1
|
Naimi N, Seyedmirzaei H, Hassannejad Z, Soltani Khaboushan A. Advanced nanoparticle strategies for optimizing RNA therapeutic delivery in neurodegenerative disorders. Biomed Pharmacother 2024; 175:116691. [PMID: 38713941 DOI: 10.1016/j.biopha.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.
Collapse
Affiliation(s)
- Narges Naimi
- Departement of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Singh D, Kumar S, Mishra R, Anjali, Tripathi RK, Sachdev M. HIV1-Nef perturbs the integrity of blood testis barrier in rat model. Tissue Barriers 2024:2357406. [PMID: 38778621 DOI: 10.1080/21688370.2024.2357406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The blood-testis barrier is a specialized feature within the mammalian testis, located in close proximity to the basement membrane of seminiferous tubules. This barrier serves to divide the seminiferous epithelium into distinct basal and adluminal (apical) compartments. The selectivity of the BTB to foreign particles makes it a safe haven for the virus, and the high affinity of HIV for testis might lead to the vertical transmission of the virus. In the present study, recombinant HIV1-Nef (rNef) protein was injected intravenously to examine the effect of rNef on BTB. SD male rats received 250 µg and 500 µg of rNef along with 2% Evans blue dye within 1 ml through the tail vein. After 1 hour of perfusion, the animals were sacrificed for analysis. The dye migration assay and ELISA confirmed a significant impairment in the blood-testis barrier (BTB) and the manifestation of rNef in testes tissues, respectively. Moreover, a decline in the expression of tight junction proteins, including ZO1 and Occludin, was observed during rNef-induced BTB disruption. Overall, our findings demonstrated that rNef induces BTB disruption through various signaling events. At the site of ectoplasmic specialization of the seminiferous epithelium, the localization of cadherins was found to be disrupted, making the testis a vulnerable site. In conclusion, rNef perturbs the integrity of the blood-testis barrier in rat models; hence, it can also serve as a suitable model for studying the dynamics of the blood-testis barrier.
Collapse
Affiliation(s)
- Deependra Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saurabh Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajnikant Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - R K Tripathi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Monika Sachdev
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Shamshiripour P, Rahnama M, Nikoobakht M, Hajiahmadi F, Moradi AR, Ahmadvand D. A dynamic study of VEGF-A siDOX-EVs trafficking through the in-vitro insert co-culture blood-brain barrier model by digital holographic microscopy. Front Oncol 2024; 14:1292083. [PMID: 38529380 PMCID: PMC10961383 DOI: 10.3389/fonc.2024.1292083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Modeling the blood-brain barrier has long been a challenge for pharmacological studies. Up to the present, numerous attempts have been devoted to recapitulating the endothelial barrier in vitro to assess drug delivery vehicles' efficiency for brain disorders. In the current work, we presented a new approach for analyzing the morphometric parameters of the cells of an insert co-culture blood-brain barrier model using rat brain astrocytes, rat brain microvascular endothelial cells, and rat brain pericytes. This analytical approach could aid in getting further information on drug trafficking through the blood-brain barrier and its impact on the brain indirectly. Methods In the current work, we cultured rat brain astrocytes, rat brain microvascular endothelial cells, and rat brain pericytes and then used an insert well to culture the cells in contact with each other to model the blood-brain barrier. Then, the morphometric parameters of the porous membrane of the insert well, as well as each cell type were imaged by digital holographic microscopy before and after cell seeding. At last, we performed folate conjugation on the surface of the EVs we have previously tested for glioma therapy in our previous work called VEGF-A siDOX-EVs and checked how the trafficking of EVs improves after folate conjugation as a clathrin-mediated delivery setup. the trafficking and passage of EVs were assessed by flow cytometry and morphometric analysis of the digital holographic microscopy holograms. Results Our results indicated that EVs successfully entered through the proposed endothelial barrier assessed by flow cytometry analysis and furthermore, folate conjugation significantly improved EV passage through the blood-brain barrier. Moreover, our results indicated that the VEGF-A siDOX-EVs insert cytotoxic impact on the cells of the bottom of the culture plate. Conclusion folate-conjugation on the surface of EVs improves their trafficking through the blood-brain barrier and by using digital holographic microscopy analysis, we could directly assess the morphometric changes of the blood-brain barrier cells for pharmacological purposes as an easy, label-free, and real-time analysis.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Pathology, Shahid Beheshti Medical University (SBMU), Tehran, Iran
| | - Mehrana Rahnama
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Hajiahmadi
- University of California San Francisco, Cellular Molecular Pharmacology School, School of Medicine, San Francisco, CA, United States
| | - Ali-reza Moradi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran
- School of NanoScience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Fang Y, Zhuo L, Yuan H, Zhao H, Zhang L. Construction of Graphene Quantum Dot-based Dissolving Microneedle Patches for the Treatment of Bacterial Keratitis. Int J Pharm 2023; 639:122945. [PMID: 37044225 DOI: 10.1016/j.ijpharm.2023.122945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Bacterial keratitis (BK) is an ophthalmic infection caused by bacteria and poses a risk of blindness. Numerous drugs have been used to treat BK, the majority suffered from limited effect owing to their backward antimicrobial and delivery efficacy. Herein, we evaluated the antibacterial effect of a cationic carbon-based nanomaterial, i.e., imidazole-modified graphene quantum dots (IMZ-GQDs), which exhibits disinfection rates of >90% against three typical Gram-positive strains within 3 h owing to the loss of membrane integrity and decline in membrane potential. For ocular application, we further developed IMZ-GQDs-loaded dissolving microneedle patches (IMZ-GQDs MNs) via a typical two-step micromolding method. IMZ-GQDs MNs showed sufficient dissolution and penetration for intrastromal delivery in vitro and successfully overcome the rabbit corneal epithelial layer in vivo. The excellent biocompatibility of IMZ-GQDs MNs was demonstrated both in cell and animal models, and they exhibited low cytotoxicity, low invasiveness and low ocular irritation. The topical application of IMZ-GQDs MNs has the benefits of both high antibacterial activity and effective drug delivery, thereby leading to the resolution of Staphylococcus aureus-induced BK in rabbits in 7 days. Therefore, IMZ-GQDs MNs is a promising approach for BK treatment, which is safe and efficient.
Collapse
Affiliation(s)
- Yirong Fang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou,Zhejiang, 325027, P.R. China
| | - Lin Zhuo
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou,Zhejiang, 325027, P.R. China
| | - Hang Yuan
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou,Zhejiang, 325027, P.R. China
| | - Hao Zhao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou,Zhejiang, 325027, P.R. China
| | - Lishu Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou,Zhejiang, 325027, P.R. China.
| |
Collapse
|
8
|
Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm 2023; 636:122759. [PMID: 36801479 DOI: 10.1016/j.ijpharm.2023.122759] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Marta González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| |
Collapse
|
9
|
Mentor S, Fisher D. Exosomes form tunneling nanotubes (TUNTs) in the blood-brain barrier: a nano-anatomical perspective of barrier genesis. Front Mol Neurosci 2022; 15:938315. [PMID: 36204136 PMCID: PMC9531021 DOI: 10.3389/fnmol.2022.938315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a robust interface between the blood and the central nervous system. Barrier type endothelium is able to limit paracellular (PC) movement, relegating molecular flux to the transendothelial pathways of brain endothelial cells (BECs). It is, therefore, apparent that any leakage via the PC shunts would effectively nullify the regulation of molecular flux across the transcellular pathways. The application of higher-resolution scanning electron microscopy (HR-SEM) illuminates the heterogenous, morphological profile that exists on the surface of BEC membranes and the relationship between these ultrastructures during the molecular construction of the PC space between adjacent BECs. In this study developing BEC monolayers were grown on mixed, cellulose esters insert membranes in a bicameral system. BEC monolayers were fixed in 2.5% glutaraldehyde, hydrated, critically dried, and sputter-coated, for imaging utilizing HR-SEM. This study, for the first time, showed membrane-bound exosomes were attached to the plasma membrane surfaces of the BECs. The exosomes were characterized as small membrane-bound, nano-sized exosomes (30–300 nm). Based on their membrane morphology and anatomical structure, exosomes appear to possess two distinct functions, namely: paracrine secretion and nanotube construction between adjacent BECs, during in vitro barrier genesis. The HR-SEM micrographs in conjunction with the Tipifarnib inhibition of exosome formation, suggests that brain capillary endothelial exosomes play a prominent role in the bilateral signaling, which contribute to the regulation of the permeability of the BBB. Given that blood-brain barrier permeability has been implicated in the progression of many neurodegenerative pathologies, the role of these exosomes and TUNTs posits the capacity of these structures to exacerbate neuropathologies that implicate BBB permeability. These findings could lead to the development of novel treatment interventions and moreover, the characterization of BBB exosomes may be a reliable target for identifying therapeutic biomarkers in neurodegenerative disease. Conversely, the presence of BBB exosomes raises a critical enterprise to target the exosome-induced nanotubes as a vehicle for transferring therapeutic treatments across the BBB.
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
- School of Health Professions, University of Missouri, Columbia, MO, United States
- *Correspondence: David Fisher
| |
Collapse
|
10
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
11
|
Sahoo P, Dey J, Mahapatra SR, Ghosh A, Jaiswal A, Padhi S, Prabhuswamimath SC, Misra N, Suar M. Nanotechnology and COVID-19 Convergence: Toward New Planetary Health Interventions Against the Pandemic. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:473-488. [PMID: 36040392 DOI: 10.1089/omi.2022.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is a systemic disease affecting multiple organ systems and caused by infection with the SARS-CoV-2 virus. Two years into the COVID-19 pandemic and after the introduction of several vaccines, the pandemic continues to evolve in part owing to global inequities in access to preventive and therapeutic measures. We are also witnessing the introduction of antivirals against COVID-19. Against this current background, we review the progress made with nanotechnology-based approaches such as nanoformulations to combat the multiorgan effects of SARS-CoV-2 infection from a systems medicine lens. While nanotechnology has previously been widely utilized in the antiviral research domain, it has not yet received the commensurate interest in the case of COVID-19 pandemic response strategies. Notably, SARS-CoV-2 and nanomaterials are similar in size ranging from 50 to 200 nm. Nanomaterials offer the promise to reduce the side effects of antiviral drugs, codeliver multiple drugs while maintaining stability in the biological milieu, and sustain the release of entrapped drug(s) for a predetermined time period, to name but a few conceivable scenarios, wherein nanotechnology can enable and empower preventive medicine and therapeutic innovations against SARS-CoV-2. We conclude the article by underlining that nanotechnology-based interventions warrant further consideration to enable precision planetary health responses against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Panchanan Sahoo
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Arpan Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Aryan Jaiswal
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Santwana Padhi
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| |
Collapse
|
12
|
Shin TH, Lee DY, Jang YE, Kwon DH, Hwang JS, Kim SG, Seo C, Paik MJ, Lee JY, Kim JY, Park S, Choi SE, Basith S, Kim MO, Lee G. Reduction in the Migration Activity of Microglia Treated with Silica-Coated Magnetic Nanoparticles and their Recovery Using Citrate. Cells 2022; 11:2393. [PMID: 35954236 PMCID: PMC9368468 DOI: 10.3390/cells11152393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023] Open
Abstract
Nanoparticles have garnered significant interest in neurological research in recent years owing to their efficient penetration of the blood-brain barrier (BBB). However, significant concerns are associated with their harmful effects, including those related to the immune response mediated by microglia, the resident immune cells in the brain, which are exposed to nanoparticles. We analysed the cytotoxic effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in a BV2 microglial cell line using systems toxicological analysis. We performed the invasion assay and the exocytosis assay and transcriptomics, proteomics, metabolomics, and integrated triple-omics analysis, generating a single network using a machine learning algorithm. The results highlight alteration in the mechanisms of the nanotoxic effects of nanoparticles using integrated omics analysis.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Yong Eun Jang
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Do Hyeon Kwon
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| | - Chan Seo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea; (C.S.); (M.J.P.)
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea; (C.S.); (M.J.P.)
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju 28119, Korea; (J.Y.L.); (J.Y.K.)
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju 28119, Korea; (J.Y.L.); (J.Y.K.)
| | - Seokho Park
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Korea;
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Korea;
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (Y.E.J.); (D.H.K.); (S.-E.C.); (S.B.)
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Korea; (J.S.H.); (S.G.K.)
| |
Collapse
|
13
|
Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. NANOMATERIALS 2022; 12:nano12132140. [PMID: 35807977 PMCID: PMC9268720 DOI: 10.3390/nano12132140] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia, Prion disease, Brain tumor, Spinal cord injury, and Stroke. These diseases are considered incurable diseases because no specific therapies are available to cross the blood-brain barrier (BBB) and reach the brain in a significant amount for the pharmacological effect in the brain. There is a need for the development of strategies that can improve the efficacy of drugs and circumvent BBB. One of the promising approaches is the use of different types of nano-scale materials. These nano-based drugs have the ability to increase the therapeutic effect, reduce toxicity, exhibit good stability, targeted delivery, and drug loading capacity. Different types and shapes of nanomaterials have been widely used for the treatment of neurological disorders, including quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These nanoparticles have unique characteristics, including sensitivity, selectivity, and the ability to cross the BBB when used in nano-sized particles, and are widely used for imaging studies and treatment of NDs. In this review, we briefly summarized the recent literature on the use of various nanomaterials and their mechanism of action for the treatment of various types of neurological disorders.
Collapse
|
14
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
15
|
Kunachowicz D, Ściskalska M, Jakubek M, Kizek R, Kepinska M. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications. NANOIMPACT 2022; 26:100405. [PMID: 35560289 DOI: 10.1016/j.impact.2022.100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) are semi-conductor luminescent nanocrystals usually of 2-10 nm diameter, attracting the significant attention in biomedical studies since emerged. Due to their unique optical and electronic properties, i.e. wide absorption spectra, narrow tunable emission bands or stable, bright photoluminescence, QDs seem to be ideally suited for multi-colour, simultaneous bioimaging and cellular labeling at the molecular level as new-generation probes. A highly reactive surface of QDs allows for conjugating them to biomolecules, what enables their direct binding to areas of interest inside or outside the cell for biosensing or targeted delivery. Particularly protein-QDs conjugates are current subjects of research, as features of QDs can be combined with protein specific functionalities and therefore used as a complex in variety of biomedical applications. It is known that QDs are able to interact with cells, organelles and macromolecules of the human body after administration. QDs are reported to cause changes at proteins level, including unfolding and three-dimensional structure alterations which might hamper proteins from performing their physiological functions and thereby limit the use of QD-protein conjugates in vivo. Moreover, these changes may trigger unwanted cellular outcomes as the effect of different signaling pathways activation. In this review, characteristics of QDs interactions with certain human proteins are presented and discussed. Besides that, the following manuscript provides an overview on structural changes of specific proteins exposed to QDs and their biological and biomedical relevance.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Rene Kizek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
16
|
Shahriar SMS, Nafiujjaman M, An JM, Revuri V, Nurunnabi M, Han DW, Lee YK. Graphene: A Promising Theranostic Agent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:149-176. [DOI: 10.1007/978-981-16-4923-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ghouri MD, Saleem J, Ren J, Liu J, Umer A, Cai R, Chen C. Nanomaterials‐Mediated Structural and Physiological Modulation of Blood Brain Barrier for Therapeutic Purposes. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202101391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/06/2025]
Abstract
AbstractBlood brain barrier (BBB) protects homeostasis and sensitive environment of brain from several toxic substances coming from the systemic circulation. This barrier along with those substances also prevents therapeutic chemicals to reach brain tissues for several brain diseases. BBB consists of a number of cell types and junctions that help maintain its intricate structure and physiology. To open BBB for therapeutic purposes, researchers are keen to explore the use of nanomaterials as therapeutic agents. Nanomaterials have unique physio‐chemical properties such as, increased surface area to mass ratio, superior adsorption capacity, and a wide variety of functionalization possibilities in contrast to bulk materials, making them sought‐after for research pertaining to brain delivery of therapeutic substances. Both organic and inorganic nanomaterials have been researched in this regard with numerous interesting functionalizations, and their toxicity and distribution profiles have been well assessed. Different pathways taken up by nanomaterials to cross BBB like adsorptive‐mediated transcytosis, inhibition of active efflux pumps, receptor‐mediated transport, and cell‐mediated endocytosis have also been investigated. This review summarizes the structural and physiological properties and the modulation techniques of BBB for delivery of adsorbed/functionalized nano delivery platforms and imaging nanomaterials across.
Collapse
Affiliation(s)
- Muhammad Daniyal Ghouri
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jabran Saleem
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Arsalan Umer
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| |
Collapse
|
18
|
Fan R, Chen J, Gao X, Zhang Q. Neurodevelopmental toxicity of alumina nanoparticles to zebrafish larvae: Toxic effects of particle sizes and ions. Food Chem Toxicol 2021; 157:112587. [PMID: 34592389 DOI: 10.1016/j.fct.2021.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to explore the mechanism of neurodevelopmental toxicity of alumina nanoparticles (AlNPs) on zebrafish larvae, specifically, the toxic effects of AlNPs of different particle sizes and of dissolved aluminum ions. AlNPs with sizes of 13 nm (13 nm-Al) and 50 nm (50 nm-Al) were used as the main research objects; while nanocarbon particles with sizes of 13 nm (13 nm-C) and 50 nm (50 nm-C) as particle-size controls; and an aluminum chloride solution (Al3+) as an ion control. Zebrafish embryos were exposed to different treatments from 6 h post-fertilization (hpf) to 168 hpf. Deformities were observed at different time points. Neurodevelopmental behavior tests were carried out, and oxidative stress responses and transcriptional alterations in autophagy-related genes were assessed. Malformations occurred in the 13 nm-Al, 50 nm-Al, and Al3+ treated groups at different developmental stages of zebrafish larval, but no malformations were observed in the 13 nm-C or 50 nm-C groups. In addition, the average speed, distance travelled and thigmotaxis in zebrafish larvae decreased in the AlNPs treated group, and the effects were related to the particle sizes. Furthermore, increases in the oxidative stress response and autophagy-related genes expression were also related to the particle sizes of AlNPs as well. In conclusion, the mechanism underlying the neurodevelopmental toxicity of AlNPs on zebrafish larvae mainly depended on the size of the nanoparticles, and dissolved Al3+ also contributes to the toxic effects.
Collapse
Affiliation(s)
- Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Academics Working Station, Changsha Medical University, Changsha 410219, PR China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaocheng Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
19
|
Shin TH, Lee DY, Manavalan B, Basith S, Na YC, Yoon C, Lee HS, Paik MJ, Lee G. Silica-coated magnetic nanoparticles activate microglia and induce neurotoxic D-serine secretion. Part Fibre Toxicol 2021; 18:30. [PMID: 34384435 PMCID: PMC8359100 DOI: 10.1186/s12989-021-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nanoparticles have been studied for brain imaging, diagnosis, and drug delivery owing to their versatile properties due to their small sizes. However, there are growing concerns that nanoparticles may exert toxic effects in the brain. In this study, we assessed direct nanotoxicity on microglia, the resident macrophages of the central nervous system, and indirect toxicity on neuronal cells exerted by silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)]. METHODS We investigated MNPs@SiO2(RITC)-induced biological changes in BV2 murine microglial cells via RNA-sequencing-based transcriptome analysis and gas chromatography-mass spectrometry-based intracellular and extracellular amino acid profiling. Morphological changes were analyzed by transmission electron microscopy. Indirect effects of MNPs@SiO2(RITC) on neuronal cells were assessed by Transwell-based coculture with MNPs@SiO2(RITC)-treated microglia. MNPs@SiO2(RITC)-induced biological changes in the mouse brain in vivo were examined by immunohistochemical analysis. RESULTS BV2 murine microglial cells were morphologically activated and the expression of Iba1, an activation marker protein, was increased after MNPs@SiO2(RITC) treatment. Transmission electron microscopy analysis revealed lysosomal accumulation of MNPs@SiO2(RITC) and the formation of vesicle-like structures in MNPs@SiO2(RITC)-treated BV2 cells. The expression of several genes related to metabolism and inflammation were altered in 100 µg/ml MNPs@SiO2(RITC)-treated microglia when compared with that in non-treated (control) and 10 µg/ml MNPs@SiO2(RITC)-treated microglia. Combined transcriptome and amino acid profiling analyses revealed that the transport of serine family amino acids, including glycine, cysteine, and serine, was enhanced. However, only serine was increased in the growth medium of activated microglia; especially, excitotoxic D-serine secretion from primary rat microglia was the most strongly enhanced. Activated primary microglia reduced intracellular ATP levels and proteasome activity in cocultured neuronal cells, especially in primary cortical neurons, via D-serine secretion. Moreover, ubiquitinated proteins accumulated and inclusion bodies were increased in primary dopaminergic and cortical neurons cocultured with activated primary microglia. In vivo, MNPs@SiO2(RITC), D-serine, and ubiquitin aggresomes were distributed in the MNPs@SiO2(RITC)-treated mouse brain. CONCLUSIONS MNPs@SiO2(RITC)-induced activation of microglia triggers excitotoxicity in neurons via D-serine secretion, highlighting the importance of neurotoxicity mechanisms incurred by nanoparticle-induced microglial activation.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, 16499 Suwon, Republic of Korea
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, 16499 Suwon, Republic of Korea
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, 16499 Suwon, Republic of Korea
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, 16499 Suwon, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, 03759 Seoul, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, 162 Yeongudanji-ro, 28119 Cheongju, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, 57922 Suncheon, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, 57922 Suncheon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, 16499 Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, 16499 Suwon, Republic of Korea
| |
Collapse
|
20
|
de Castro RR, do Carmo FA, Martins C, Simon A, de Sousa VP, Rodrigues CR, Cabral LM, Sarmento B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm 2021; 602:120655. [PMID: 33915184 DOI: 10.1016/j.ijpharm.2021.120655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Central nervous system tuberculosis (CNS-TB) is the most severe form of the disease especially due to the inability of therapeutics to cross the blood-brain barrier (BBB). Clofazimine (CFZ) stands out for presenting high in vitro activity against multi-drug resistant strains of Mycobacterium tuberculosis, however, CFZ physicochemical and pharmacokinetics properties limit drug penetration into the CNS and, consequently, its clinical use. The aim of this work was to develop polymeric nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) loaded with CFZ and functionalized with a transferrin receptor (TfR)-binding peptide, aiming brain drug delivery for CNS-TB treatment by the intravenous route. The poor water solubility and high lipophilicity of CFZ was overcome through its entrapment into PLGA-PEG NPs manufactured by both conventional and microfluidic techniques using the nanoprecipitation principle. In vitro studies in brain endothelial hCMEC/D3 cells demonstrated that CFZ incorporation into the NPs was advantageous to reduce drug cytotoxicity. The TfR-binding peptide-functionalized NPs showed superior cell interaction and higher CFZ permeability across hCMEC/D3 cell monolayers compared to the non-functionalized NP control, thus indicating the efficacy of the functionalization strategy on providing CFZ transport through the BBB in vitro. The functionalized NPs demonstrate suitability for CFZ biological administration, suggested with low plasma protein binding, off-target biodistribution and precise delivery of CFZ towards the brain parenchyma.
Collapse
Affiliation(s)
- Renata Ribeiro de Castro
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil; Laboratory of Molecular Pharmacology, Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250 Rio de Janeiro, Brazil
| | - Flavia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Cláudia Martins
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
21
|
Reshma VG, Mohanan PV. Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.597382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although ZnSe/ZnS quantum dots (QDs) have emerged as apparently less hazardous substitute to cadmium-based QDs, their toxicity has not been fully understood. Huge levels of ROS production and associated difficulties comprise the underlying reason for nanomaterial toxicity in cells. This will cause both immunotoxicity and genotoxicity. In the current work, Zinc Selenium/Zinc Sulphide (ZnSe/ZnS) QDs was synthesized, characterized and analyzed for its role in oxidative stress induction in two cell lines (HepG2 and HEK) and Swiss Albino mice. ROS production and influence of catalase activity in ROS production measured by DCFHDA assay in both HepG2 and HEK cells after exposure to ZnSe/ZnS QDs. Assessment of nitrile radical formation carried out by griess reagent. Level of GSH is assessed as a marker for oxidative stress induced by QDs. Cell death induced after exposure to ZnSe/ZnS QDs investigated by Calcein AM-PI live dead assay. Apoptotic DNA ladder assay carried out for studying the potential of ZnSe/ZnS QDs to induce DNA fragmentation. In vivo bio-nano interaction was studied by exposing Swiss Albino mice to ZnSe/ZnS QDs via i.v. and i.p. injection. Antioxidant assays were carried out in brain and liver homogenates to study the oxidative stress. LPO, GSH, GPx, GR and SOD are considered as biomarkers for the stress analysis. Blood brain barrier (BBB) integrity also studied. Spleenocytes proliferation assay was carried out to study the immunotoxicity response. ZnSe/ZnS QDs do not induce visible oxidative stress upto a concentration of 50 μg/ml. Cell death occurs at higher concentration (100 μg/ml) caused by ROS production. Overall study apparently provide attentive information that ZnSe/ZnS QDs is not capable of eliciting any serious damages to liver and brain tissues which in turn substantiates its applicability in biomedical applications.
Collapse
|
22
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci 2020; 261:118336. [PMID: 32846164 PMCID: PMC7443335 DOI: 10.1016/j.lfs.2020.118336] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
The recent corona virus disease (COVID-19) outbreak has claimed the lives of many around the world and highlighted an urgent need for experimental strategies to prevent, treat and eradicate the virus. COVID-19, an infectious disease caused by a novel corona virus and no approved specific treatment is available yet. A vast number of promising antiviral treatments involving nanotechnology are currently under investigation to aid in the development of COVID-19 drug delivery. The prospective treatment options integrating the ever-expanding field of nanotechnology have been compiled, with the objective to show that these can be potentially developed for COVID-19 treatment. This review summarized the current state of knowledge, research priorities regarding the pandemic and post COVID-19. We also focus on the possible nanotechnology approaches that have proven to be successful against other viruses and the research agenda to combat COVID-19.
Collapse
Affiliation(s)
- Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Perini G, Palmieri V, Ciasca G, D’Ascenzo M, Primiano A, Gervasoni J, De Maio F, De Spirito M, Papi M. Enhanced Chemotherapy for Glioblastoma Multiforme Mediated by Functionalized Graphene Quantum Dots. MATERIALS 2020; 13:ma13184139. [PMID: 32957607 PMCID: PMC7560355 DOI: 10.3390/ma13184139] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most aggressive and lethal brain cancer. Current treatments involve surgical resection, radiotherapy and chemotherapy. However, the life expectancy of patients with this disease remains short and chemotherapy leads to severe adverse effects. Furthermore, the presence of the blood–brain barrier (BBB) makes it difficult for drugs to effectively reach the brain. A promising strategy lies in the use of graphene quantum dots (GQDs), which are light-responsive graphene nanoparticles that have shown the capability of crossing the BBB. Here we investigate the effect of GQDs on U87 human glioblastoma cells and primary cortical neurons. Non-functionalized GQDs (NF-GQDs) demonstrated high biocompatibility, while dimethylformamide-functionalized GQDs (DMF-GQDs) showed a toxic effect on both cell lines. The combination of GQDs and the chemotherapeutic agent doxorubicin (Dox) was tested. GQDs exerted a synergistic increase in the efficacy of chemotherapy treatment, specifically on U87 cells. The mechanism underlying this synergy was investigated, and it was found that GQDs can alter membrane permeability in a manner dependent on the surface chemistry, facilitating the uptake of Dox inside U87 cells, but not on cortical neurons. Therefore, experimental evidence indicates that GQDs could be used in a combined therapy against brain cancer, strongly increasing the efficacy of chemotherapy and, at the same time, reducing its dose requirement along with its side effects, thereby improving the life quality of patients.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
- Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (V.P.); (M.P.)
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
| | - Marcello D’Ascenzo
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
| | - Aniello Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00185 Roma, Italy
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00185 Roma, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”IRCSS, 00185 Rome, Italy;
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00185 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00185 Roma, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00185 Roma, Italy; (A.P.); (J.G.)
- Correspondence: (V.P.); (M.P.)
| |
Collapse
|
25
|
Perini G, Palmieri V, Ciasca G, De Spirito M, Papi M. Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int J Mol Sci 2020; 21:E3712. [PMID: 32466154 PMCID: PMC7279214 DOI: 10.3390/ijms21103712] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Quantum dots (QDs) are semiconducting nanoparticles that have been gaining ground in various applications, including the biomedical field, thanks to their unique optical properties. Recently, graphene quantum dots (GQDs) have earned attention in biomedicine and nanomedicine, thanks to their higher biocompatibility and low cytotoxicity compared to other QDs. GQDs share the optical properties of QD and have proven ability to cross the blood-brain barrier (BBB). For this reason, GQDs are now being employed to deepen our knowledge in neuroscience diagnostics and therapeutics. Their size and surface chemistry that ease the loading of chemotherapeutic drugs, makes them ideal drug delivery systems through the bloodstream, across the BBB, up to the brain. GQDs-based neuroimaging techniques and theranostic applications, such as photothermal and photodynamic therapy alone or in combination with chemotherapy, have been designed. In this review, optical properties and biocompatibility of GQDs will be described. Then, the ability of GQDs to overtake the BBB and reach the brain will be discussed. At last, applications of GQDs in bioimaging, photophysical therapies and drug delivery to the central nervous system will be considered, unraveling their potential in the neuroscientific field.
Collapse
Affiliation(s)
- Giordano Perini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Valentina Palmieri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Gabriele Ciasca
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Marco De Spirito
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| |
Collapse
|
26
|
Graphene quantum dots redefine nanobiomedicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110651. [DOI: 10.1016/j.msec.2020.110651] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/08/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
|
27
|
Macdonald J, Denoyer D, Henri J, Jamieson A, Burvenich IJ, Pouliot N, Shigdar S. Bifunctional Aptamer-Doxorubicin Conjugate Crosses the Blood-Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells. Nucleic Acid Ther 2020; 30:117-128. [PMID: 32027209 PMCID: PMC7133447 DOI: 10.1089/nat.2019.0807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases.
Collapse
Affiliation(s)
- Joanna Macdonald
- School of Medicine, Deakin University, Geelong, Australia
- Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Delphine Denoyer
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Justin Henri
- School of Medicine, Deakin University, Geelong, Australia
| | | | - Ingrid J.G. Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Normand Pouliot
- Matrix Microenvironment and Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, Australia
- Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
- Address correspondence to: Sarah Shigdar, MSc, PhD, School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
28
|
Zhang M, Bishop BP, Thompson NL, Hildahl K, Dang B, Mironchuk O, Chen N, Aoki R, Holmberg VC, Nance E. Quantum Dot Cellular Uptake and Toxicity in the Developing Brain: Implications for Use as Imaging Probes. NANOSCALE ADVANCES 2019; 1:3424-3442. [PMID: 31867563 PMCID: PMC6924642 DOI: 10.1039/c9na00334g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/27/2019] [Indexed: 05/30/2023]
Abstract
Nanometer-sized luminescent semiconductor quantum dots (QDs) have been utilized as imaging and therapeutic agents in a variety of disease settings, including diseases of the central nervous system. QDs have several advantages over traditional fluorescent probes including their small size (5-10 nm), tunable excitation and emission spectra, tailorable surface functionality, efficient photoluminescence, and robust photostability, which are ideal characteristics for in vivo imaging. Although QDs are promising imaging agents in brain-related applications, no systematic evaluation of QD behavior in brain-relevant conditions has yet been done. Therefore, we sought to investigate QD colloidal stability, cellular uptake, and toxicity in vitro, ex vivo, and in vivo in the brain environment. We found that QD behavior is highly dependent on surface functionality and that treatment of cultured organotypic whole hemisphere (OWH) slices with QDs results in dose-dependent toxicity and metallothionein increase, but no subsequent mRNA expression level changes in inflammatory cytokines or other oxidative stress. QDs coated with poly(ethylene glycol) (PEG) were protected from aggregation in neurophysiologically relevant fluids and in tissue, allowing for greater penetration. Importantly, QD behavior differed in cultured slices as compared to monolayer cell cultures, and behavior in cultured slices aligned more closely with that seen in vivo. Irrespective of surface chemistry and brain-relevant platform, non-aggregated QDs were primarily internalized by microglia in a region-dependent manner both in slices and in vivo upon systemic administration. This knowledge will help guide further engineering of candidate QD-based imaging probes for neurological application.
Collapse
Affiliation(s)
- Mengying Zhang
- Molecular Engineering & Sciences Institute, University of WashingtonSeattleWA 98195-1652USA
| | - Brittany P. Bishop
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
| | - Nicole L. Thompson
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
| | - Kate Hildahl
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
| | - Binh Dang
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
| | - Olesya Mironchuk
- Department of Bioengineering, University of WashingtonSeattleWA 98195-5061USA
| | - Nina Chen
- Department of Biology, University of WashingtonSeattleWA 98195-1800USA
| | - Reyn Aoki
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
| | - Vincent C. Holmberg
- Molecular Engineering & Sciences Institute, University of WashingtonSeattleWA 98195-1652USA
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
- Clean Energy Institute, University of WashingtonSeattleWA 98195-1653USA
| | - Elizabeth Nance
- Molecular Engineering & Sciences Institute, University of WashingtonSeattleWA 98195-1652USA
- Department of Chemical Engineering, University of WashingtonSeattleWA 98195-1750USA
- Center on Human Development and Disability, University of WashingtonSeattleWA 98195-7920USA
- Department of Radiology, University of WashingtonSeattleWA 98195-7117USA
| |
Collapse
|
29
|
Iachetta G, Falanga A, Molino Y, Masse M, Jabès F, Mechioukhi Y, Laforgia V, Khrestchatisky M, Galdiero S, Valiante S. gH625-liposomes as tool for pituitary adenylate cyclase-activating polypeptide brain delivery. Sci Rep 2019; 9:9183. [PMID: 31235716 PMCID: PMC6591382 DOI: 10.1038/s41598-019-45137-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the traffic of molecules into the central nervous system (CNS) and also limits the drug delivery. Due to their flexible properties, liposomes are an attractive tool to deliver drugs across the BBB. We previously characterized gH625, a peptide derived from Herpes simplex virus 1. The present study investigates the efficiency of liposomes functionalized on their surface with gH625 to promote the brain uptake of neuroprotective peptide PACAP (pituitary adenylate cyclase-activating polypeptide). Using a rat in vitro BBB model, we showed that the liposomes preparations were non-toxic for the endothelial cells, as assessed by analysis of tight junction protein ZO1 organization and barrier integrity. Next, we found that gH625 improves the transfer of liposomes across endothelial cell monolayers, resulting in both low cellular uptake and increased transport of PACAP. Finally, in vivo results demonstrated that gH625 ameliorates the efficiency of liposomes to deliver PACAP to the mouse brain after intravenous administration. gH625-liposomes improve both PACAP reaching and crossing the BBB, as showed by the higher number of brain cells labelled with PACAP. gH625-liposomes represent a promising strategy to deliver therapeutic agents to CNS and to provide an effective imaging and diagnostic tool for the brain.
Collapse
Affiliation(s)
- Giuseppina Iachetta
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università, 100, 80055, Portici, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | - Vincenza Laforgia
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy
| | | | - Stefania Galdiero
- CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy.,Department of Pharmacy - University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy. .,National Institute of Biostructures and Biosystems (INBB), V. le Medaglie d'Oro, 00136, Rome, Italy.
| |
Collapse
|
30
|
Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:196-220. [PMID: 30904587 PMCID: PMC7106268 DOI: 10.1016/j.nano.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Santosh Malik
- Departmentof Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Sabuj Sahoo
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| |
Collapse
|
31
|
Nanomaterials for Drug Delivery to the Central Nervous System. NANOMATERIALS 2019; 9:nano9030371. [PMID: 30841578 PMCID: PMC6474019 DOI: 10.3390/nano9030371] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
The intricate microstructure of the blood-brain barrier (BBB) is responsible for the accurate intrinsic regulation of the central nervous system (CNS), in terms of neuronal pathophysiological phenomena. Any disruption to the BBB can be associated with genetic defects triggering or with local antigenic invasion (either neurotoxic blood-derived metabolites and residues or microbial pathogens). Such events can be further related to systemic inflammatory or immune disorders, which can subsequently initiate several neurodegenerative pathways. Any degenerative process related to the CNS results in progressive and yet incurable impairment of neuronal cells. Since these particular neurons are mostly scanty or incapable of self-repair and regeneration processes, there is tremendous worldwide interest in novel therapeutic strategies for such specific conditions. Alzheimer’s and Parkinson’s diseases (AD and PD, respectively) are conditions found worldwide, being considered the most rampant degenerative pathologies related to CNS. The current therapy of these conditions, including both clinical and experimental approaches, mainly enables symptom management and subsidiary neuronal protection and even less disease regression. Still, a thorough understanding of the BBB pathophysiology and an accurate molecular and sub-molecular management of AD and PD will provide beneficial support for more specific and selective therapy. Since nanotechnology-derived materials and devices proved attractive and efficient platforms for modern biomedicine (including detection, imaging, diagnosis, medication, restoration and regeneration), a particular approach for AD and PD management relies on nanoparticle-based therapy. In this paper we will discuss relevant aspects related to the BBB and its impact on drug-based treatment and emphasize that nanoparticles are suitable and versatile candidates for the development of novel and performance-enhanced nanopharmaceuticals for neurodegenerative conditions therapy.
Collapse
|
32
|
Anwar A, Siddiqui R, Khan NA. Importance of Theranostics in Rare Brain-Eating Amoebae Infections. ACS Chem Neurosci 2019; 10:6-12. [PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogenic free-living amoebae including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri cause infections of the central nervous system (CNS), which almost always prove fatal. The mortality rate is high with the CNS infections caused by these microbes despite modern developments in healthcare and antimicrobial chemotherapy. The low awareness, delayed diagnosis, and lack of effective drugs are major hurdles to overcome these challenges. Nanomaterials have emerged as vital tools for concurrent diagnosis and therapy, which are commonly referred to as theranostics. Nanomaterials offer highly sensitive diagnostic systems and viable therapeutic effects as a single modality. There has been good progress to develop nanomaterials based efficient theranostic systems against numerous kinds of tumors, but this field is yet immature in the context of infectious diseases, particularly parasitic infections. Herein, we describe the potential value of theranostic applications of nanomaterials against brain infections due to pathogenic amoebae.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| |
Collapse
|
33
|
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E. Trends towards Biomimicry in Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E637. [PMID: 30134564 PMCID: PMC6164646 DOI: 10.3390/nano8090637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.
Collapse
Affiliation(s)
- Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Alessandro Parodi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Young AT, Cornwell N, Daniele MA. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1700239. [PMID: 33867903 PMCID: PMC8049593 DOI: 10.1002/adfm.201700239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural interfaces provide a window into the workings of the nervous system-enabling both biosignal recording and modulation. Traditionally, neural interfaces have been restricted to implanted electrodes to record or modulate electrical activity of the nervous system. Although these electrode systems are both mechanically and operationally robust, they have limited utility due to the resultant macroscale damage from invasive implantation. For this reason, novel nanomaterials are being investigated to enable new strategies to chronically interact with the nervous system at both the cellular and network level. In this feature article, the use of nanomaterials to improve current electrophysiological interfaces, as well as enable new nano-interfaces to modulate neural activity via alternative mechanisms, such as remote transduction of electromagnetic fields are explored. Specifically, this article will review the current use of nanoparticle coatings to enhance electrode function, then an analysis of the cutting-edge, targeted nanoparticle technologies being utilized to interface with both the electrophysiological and biochemical behavior of the nervous system will be provided. Furthermore, an emerging, specialized-use case for neural interfaces will be presented: the modulation of the blood-brain barrier.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Neil Cornwell
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
35
|
Kaushik A, Jayant RD, Nair M. Nanomedicine for neuroHIV/AIDS management. Nanomedicine (Lond) 2018; 13:669-673. [PMID: 29485351 DOI: 10.2217/nnm-2018-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert, Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Rahul D Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert, Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert, Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
36
|
Martins C, Araújo F, Gomes MJ, Fernandes C, Nunes R, Li W, Santos HA, Borges F, Sarmento B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm 2018; 138:111-124. [PMID: 29397261 DOI: 10.1016/j.ejpb.2018.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus (HIV) uses the brain as reservoir, which turns it as a promising target to fight this pathology. Nanoparticles (NPs) of poly(lactic-co-glycolic) acid (PLGA) are potential carriers of anti-HIV drugs to the brain, since most of these antiretrovirals, as efavirenz (EFV), cannot surpass the blood-brain barrier (BBB). Forasmuch as the conventional production methods lack precise control over the final properties of particles, microfluidics emerged as a prospective alternative. This study aimed at developing EFV-loaded PLGA NPs through a conventional and microfluidic method, targeted to the BBB, in order to treat HIV neuropathology. Compared to the conventional method, NPs produced through microfluidics presented reduced size (73 nm versus 133 nm), comparable polydispersity (around 0.090), less negative zeta-potential (-14.1 mV versus -28.0 mV), higher EFV association efficiency (80.7% versus 32.7%) and higher drug loading (10.8% versus 3.2%). The microfluidics-produced NPs also demonstrated a sustained in vitro EFV release (50% released within the first 24 h). NPs functionalization with a transferrin receptor-binding peptide, envisaging BBB targeting, proved to be effective concerning nuclear magnetic resonance analysis (δ = -0.008 ppm; δ = -0.017 ppm). NPs demonstrated to be safe to BBB endothelial and neuron cells (metabolic activity above 70%), as well as non-hemolytic (1-2% of hemolysis, no morphological alterations on erythrocytes). Finally, functionalized nanosystems were able to interact more efficiently with BBB cells, and permeability of EFV associated with NPs through a BBB in vitro model was around 1.3-fold higher than the free drug.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Francisca Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria João Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carlos Fernandes
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland; HiLIFE - Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Fernanda Borges
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
37
|
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2017; 270:290-303. [PMID: 29269142 DOI: 10.1016/j.jconrel.2017.12.015] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/21/2023]
Abstract
The blood-brain barrier (BBB) is one of the most essential protection mechanisms in the central nervous system (CNS). It selectively allows individual molecules such as small lipid-soluble molecules to pass through the capillary endothelial membrane while limiting the passage of pathogens or toxins. However, this protection mechanism is also a major obstacle during disease state since it dramatically hinders the drug delivery. In recent years, various tactics have been applied to assist drugs to cross the BBB including osmotic disruption of the BBB and chemical modification of prodrugs. Additionally, nanoparticles (NPs)-mediated drug delivery is emerging as an effective and non-invasive system to treat cerebral diseases. In this review, we will summarize and analyze the advances in the drug delivery across the BBB using various NPs in the last decade. The NPs will cover both traditional and novel nanocarriers. The traditional nanocarriers consist of poly(butylcyanoacrylate), poly(lactic-co-glycolic acid), poly(lactic acid) NPs, liposomes and inorganic systems. In the meanwhile, novel nanocarriers such as carbon quantum dots with their recent applications in drug delivery will also be introduced. In terms of significance, this review clearly depicts the BBB structure and comprehensively describes various NPs-mediated drug delivery systems according to different NPs species. Also, the BBB penetration mechanisms are concluded in general, emphasized and investigated in each drug delivery system.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Zhili Peng
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, PR China
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
38
|
Shityakov S, Roewer N, Broscheit JA, Förster C. In silico models for nanotoxicity evaluation and prediction at the blood-brain barrier level: A mini-review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Macdonald J, Henri J, Goodman L, Xiang D, Duan W, Shigdar S. Development of a Bifunctional Aptamer Targeting the Transferrin Receptor and Epithelial Cell Adhesion Molecule (EpCAM) for the Treatment of Brain Cancer Metastases. ACS Chem Neurosci 2017; 8:777-784. [PMID: 28010059 DOI: 10.1021/acschemneuro.6b00369] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The treatment of brain disorders is greatly hindered by the presence of the blood-brain barrier, which restricts the overwhelming majority of small molecules from entering the brain. A novel approach by which to overcome this barrier is to target receptor mediated transport mechanisms present on the endothelial cell membranes. Therefore, we fused an aptamer that binds to epithelial cell adhesion molecule-expressing cancer cells to an aptamer targeting the transferrin receptor. This generated a proof of concept bifunctional aptamer that can overcome the blood-brain barrier and potentially specifically target brain disorders. The initial fusion of the two sequences enhanced the binding affinity of both aptamers while maintaining specificity. Additionally, mutations were introduced into both binding loops to determine their effect on aptamer specificity. The ability of the aptamer to transcytose the blood-brain barrier was then confirmed in vivo following a 1 nmol injection. This study has shown that through the fusion of two aptamer sequences, a bifunctional aptamer can be generated that has the potential to be developed for the specific treatment of brain disorders.
Collapse
Affiliation(s)
- Joanna Macdonald
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Justin Henri
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Lynda Goodman
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Dongxi Xiang
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Wei Duan
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Sarah Shigdar
- School
of Medicine and ‡Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| |
Collapse
|
40
|
Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 2016; 374:18-28. [DOI: 10.1016/j.tox.2016.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
|
41
|
Nanoformulated Antiretrovirals for Penetration of the Central Nervous System: State of the Art. J Neuroimmune Pharmacol 2016; 12:17-30. [PMID: 27832401 DOI: 10.1007/s11481-016-9716-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
The central nervous system is a very challenging HIV-1 sanctuary. But, despite complete suppression of plasmatic viral replication with current antiretroviral therapy, signs of HIV-1 replication can still be found in the cerebrospinal fluid in some patients. The main limitation to achieving HIV-1 eradication from the brain is related to the suboptimal concentrations of antiretrovirals within this site, due to their low permeation across the blood-brain barrier. In recent years, a number of reliable nanotechnological strategies have been developed with the aim of enhancing antiretroviral drug penetration across the blood-brain barrier. The aim of this review is to provide an overview of the different nanoformulated antiretrovirals, used in both clinical and preclinical studies, that are designed to improve their delivery into the brain by active or passive permeation mechanisms through the barrier. Different nanotechnological approaches have proven successful for optimizing antiretrovirals delivery to the central nervous system, with a likely benefit for HIV-associated neurocognitive disorders and a more debated contribution to the complete eradication of the HIV-1 infection.
Collapse
|
42
|
Getz T, Qin J, Medintz IL, Delehanty JB, Susumu K, Dawson PE, Dawson G. Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activities in brain-derived cells. J Neurochem 2016; 139:872-885. [PMID: 27622309 DOI: 10.1111/jnc.13841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022]
Abstract
The use of RNAi to suppress protein synthesis offers a potential way of reducing the level of enzymes or the synthesis of mutant toxic proteins but there are few tools currently available for their delivery. To address this problem, bioconjugated quantum dots (QDs) containing a hydrophobic component (N-palmitate) and a sequence VKIKK designed to traverse across cell membranes and visualize drug delivery were developed and tested on cell lines of brain origin. We used the Zn outer shell of the QD to bind HIS6 in JB577 (W•G•Dap(N-Palmitoyl)•VKIKK•P9 •G2 •H6 ) and by a gel-shift assay showed that siRNAs would bind to the positively charged KIKK sequence. By comparing many peptides and QD coatings, we showed that the QD-JB577-siRNA construct was taken up by cells of nervous system origin, distributed throughout the cytosol, and inhibited protein synthesis, implying that JB577 was also promoting endosome egress. By attaching siRNA for luciferase in a cell line over-expressing luciferase, we showed 70% inhibition of mRNA after 24-48 h. To show more specific effects, we synthesized siRNA for neutral (NSMase2), acid (lysosomal ASMase) sphingomyelinase, and sphingosine kinase 1 (SK1), we demonstrated a dose-dependent inhibition of activity. These data suggest that QDs are a useful siRNA delivery tool and QD-siRNA could be a potential theranostic for a variety of diseases.
Collapse
Affiliation(s)
- Ted Getz
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Igor L Medintz
- US Naval Research Labs, Washington, District of Columbia, USA
| | | | - Kimihiro Susumu
- US Naval Research Labs, Washington, District of Columbia, USA
| | | | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Huang N, Cheng S, Zhang X, Tian Q, Pi J, Tang J, Huang Q, Wang F, Chen J, Xie Z, Xu Z, Chen W, Zheng H, Cheng Y. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:83-93. [PMID: 27682740 DOI: 10.1016/j.nano.2016.08.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine.
Collapse
Affiliation(s)
- Ning Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Qi Tian
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiangli Pi
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongye Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weifu Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Fiandra L, Mazzucchelli S, Truffi M, Bellini M, Sorrentino L, Corsi F. In Vitro Permeation of FITC-loaded Ferritins Across a Rat Blood-brain Barrier: a Model to Study the Delivery of Nanoformulated Molecules. J Vis Exp 2016. [PMID: 27583454 DOI: 10.3791/54279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules. This study describes the development of a double-layer BBB, consisting of co-cultured commercially available primary rat brain microvascular endothelial cells and astrocytes. A multiparametric approach for the validation of the model, based on the measurement of the transendothelial electrical resistance and the apparent permeability of a high molecular weight dextran, is also described. As proof of concept for the employment of this BBB model to study the effect of different nanoformulations on the translocation of fluorescent molecules across the barrier, we describe the use of fluorescein isothiocyanate (FITC), loaded into ferritin nanoparticles. The ability of ferritins to improve the trans-BBB permeation of FITC was demonstrated by flux measurements and confocal microscopy analyses. The results suggest this is a useful system for validating nanosystems for delivery of drugs across the BBB.
Collapse
Affiliation(s)
- Luisa Fiandra
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano;
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano
| | - Marta Truffi
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca
| | - Luca Sorrentino
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano
| |
Collapse
|
45
|
Latronico T, Depalo N, Valente G, Fanizza E, Laquintana V, Denora N, Fasano A, Striccoli M, Colella M, Agostiano A, Curri ML, Liuzzi GM. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes. PLoS One 2016; 11:e0153451. [PMID: 27097043 PMCID: PMC4838222 DOI: 10.1371/journal.pone.0153451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo experiments.
Collapse
Affiliation(s)
- Tiziana Latronico
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicoletta Depalo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Bari, Italy c/o Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Gianpiero Valente
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Bari, Italy c/o Dipartimento di Chimica, Università di Bari, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Elisabetta Fanizza
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Anna Fasano
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marinella Striccoli
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Bari, Italy c/o Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Agostiano
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Bari, Italy c/o Dipartimento di Chimica, Università di Bari, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - M. Lucia Curri
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Bari, Italy c/o Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Grazia Maria Liuzzi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
46
|
Posadas I, Monteagudo S, Ceña V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond) 2016; 11:833-49. [PMID: 26980585 DOI: 10.2217/nnm.16.15] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The poor access of therapeutic drugs and genetic material into the central nervous system due to the presence of the blood-brain barrier often limits the development of effective noninvasive treatments and diagnoses of neurological disorders. Moreover, the delivery of genetic material into neuronal cells remains a challenge because of the intrinsic difficulty in transfecting this cell type. Nanotechnology has arisen as a promising tool to provide solutions for this problem. This review will cover the different approaches that have been developed to deliver drugs and genetic material efficiently to the central nervous system as well as the main nanomaterials used to image the central nervous system and diagnose its disorders.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Monteagudo
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 912] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Wang D, Wu Y, Xia J. Review on photoacoustic imaging of the brain using nanoprobes. NEUROPHOTONICS 2016; 3:010901. [PMID: 26740961 PMCID: PMC4699324 DOI: 10.1117/1.nph.3.1.010901] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/24/2015] [Indexed: 05/18/2023]
Abstract
Photoacoustic (PA) tomography (PAT) is a hybrid imaging modality that integrates rich optical contrasts with a high-ultrasonic spatial resolution in deep tissue. Among various imaging applications, PA neuroimaging is becoming increasingly important as it nicely complements the limitations of conventional neuroimaging modalities, such as the low-temporal resolution in magnetic resonance imaging and the low depth-to-resolution ratio in optical microscopy/tomography. In addition, the intrinsic hemoglobin contrast PA neuroimaging has also been greatly improved by recent developments in nanoparticles (NPs). For instance, near-infrared absorbing NPs greatly enhanced the vascular contrast in deep-brain PAT; tumor-targeting NPs allowed highly sensitive and highly specific delineation of brain tumors; and multifunctional NPs enabled comprehensive examination of the brain through multimodal imaging. We aim to give an overview of NPs used in PA neuroimaging. Classifications of various NPs used in PAT will be introduced at the beginning, followed by an overview of PA neuroimaging systems, and finally we will discuss major applications of NPs in PA neuroimaging and highlight representative studies.
Collapse
Affiliation(s)
- Depeng Wang
- State University of New York, University at Buffalo, Department of Biomedical Engineering, 208 Bonner Hall, Buffalo, New York 14260, United States
| | - Yun Wu
- State University of New York, University at Buffalo, Department of Biomedical Engineering, 208 Bonner Hall, Buffalo, New York 14260, United States
| | - Jun Xia
- State University of New York, University at Buffalo, Department of Biomedical Engineering, 208 Bonner Hall, Buffalo, New York 14260, United States
| |
Collapse
|
49
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
50
|
Wu T, Zhang T, Chen Y, Tang M. Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 2015; 36:345-51. [DOI: 10.1002/jat.3229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| |
Collapse
|