toxicity testing and drug discovery in zebrafish disease models. Due to its conserved structural and functional properties, the zebrafish pronephros offers a unique model to study renal development and disease at larger scale. Ideally, scoring of pronephric phenotypes includes morphological and functional assessments within the same larva. However, to efficiently upscale such assays, refinement of existing methods is required. Here, we describe the development of a multiparametric in vivo screening pipeline for parallel assessment of pronephric morphology, kidney function and heart rate within the same larva on a single imaging platform. To this end, we developed a novel 3D-printed orientation tool enabling multiple consistent orientations of larvae in agarose-filled microplates. Dorsal pronephros imaging was followed by assessing renal clearance and heart rates upon fluorescein isothiocyanate (FITC)-inulin microinjection using automated time-lapse imaging of laterally positioned larvae. The pipeline was benchmarked using a set of drugs known to induce developmental nephrotoxicity in humans and zebrafish. Drug-induced reductions in renal clearance and heart rate alterations were detected even in larvae exhibiting minor pronephric phenotypes. In conclusion, the developed workflow enables rapid and semi-automated in vivo assessment of multiple morphological and functional parameters.
Collapse
Affiliation(s)
- Petrus J. Steenbergen
- Department of Pediatrics I, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (P.J.S.); (J.H.); (G.P.); (B.T.)
| | - Jana Heigwer
- Department of Pediatrics I, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (P.J.S.); (J.H.); (G.P.); (B.T.)
| | - Gunjan Pandey
- Department of Pediatrics I, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (P.J.S.); (J.H.); (G.P.); (B.T.)
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (P.J.S.); (J.H.); (G.P.); (B.T.)
| | - Jochen Gehrig
- DITABIS, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany
- ACQUIFER Imaging GmbH, 69123 Heidelberg, Germany
| | - Jens H. Westhoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (P.J.S.); (J.H.); (G.P.); (B.T.)
| |
Collapse
|
36
|
Murugapoopathy V, Gupta IR. A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT). Clin J Am Soc Nephrol 2020; 15:723-731. [PMID: 32188635 PMCID: PMC7269211 DOI: 10.2215/cjn.12581019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Congenital anomalies of the kidneys and urinary tracts (CAKUT) are disorders caused by defects in the development of the kidneys and their outflow tracts. The formation of the kidneys begins at week 3 and nephrogenesis continues until week 36, therefore, the kidneys and outflow tracts are susceptible to environmental risk factors that perturb development throughout gestation. Many genes have been implicated in kidney and outflow tract development, and mutations have been identified in patients with CAKUT. In severe cases of CAKUT, when the kidneys do not form, the fetus will not survive. However, in less severe cases, the baby can survive with combined kidney and outflow tract defects or they may only be identified in adulthood. In this review, we will cover the clinical presentation of CAKUT, its epidemiology, and its long-term outcomes. We will then discuss risk factors for CAKUT, including genetic and environmental contributions. Although severe CAKUT is rare, low nephron number is a much more common disorder with its effect on kidney function increasingly apparent as a person ages. Low nephron number appears to arise by the same mechanisms as CAKUT, but it differs in terms of the magnitude of the insult and the timing of when it occurs during gestation. By understanding the causes of CAKUT and low nephron number, we can begin to identify preventive treatments and establish clinical guidelines for how these patients should be followed.
Collapse
Affiliation(s)
| | - Indra R Gupta
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada .,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
38
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
39
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
40
|
El-Faham A, Farooq M, Almarhoon Z, Alhameed RA, Wadaan MAM, de la Torre BG, Albericio F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg Chem 2019; 94:103397. [PMID: 31706684 DOI: 10.1016/j.bioorg.2019.103397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/15/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022]
Abstract
Here we report on a small library based on a 4-aminobenzonitile-s-triazine moiety. We used a straightforward orthogonal synthetic pathway to prepare di- and tri-substituted s-triazine derivatives, whose basic structure was modified. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR and elemental analysis. They showed strong anticancer activity against two human breast cancer cell lines (MIDA-MB-231 and MCF-7), with IC50 values less than 1 µM. These s-triazine compounds were generally more selective towards hormone receptor-positive breast cancer cell line MCF-7 than the triple negative MDA-MB-231 cell line. Zebrafish embryos were used to test the developmental toxicity of the target compounds in vivo. The phenotype of embryos treated with the derivatives resembled that of those treated with estrogen disruptors. This observation strongly supports the notion that that these compounds induce their anticancer activity in human breast cancer cells via targeting the estrogen and progesterone receptors.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Fernando Albericio
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain.
| |
Collapse
|
41
|
Pott A, Rottbauer W, Just S. Streamlining drug discovery assays for cardiovascular disease using zebrafish. Expert Opin Drug Discov 2019; 15:27-37. [PMID: 31570020 DOI: 10.1080/17460441.2020.1671351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, our armamentarium of cardiovascular drug therapy has expanded significantly. Using innovative functional genomics strategies such as genome editing by CRISPR/Cas9 as well as high-throughput assays to identify bioactive small chemical compounds has significantly facilitated elaboration of the underlying pathomechanism in various cardiovascular diseases. However, despite scientific progress approvals for cardiovascular drugs has stagnated significantly compared to other fields of drug discovery and therapy during the past years.Areas covered: In this review, the authors discuss the aspects and pitfalls during the early phase of cardiovascular drug discovery and describe the advantages of zebrafish as an in vivo organism to model human cardiovascular diseases (CVD) as well as an in vivo platform for high-throughput chemical compound screening. They also highlight the emerging, promising techniques of automated read-out systems during high-throughput screening (HTS) for the evaluation of important cardiac functional parameters in zebrafish with the potential to streamline CVD drug discovery.Expert opinion: The successful identification of novel drugs to treat CVD is a major challenge in modern biomedical and clinical research. In this context, the definition of the etiologic fundamentals of human cardiovascular diseases is the prerequisite for an efficient and straightforward drug discovery.
Collapse
Affiliation(s)
- Alexander Pott
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
42
|
Wei Q, Chen Y, Gu YF, Zhao W. Molecular Characterization and Functional Analysis of Leucine Zipper Transcription Factor Like 1 in Zebrafish ( Danio rerio). Front Physiol 2019; 10:801. [PMID: 31293455 PMCID: PMC6603235 DOI: 10.3389/fphys.2019.00801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
Leucine zipper transcription factor like 1 (LZTFL1) is a member of the Bardet-Biedl syndrome gene family. LZTFL1-null mice show the phenotype of obesity, retinal degeneration, and abnormal cilia development. Functionally, LZTFL1 serves as a tumor suppressor and a negative regulator in the hedgehog signaling pathways. The biological function of mammalian LZTFL1 is partially addressed, but data on other model organisms are limited. Zebrafish (Danio rerio) is widely considered as a powerful model to understand the functions of genes implicated in obesity, disease, and cancer. In this study, LZTFL1 homologs were identified in zebrafish (zebrafish LZTFL1). The full-length cDNA of zebrafish LZTFL1 contained 897 bps encoding 298 amino acids. Zebrafish LZTFL1 displayed conserved domains of coil-coil and leucine zipper domain. PCR results showed that zebrafish LZTFL1 was widely distributed in various tissues. Western blot analysis further revealed that zebrafish LZTFL1 was detected to be ectopically expressed in HeLa cells with correct molecular weight. Fluorescence images showed as well that zebrafish LZTFL1 was localized in the cytoplasm. Furthermore, luciferase reporter assay indicated zebrafish LZTFL1 served as a negative regulator in the hedgehog signaling pathway. These data supported that zebrafish was a good model for understanding the biological roles of LZTFL1.
Collapse
Affiliation(s)
- Qun Wei
- Department of Surgical Oncology, Institute of Clinical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Institute of Clinical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Feng Gu
- Department of Surgical Oncology, Institute of Clinical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Institute of Clinical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Pandey G, Westhoff JH, Schaefer F, Gehrig J. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model. Int J Mol Sci 2019; 20:ijms20061290. [PMID: 30875791 PMCID: PMC6471943 DOI: 10.3390/ijms20061290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is being increasingly used in biomedical research and drug discovery to conduct large-scale compound screening. However, there is a lack of accessible methodologies to enable automated imaging and scoring of tissue-specific phenotypes at enhanced resolution. Here, we present the development of an automated imaging pipeline to identify chemical modifiers of glomerular cyst formation in a zebrafish model for human cystic kidney disease. Morpholino-mediated knockdown of intraflagellar transport protein Ift172 in Tg(wt1b:EGFP) embryos was used to induce large glomerular cysts representing a robustly scorable phenotypic readout. Compound-treated embryos were consistently aligned within the cavities of agarose-filled microplates. By interfacing feature detection algorithms with automated microscopy, a smart imaging workflow for detection, centring and zooming in on regions of interests was established, which enabled the automated capturing of standardised higher resolution datasets of pronephric areas. High-content screening datasets were processed and analysed using custom-developed heuristic algorithms implemented in common open-source image analysis software. The workflow enables highly efficient profiling of entire compound libraries and scoring of kidney-specific morphological phenotypes in thousands of zebrafish embryos. The demonstrated toolset covers all the aspects of a complex whole organism screening assay and can be adapted to other organs, specimens or applications.
Collapse
Affiliation(s)
- Gunjan Pandey
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
| |
Collapse
|
44
|
Impact of post-hatching maturation on the pharmacokinetics of paracetamol in zebrafish larvae. Sci Rep 2019; 9:2149. [PMID: 30770889 PMCID: PMC6377609 DOI: 10.1038/s41598-019-38530-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Zebrafish larvae are increasingly used in pharmacological and toxicological studies, but it is often overlooked that internal exposure to exogenous compounds, rather than the incubation medium concentration, is driving observed effects. Moreover, as the zebrafish larva is a developing organism, continuous physiological changes impact pharmacokinetic or toxicokinetic processes like the absorption and elimination of exogenous compounds, influencing the interpretation of observations and conclusions drawn from experiments at different larval ages. Here, using paracetamol as paradigm compound, mathematical modelling is used to quantify absorption and elimination rates from internal exposure over time profiles after waterborne treatment, as well as changes in these parameters in post-hatching larvae of 3, 4, and 5 days post fertilisation (dpf). An increase of 106% in absorption rate was observed between 3 and 4 dpf, but no further increase at 5 dpf, and an increase of 17.5% in elimination rate for each dpf. Paracetamol clearance, determined from elimination rate constants and reported total larval volumes of 253, 263, and 300 nL at 3, 4, and 5 dpf respectively, correlates best with higher vertebrates at 5 dpf. This suggests that when studying direct effects of exogenous compounds, experiments with zebrafish larvae are best performed at 5 dpf.
Collapse
|
45
|
Yang W, Meng Y, Li D, Wen Q. Visual Contrast Modulates Operant Learning Responses in Larval Zebrafish. Front Behav Neurosci 2019; 13:4. [PMID: 30733672 PMCID: PMC6353835 DOI: 10.3389/fnbeh.2019.00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
The larval zebrafish is a promising vertebrate model organism to study neural mechanisms underlying learning and memory due to its small brain and rich behavioral repertoire. Here, we report on a high-throughput operant conditioning system for zebrafish larvae, which can simultaneously train 12 fish to associate a visual conditioned pattern with electroshocks. We find that the learning responses can be enhanced by the visual contrast, not the spatial features of the conditioned patterns, highlighted by several behavioral metrics. By further characterizing the learning curves as well as memory extinction, we demonstrate that the percentage of learners and the memory length increase as the conditioned pattern becomes darker. Finally, little difference in operant learning responses was found between AB wild-type fish and elavl3:H2B-GCaMP6f transgenic fish.
Collapse
Affiliation(s)
- Wenbin Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei, China
| | - Yutong Meng
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei, China
| | - Danyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei, China
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|