1
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Malkova L, Forcelli PA. Focal pharmacological manipulation of serotonin signaling in the amygdala does not alter social behavior. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06651-4. [PMID: 39019996 DOI: 10.1007/s00213-024-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates. In rodents, acute systemic administration of drugs that increase serotonin signaling is associated with decreased social interactions. However, in primates, the direct involvement of serotonin signaling in the amygdala, particularly in affiliative social interaction, remains unexplored. Here, we examined the effects of serotonin manipulations within the amygdala on social behavior in eight pairs of familiar male macaques. We microinfused drugs targeting the serotonin system into either the basolateral (BLA) or central (CeA) amygdala and measured changes in social behavior. Surprisingly, the results demonstrated no significant differences in social behavior following the infusion of a selective serotonin reuptake inhibitor, 5-HT1A agonist or antagonist, 5-HT2A agonist or antagonist, or 5-HT3 agonist or antagonist into either the BLA or CeA. These findings suggest that serotonin signaling in the amygdala does not directly contribute to the regulation of social behavior between familiar conspecifics. Future research should explore alternative mechanisms and potential interactions with other brain regions to gain a comprehensive understanding of the complex neural circuitry governing social behavior.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
2
|
Sacchini S, Bombardi C, Arbelo M, Herráez P. The amygdaloid body of the family Delphinidae: a morphological study of its central nucleus through calbindin-D28k. Front Neuroanat 2024; 18:1382036. [PMID: 38899230 PMCID: PMC11186458 DOI: 10.3389/fnana.2024.1382036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction The amygdala is a noticeable bilateral structure in the medial temporal lobe and it is composed of at least 13 different nuclei and cortical areas, subdivided into the deep nuclei, the superficial nuclei, and the remaining nuclei which contain the central nucleus (CeA). CeA mediates the behavioral and physiological responses associated with fear and anxiety through pituitary-adrenal responses by modulating the liberation of the hypothalamic Corticotropin Releasing Factor/Hormone. Methods Five dolphins of three different species, belonging to the family Delphinidae (three striped dolphins, one common dolphin, and one Atlantic spotted dolphin), were used for this study. For a precise overview of the CeA's structure, thionine staining and the immunoperoxidase method using calbindin D-28k were employed. Results CeA extended mainly dorsal to the lateral nucleus and ventral to the striatum. It was medial to the internal capsule and lateral to the optic tract and the medial nucleus of the amygdala. Discussion The dolphin amygdaloid complex resembles that of primates, including the subdivision, volume, and location of the CeA.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| |
Collapse
|
3
|
Arruda Sanchez T, Ramos LR, Araujo F, Schenberg EE, Yonamine M, Lobo I, de Araujo DB, Luna LE. Emotion regulation effects of Ayahuasca in experienced subjects during implicit aversive stimulation: An fMRI study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117430. [PMID: 37979818 DOI: 10.1016/j.jep.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/15/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca is a beverage used in Amazonian traditional medicine and it has been part of the human experience for millennia as well as other different psychoactive plants. Although Ayahuasca has been proposed as potentially therapeutic as an anxiolytic and antidepressant, whilst no studies have been carried out so far investigating their direct effect on brain emotional processing. AIM OF THE STUDY This study aimed to measure the emotional acute effect of Ayahuasca on brain response to implicit aversive stimulation using a face recognition task in functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS Nineteen male experienced Ayahuasca users participated in this study in two fMRI sessions before and after 50 min of the Ayahuasca ingestion. Subjects were presented with pictures of neutral (A) and aversive (B) (fearful or disgusted) faces from the Pictures of Facial Affect Series. Subjects were instructed to identify the gender of the faces (gender discrimination task) while the emotional content was implicit. Subjective mood states were also evaluated before Ayahuasca intake and after the second fMRI session, using a visual analogue mood scale (VAMS). RESULTS During the aversive stimuli, the activity in the bilateral amygdala was attenuated by Ayahuasca (qFDR<0.05). Furthermore, in an exploratory analysis of the effects after intake, Ayahuasca enhances the activation in the insular cortex bilaterally, as well as in the right dorsolateral prefrontal cortex (qFDR<0.05). In the psychometric VAMS scale, subjects reported attenuation of both anxiety and mental sedation (p < 0.01) during acute effects. CONCLUSIONS Together, all reported results including neuroimaging, behavioral data and psychometric self-report suggest that Ayahuasca can promote an emotion regulation mechanism in response to aversive stimuli with corresponding improved cognition including reduced anxiety and mental sedation.
Collapse
Affiliation(s)
- Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Felipe Araujo
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mauricio Yonamine
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela Lobo
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), UFRJ, Macaé, RJ, Brazil
| | - Draulio Barros de Araujo
- Brain Institute / Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Luis Eduardo Luna
- Research Centre for the study of psychointegrator plants, Visionary Art and Consciousness - Wasiwaska, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
5
|
Payet JM, Stevens L, Russo AM, Jaehne EJ, van den Buuse M, Kent S, Lowry CA, Baratta MV, Hale MW. The Role of Dorsal Raphe Nucleus Serotonergic Systems in Emotional Learning and Memory in Male BALB/c Mice. Neuroscience 2023; 534:1-15. [PMID: 37852412 DOI: 10.1016/j.neuroscience.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
Collapse
Affiliation(s)
- Jennyfer M Payet
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Laura Stevens
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Adrian M Russo
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew W Hale
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
7
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Lu J, Jin K, Jiao J, Liu R, Mou T, Chen B, Zhang Z, Jiang C, Zhao H, Wang Z, Zhou R, Huang M. YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression. Psychiatry Clin Neurosci 2023; 77:149-159. [PMID: 36436207 DOI: 10.1111/pcn.13510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation. METHODS Plasma levels of YY1, interleukin (IL) 6, and IL-1β in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1β inflammatory pathway were measured in related brain regions. RESULTS Plasma levels of YY1 and IL-1β were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1β in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1β inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine. CONCLUSION The current study suggests that the YY1-NF-κB-IL-1β inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Longquan City People's Hospital, Lishui, 323799, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zhihan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Urban MM, Stingl MR, Meinhardt MW. Mini-review: The neurobiology of treating substance use disorders with classical psychedelics. Front Neurosci 2023; 17:1156319. [PMID: 37139521 PMCID: PMC10149865 DOI: 10.3389/fnins.2023.1156319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
The potential of psychedelics to persistently treat substance use disorders is known since the 1960s. However, the biological mechanisms responsible for their therapeutic effects have not yet been fully elucidated. While it is known that serotonergic hallucinogens induce changes in gene expression and neuroplasticity, particularly in prefrontal regions, theories on how specifically this counteracts the alterations that occur in neuronal circuitry throughout the course of addiction are largely unknown. This narrative mini-review endeavors to synthesize well-established knowledge from addiction research with findings and theories regarding the neurobiological effects of psychedelics to give an overview of the potential mechanisms that underlie the treatment of substance use disorders with classical hallucinogenic compounds and point out gaps in the current understanding.
Collapse
Affiliation(s)
- Marvin M. Urban
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Marvin M. Urban,
| | - Moritz R. Stingl
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Fan P, Song Y, Lu B, Wang Y, Dai Y, Xie J, He E, Xu Z, Yang G, Mo F, Liu J, Wang M, Cai X. PtNPs/PEDOT:PSS-Modified Microelectrode Arrays Reveal Electrophysiological Activities of Different Neurons in Medial Amygdala of Mice Under Innate Fear. Front Neurosci 2022; 16:868235. [PMID: 35620664 PMCID: PMC9127061 DOI: 10.3389/fnins.2022.868235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
The medial amygdala (MA) plays an important role in the innate fear circuit. However, the electrophysiological mechanism of MA for processing innate fear needs to be further explored. In this study, we fabricated microelectrode arrays (MEAs) with detecting sites arranged to match the location and shape of MA in mice and detected the electrophysiology in freely behaving mice under 2-methyl-2-thiazoline (2MT)-induced fear. The detection performance of MEA is improved by modifying metal nanoparticles and conductive polymers (PtNPs/PEDOT:PSS). After modification, the impedance magnitude and phase of electrodes were decreased to 27.0 ± 2.3 kΩ and −12.30 ± 0.52°, respectively, leading to a signal-to-noise ratio of 10. Its electrochemical stability and mechanical stability were also verified by cyclic voltammetry (CV) sweeping and ultrasonic vibration. MEAs were then implanted into the MA of mice, and the electrophysiology and behavioral characteristics were synchronously recorded and analyzed. The results showed that 2MT induced strong defensive behaviors in mice, accompanied by increases in the average spike firing rate and local field potential (LFP) power of MA neurons. According to principles commonly applied to cortical extracellular recordings, the recorded neurons are divided into two classes based on waveforms. Statistics showed that about 37% of type 1 neurons (putative GABAergic neurons) and 87% of type 2 neurons (putative glutamatergic neurons) were significantly activated under innate fear. At the same time, the firing rate of some activated neurons had a good linear correlation with the freezing rate.
Collapse
Affiliation(s)
- Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yilin Song
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
- Xinxia Cai
| |
Collapse
|
11
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Chick Hippocampal Formation Displays Subdivision- and Layer-Selective Expression Patterns of Serotonin Receptor Subfamily Genes. Front Physiol 2022; 13:882633. [PMID: 35464081 PMCID: PMC9024137 DOI: 10.3389/fphys.2022.882633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
12
|
Baeken C, Xu Y, Wu GR, Dockx R, Peremans K, De Raedt R. Hostility in medication-resistant major depression and comorbid generalized anxiety disorder is related to increased hippocampal-amygdala 5-HT 2A receptor density. Eur Arch Psychiatry Clin Neurosci 2021; 271:1369-1378. [PMID: 33904978 PMCID: PMC8429407 DOI: 10.1007/s00406-021-01243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/24/2021] [Indexed: 11/03/2022]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are severe and difficult-to-treat psychiatric illnesses with high rates of comorbidity. Although both disorders are treated with serotonergic based psychotropic agents, little is known on the influence of the serotonergic neurotransmitter system on the occurrence of comorbid GAD when clinically depressed. To investigate this poorly understood clinical question, we examined the involvement of frontolimbic post-synaptic 5-HT2A receptors in 20 medication-resistant depressed (MRD) patients with half of them diagnosed with comorbid GAD with 123I-5-I-R91150 SPECT. To explore whether 5-HT2A receptor-binding indices (BI) associated with comorbid GAD could be related to distinct psychopathological symptoms, all were assessed with the symptom Checklist-90-Revised (SCL-90-R). MRD patients with comorbid GAD displayed significantly higher 5-HT2A receptor BI in the hippocampal-amygdala complex, compared to MRD patients without GAD. Correlation analyses revealed that the 5-HT2A receptor BI in these areas were significantly related to the SCL-90-R subscale hostility (HOS), especially for those MRD patients with comorbid GAD. Comorbid MRD-GAD may be characterized with increased hippocampal-amygdala 5-HT2A receptor BI which could represent enhanced levels in hostility in such kinds of patients. Adapted psychotherapeutic interventions may be warranted.
Collapse
Affiliation(s)
- Chris Baeken
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.8767.e0000 0001 2290 8069Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZBrussel), Laarbeeklaan 101, 1090 Brussels, Belgium ,grid.6852.90000 0004 0398 8763Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yanfeng Xu
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Robrecht Dockx
- grid.5342.00000 0001 2069 7798Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rudi De Raedt
- grid.5342.00000 0001 2069 7798Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
The dorsal arcopallium of chicks displays the expression of orthologs of mammalian fear related serotonin receptor subfamily genes. Sci Rep 2020; 10:21183. [PMID: 33273690 PMCID: PMC7712838 DOI: 10.1038/s41598-020-78247-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fear is an adaptive emotion that elicits defensive behavioural responses against aversive threats in animals. In mammals, serotonin receptors (5-HTRs) have been shown to modulate fear-related neural circuits in the basolateral amygdala complex (BLA). To understand the phylogenetic continuity of the neural basis for fear, it is important to identify the neural circuit that processes fear in other animals. In birds, fear-related behaviours were suggested to be processed in the arcopallium/amygdala complex and modulated by the serotonin (5-HT) system. However, details about the distribution of 5-HTRs in the avian brain are very sparsely reported, and the 5-HTR that is potentially involved in fear-related behaviour has not been elucidated. In this study, we showed that orthologs of mammalian 5-HTR genes that are expressed in the BLA, namely 5-HTR1A, 5-HTR1B, 5-HTR2A, 5-HTR2C, 5-HTR3A, and 5-HTR4, are expressed in a part of the chick arcopallium/amygdala complex called the dorsal arcopallium. This suggests that serotonergic regulation in the dorsal arcopallium may play an important role in regulating fear-related behaviour in birds. Our findings can be used as a basis for comparing the processing of fear and its serotonergic modulation in the mammalian amygdala complex and avian arcopallium/amygdala complex.
Collapse
|
14
|
George I, Alawa J, Akpulu P, Alawa C. Comparative neuroanatomical study of the amygdala and fear conditioning in Nigerian breeds of Artiodactyla: Sheep (Uda) and goats (Red Sokoto). Anat Rec (Hoboken) 2020; 304:692-703. [PMID: 33022136 DOI: 10.1002/ar.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 11/09/2022]
Abstract
The aim of this study was to evaluate fear condition responses in sheep and goat and to relate this to the neuroarchitecture of their amygdala. Forty adult sheep (Uda breed) and 40 adult goats (Red Sokoto breed) were fear-conditioned by associating the sound of a car horn (neutral stimuli) with water spray (aversive stimuli) and the fear response was determined by direct observation of the behavior of the sheep and goats and measuring their flight distances and escape time. Eight groups were studied, each comprising of 10 animals (five sheep and five goats). Goats and sheep were tested alternately in the morning of every day of the week for three consecutive weeks, in which 4 days was used for habituation and 3 days for testing. Histologically, neurons in the central and basolateral complex of the amygdala were studied and analyzed using Nissl and golgi staines. Behaviorally, goats elicited an active avoidance response expressed as flight with concomitant intense flight distances (p < .001) compared to sheep. Although, sheep had larger brain parameters, it showed attenuated basolateral amygdala cytoarchitecture consistent with reduced fear perception and response. Goats had significantly more densely distributed pyramidal and spiny stellate neurons in the basolateral amygdala while sheep showed more non-pyramidal and aspiny neurons. These results provide interesting practical perspectives on how adaptions in the amygdala coincides with alterations in fear conditioning in domestic animals and may be the basis for the higher incidence of the sheep in automobile accidents than goats in developing countries especially Africa.
Collapse
Affiliation(s)
- Itoro George
- Anatomy, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Nigeria.,Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Judith Alawa
- Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria.,Veterinary Anatomy, Faculty of Veterinary Medicicne, University of Abuja, Abuja, Nigeria
| | - Peter Akpulu
- Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Clement Alawa
- Animal Production, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| |
Collapse
|
15
|
Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT 2C receptor expression in female rats. Neuropharmacology 2019; 165:107926. [PMID: 31883927 DOI: 10.1016/j.neuropharm.2019.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Sodium valproate (VPA) has analgesic effects in clinical and experimental studies, but the mechanisms are still unclear. The present study examined the effects of VPA on stress-induced somatic hyperalgesia and visceral hypersensitivity and the role of 5-HT2C receptors in the spinal cord. Repeated 3 day forced swim (FS) significantly reduced the thermal withdrawal latency and mechanical withdrawal threshold, and increased the magnitude of the visceromotor response to colorectal distention compared to the baseline values in rats. The somatic hyperalgesia and visceral hypersensitivity were accompanied by significant down-regulation of 5-HT2C receptor expression in the L4-L5 and L6-S1 dorsal spinal cord. Intraperitoneal administration of VPA (300 mg/kg) before each FS and 1 day post FS prevented the development of somatic hyperalgesia and visceral hypersensitivity induced by FS stress, as well as down-regulation of 5-HT2C receptors in the spinal cord. The reversal of somatic hyperalgesia and visceral hypersensitivity by VPA in FS rats was blocked by intrathecal administration of the selective 5-HT2C receptor antagonist RS-102221 (30 μg/10 μL) 30 min after each VPA injection. The results suggest that VPA attenuates FS-induced somatic hyperalgesia and visceral hypersensitivity by restoring down-regulated function of 5-HT2C receptors in the spinal cord.
Collapse
|
16
|
Ochi T, Vyalova NM, Losenkov IS, Paderina DZ, Pozhidaev IV, Loonen AJM, Simutkin GG, Bokhan NA, Ivanova SA, Wilffert B. Limited Associations Between 5-HT Receptor Gene Polymorphisms and Treatment Response in Antidepressant Treatment-Free Patients With Depression. Front Pharmacol 2019; 10:1462. [PMID: 31956308 PMCID: PMC6951408 DOI: 10.3389/fphar.2019.01462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder has become a prominent cause of disability, as lifetime prevalence has increased to ~15% in the Western world. Pharmacological effects of serotonin (5-hydroxytryptamine, 5-HT) are mediated through 5-hydroxytryptamine receptor (5-HTR) binding. Serotonin regulation of amygdala activity is attained through activation of three 5-HT2 family receptor subtypes, 5-HT2A, 5-HT2B, and 5-HT2C. Specifically, HT2A and the HT2C receptors have similar gross cerebral distribution and function, with higher constitutive activity found in HT2C than in HT2A. We investigated the possible association of 5-HTR gene polymorphisms to specific and non-specific antidepressant treatment responses in treatment-free patients in Siberia. 156 patients, aged between 18-70 years and clinically diagnosed with depressive disorders, were treated with antidepressants for 4 weeks. Patients were genotyped for a subset of 29 SNPs from the following 5-HT Receptor genes: HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B and HTR6. Primary outcome was measured by differences in Hamilton Depression Rating Scale (ΔHAM-D 17) scores between baseline/week two, week two/week four and baseline/week four. Univariate linear regression was initially conducted to determine the 5-HTR SNPs to be studied within the multiple linear regression. Multiple linear regression analyses over the three time periods were conducted for ΔHAM-D 17 with independent factors including: age, gender, depression diagnosis, antidepressant treatment and selected 5-HTR SNPs. We found improved ∆HAM-D 17 in patients taking tricyclic antidepressants (0-4 weeks: B = 4.85, p = 0.0002; 0-2 weeks: B = 3.58, p = 0.002) compared to patients taking SSRIs. Over the course of study, significant associations between 5-HT receptors SNPs and antidepressant response were not identified.
Collapse
Affiliation(s)
- Taichi Ochi
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Natalya M. Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Innokentiy S. Losenkov
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Diana Z. Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Cytology and Genetics, National Research Tomsk State University, Tomsk, Russia
| | - Anton J. M. Loonen
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- GGZ Westelijk Noord-Brabant, Policy Office for Quality and Innovation of Care (BZI), Halsteren, Netherlands
| | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russia
- School of Non-Destructive Testing and Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Bob Wilffert
- Department of PharmacoTherapy, - Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Abstract
BACKGROUND Previously, the authors have developed a model of how reward-seeking and distress- avoiding behaviour is regulated by the human brain. The forebrain's evolution in vertebrates was taken as a starting point. AIMS The authors want to inspire colleagues to study in particular the pharmacological effects on the described ancient forebrain structures in order to modify specific symptoms of mental disorders. METHODS Compilation of data and ideas of previous articles, with examples to illustrate. RESULTS A primary (lamprey-like), secondary (frog-like) and tertiary (mammal-like) forebrain can be distinguished, organized according to a Russian doll model. The first constituent is primarily involved in producing the emotional response, while the last is principally concerned with constructing conscious cognitive behaviour (including verbal and written communication). Mental disorders comprise (partly related and partly unrelated) biological and rational phenomena. The secondary system regulates the intensity of reward-seeking and distress-avoiding behaviour. An essential component of the primary forebrain evaluates the results of behavioural actions: the lateral habenula-projecting pallidum. These neurons regulate the activity of ascending dopaminergic pathways. The authors suggest that these habenula-projecting pallidum neurons are targeted by subanaesthetic dosages of ketamine. The medial habenula is enriched with nicotinergic acetylcholine receptors and regulates the activity of ascending adrenergic and serotonergic neurons. This may link varenicline-induced hostility to selective serotonin reuptake inhibitor-induced aggression. CONCLUSIONS Studying the effects of new compounds on the primary and secondary brains in lampreys and frogs may yield interesting new treatments of mental disorders.
Collapse
Affiliation(s)
- Anton JM Loonen
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen, The Netherlands,Mental Health Institute Westelijk Noord-Brabant (GGZWNB), Halsteren, The Netherlands,Anton JM Loonen, University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk Polytechnic University, School of Non-Destructive Testing & Security, Division for Control and Diagnostics, Tomsk, Russian Federation
| |
Collapse
|
18
|
Periaqueductal gray and emotions: the complexity of the problem and the light at the end of the tunnel, the magnetic resonance imaging. Endocr Regul 2018; 52:222-238. [DOI: 10.2478/enr-2018-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
The periaqueductal gray (PAG) is less referred in relationship with emotions than other parts of the brain (e.g. cortex, thalamus, amygdala), most probably because of the difficulty to reach and manipulate this small and deeply lying structure. After defining how to evaluate emotions, we have reviewed the literature and summarized data of the PAG contribution to the feeling of emotions focusing on the behavioral and neurochemical considerations. In humans, emotions can be characterized by three main domains: the physiological changes, the communicative expressions, and the subjective experiences. In animals, the physiological changes can mainly be studied. Indeed, early studies have considered the PAG as an important center of the emotions-related autonomic and motoric processes. However, in vivo imaging have changed our view by highlighting the PAG as a significant player in emotions-related cognitive processes. The PAG lies on the crossroad of networks important in the regulation of emotions and therefore it should not be neglected. In vivo imaging represents a good tool for studying this structure in living organism and may reveal new information about its role beyond its importance in the neurovegetative regulation.
Collapse
|
19
|
Toshchakova VA, Bakhtiari Y, Kulikov AV, Gusev SI, Trofimova MV, Fedorenko OY, Mikhalitskaya EV, Popova NK, Bokhan NA, Hovens JE, Loonen AJ, Wilffert B, Ivanova SA. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders. Neuropsychobiology 2018; 75:200-210. [PMID: 29621775 PMCID: PMC5981829 DOI: 10.1159/000487484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. METHODS Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. RESULTS No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. CONCLUSIONS The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed.
Collapse
Affiliation(s)
- Valentina A. Toshchakova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yalda Bakhtiari
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands
| | - Alexander V. Kulikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey I. Gusev
- Federal State Educational Institution of Higher Education “Kemerovo State Institute of Culture”, Kemerovo, Russian Federation
| | - Marina V. Trofimova
- Psychology Department, Federal State Institution “Correctional Facility No. 43”, Penitentiary Service of Russia for the Kemerovo Region, Kemerovo, Russian Federation
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Ekaterina V. Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nina K. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk State University, Tomsk, Russian Federation
| | - Johannes E. Hovens
- Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J.M. Loonen
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands,GGZ Westelijk Noord-Brabant, Bergen op Zoom, The Netherlands,*Prof. Anton J.M. Loonen, MD, PharmD, PhD, Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, NL-9713AV Groningen (The Netherlands), E-Mail
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, Unit of Pharmacotherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| |
Collapse
|
20
|
|
21
|
Rambaldi A, Cozzi B, Grandis A, Canova M, Mazzoni M, Bombardi C. Distribution of Calretinin Immunoreactivity in the Lateral Nucleus of the Bottlenose Dolphin (Tursiops truncatus
) Amygdala. Anat Rec (Hoboken) 2017; 300:2008-2016. [DOI: 10.1002/ar.23634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- A.M. Rambaldi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008); University of Bologna; Bologna Italy
| | - B. Cozzi
- Department of Comparative Biomedicine and Food Science; University of Padova; Padova Italy
| | - A. Grandis
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008); University of Bologna; Bologna Italy
| | - M. Canova
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008); University of Bologna; Bologna Italy
| | - M. Mazzoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008); University of Bologna; Bologna Italy
| | - C. Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008); University of Bologna; Bologna Italy
| |
Collapse
|
22
|
Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Transl Psychiatry 2017; 7:e1084. [PMID: 28375205 PMCID: PMC5416695 DOI: 10.1038/tp.2017.54] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lysergic acid diethylamide (LSD) induces profound changes in various mental domains, including perception, self-awareness and emotions. We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of LSD on the neural substrate of emotional processing in humans. Using a double-blind, randomised, cross-over study design, placebo or 100 μg LSD were orally administered to 20 healthy subjects before the fMRI scan, taking into account the subjective and pharmacological peak effects of LSD. The plasma levels of LSD were determined immediately before and after the scan. The study (including the a priori-defined study end point) was registered at ClinicalTrials.gov before study start (NCT02308969). The administration of LSD reduced reactivity of the left amygdala and the right medial prefrontal cortex relative to placebo during the presentation of fearful faces (P<0.05, family-wise error). Notably, there was a significant negative correlation between LSD-induced amygdala response to fearful stimuli and the LSD-induced subjective drug effects (P<0.05). These data suggest that acute administration of LSD modulates the engagement of brain regions that mediate emotional processing.
Collapse
|
23
|
Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S. Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT 2C protomers. J Biol Chem 2017; 292:6352-6368. [PMID: 28258217 DOI: 10.1074/jbc.m117.779041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Indexed: 11/06/2022] Open
Abstract
The serotonin receptor subtypes 2 comprise 5-HT2A, 5-HT2B, and 5-HT2C, which are Gαq-coupled receptors and display distinct pharmacological properties. Although co-expressed in some brain regions and involved in various neurological disorders, their functional interactions have not yet been studied. We report that 5-HT2 receptors can form homo- and heterodimers when expressed alone or co-expressed in transfected cells. Co-immunoprecipitation and bioluminescence resonance energy transfer studies confirmed that 5-HT2C receptors interact with either 5-HT2A or 5-HT2B receptors. Although heterodimerization with 5-HT2C receptors does not alter 5-HT2C Gαq-dependent inositol phosphate signaling, 5-HT2A or 5-HT2B receptor-mediated signaling was totally blunted. This feature can be explained by a dominance of 5-HT2C on 5-HT2A and 5-HT2B receptor binding; in 5-HT2C-containing heterodimers, ligands bind and activate the 5-HT2C protomer exclusively. This dominant effect on the associated protomer was also observed in neurons, supporting the physiological relevance of 5-HT2 receptor heterodimerization in vivo Accordingly, exogenous expression of an inactive form of the 5-HT2C receptor in the locus ceruleus is associated with decreased 5-HT2A-dependent noradrenergic transmission. These data demonstrate that 5-HT2 receptors can form functionally asymmetric heterodimers in vitro and in vivo that must be considered when analyzing the physiological or pathophysiological roles of serotonin in tissues where 5-HT2 receptors are co-expressed.
Collapse
Affiliation(s)
- Imane Moutkine
- From the INSERM UMR-S839, Paris 75005.,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Emily Quentin
- From the INSERM UMR-S839, Paris 75005.,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Bruno P Guiard
- the Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Luc Maroteaux
- From the INSERM UMR-S839, Paris 75005, .,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Stephane Doly
- the Institut Cochin, INSERM U1016, CNRS UMR8104, Paris 75014, .,the Université Paris Descartes, Sorbonne Paris Cité, Paris 75014.,the Université Clermont Auvergne, INSERM, NEURO-DOL, F-63000 Clermont-Ferrand, and
| |
Collapse
|
24
|
5-HT 2C Receptor Knockdown in the Amygdala Inhibits Neuropathic-Pain-Related Plasticity and Behaviors. J Neurosci 2016; 37:1378-1393. [PMID: 28011743 DOI: 10.1523/jneurosci.2468-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Neuroplasticity in the amygdala drives pain-related behaviors. The central nucleus (CeA) serves major amygdala output functions and can generate emotional-affective behaviors and modulate nocifensive responses. The CeA receives excitatory and inhibitory inputs from the basolateral nucleus (BLA) and serotonin receptor subtype 5-HT2CR in the BLA, but not CeA, has been implicated anxiogenic behaviors and anxiety disorders. Here, we tested the hypothesis that 5-HT2CR in the BLA plays a critical role in CeA plasticity and neuropathic pain behaviors in the rat spinal nerve ligation (SNL) model. Local 5-HT2CR knockdown in the BLA with stereotaxic injection of 5-HT2CR shRNA AAV vector decreased vocalizations and anxiety- and depression-like behaviors and increased sensory thresholds of SNL rats, but had no effect in sham controls. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that 5-HT2CR knockdown blocked the increase in neuronal activity (increased responsiveness, irregular spike firing, and increased burst activity) in SNL rats. At the synaptic level, 5-HT2CR knockdown blocked the increase in excitatory transmission from BLA to CeA recorded in brain slices from SNL rats using whole-cell patch-clamp conditions. Inhibitory transmission was decreased by 5-HT2CR knockdown in control and SNL conditions to a similar degree. The findings can be explained by immunohistochemical data showing increased expression of 5-HT2CR in non-GABAergic BLA cells in SNL rats. The results suggest that increased 5-HT2CR in the BLA contributes to neuropathic-pain-related amygdala plasticity by driving synaptic excitation of CeA neurons. As a rescue strategy, 5-HT2CR knockdown in the BLA inhibits neuropathic-pain-related behaviors.SIGNIFICANCE STATEMENT Neuroplasticity in the amygdala has emerged as an important pain mechanism. This study identifies a novel target and rescue strategy to control abnormally enhanced amygdala activity in an animal model of neuropathic pain. Specifically, an integrative approach of gene transfer, systems and brain slice electrophysiology, behavior, and immunohistochemistry was used to advance the novel concept that serotonin receptor subtype 5-HT2C contributes critically to the imbalance between excitatory and inhibitory drive of amygdala output neurons. Local viral vector-mediated 5-HT2CR knockdown in the amygdala normalizes the imbalance, decreases neuronal activity, and inhibits neuropathic-pain-related behaviors. The study provides valuable insight into serotonin receptor (dys)function in a limbic brain area.
Collapse
|
25
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front Hum Neurosci 2016; 10:571. [PMID: 27891086 PMCID: PMC5102894 DOI: 10.3389/fnhum.2016.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
According to our model of the regulation of appetitive-searching vs. distress-avoiding behaviors, the motivation to display these essential conducts is regulated by two parallel cortico-striato-thalamo-cortical, re-entry circuits, including the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side, to the centromedial amygdala on the other side, controls the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure). Hyperactive motivation to exhibit behavior related to avoidance of misery results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. In clinical depression, a mismatch exists between the activities of these two circuits: the balance is shifted to the misery-avoiding side. Five theories have been developed to explain the mechanism of depressive mood disorders, including the monoamine, biorhythm, neuro-endocrine, neuro-immune, and kindling/neuroplasticity theories. This paper describes these theories in relationship to the model (described above) of the regulation of reward-seeking vs. misery-avoiding behaviors. Chronic stress that leads to structural changes may induce the mismatch between the two systems. This mismatch leads to lack of pleasure, low energy, and indecisiveness, on one hand, and dysphoria, continuous worrying, and negative expectations on the other hand. The neuroplastic effects of monoamines, cortisol, and cytokines may mediate the induction of these structural alterations. Long-term exposure to stressful situations (particularly experienced during childhood) may lead to increased susceptibility for developing this condition. This hypothesis opens up the possibility of treating depression with psychotherapy. Genetic and other biological factors (toxic, infectious, or traumatic) may increase sensitivity to the induction of relevant neuroplastic changes. Reversal or compensation of these neuroplastic adjustments may explain the effects of biological therapies in treating depression.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
26
|
de Veen BTH, Schellekens AFA, Verheij MMM, Homberg JR. Psilocybin for treating substance use disorders? Expert Rev Neurother 2016; 17:203-212. [PMID: 27684102 DOI: 10.1080/14737175.2016.1220834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Evidence based treatment for Substance use disorders (SUD) includes psychotherapy and pharmacotherapy. However, these are only partially effective. Hallucinogens, such as psilocybin, may represent potential new treatment options for SUD. This review provides a summary of (human) studies on the putative therapeutic effects of psilocybin, and discusses the receptor systems, brain regions and cognitive and emotional processes mediating psilocybin's effects. Psilocybin's chemical structure is similar to that of serotonin. Dysregulations in the serotonin system are associated with alterations in stress hormones, such as cortisol, and mood disorders. After psilocybin administration cortisol levels spike and activate the executive control network, with subsequent increased control over emotional processes, and relief of negative thinking and persistent negative emotions. Preliminary data of ongoing alcohol and smoking addiction studies in humans shows promising effects of psilocybin administration on substance use. Importantly, psilocybin has a low risk of toxicity and dependence and can be used safely under controlled clinical conditions. Areas covered: This paper is a narrative review based on the search terms: psilocybin, substance use disorder, addiction, depression, serotonin. Literature on potential efficacy and mechanisms of action of psilocybin in SUD is discussed. Expert commentary: Recent positive findings with psilocybin need confirmation in well-designed placebo controlled randomized trials employing a large sample size.
Collapse
Affiliation(s)
- Bas T H de Veen
- a Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Arnt F A Schellekens
- b Department of Psychiatry , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Michel M M Verheij
- a Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Judith R Homberg
- a Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
27
|
de Paula BB, Leite-Panissi CRA. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior. Brain Res 2016; 1643:152-8. [PMID: 27150816 DOI: 10.1016/j.brainres.2016.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.
Collapse
Affiliation(s)
- Bruna Balbino de Paula
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil; Departament of Morphology, Physiology and Basic Pathology of Dentistry School of Ribeirão Preto, University of São Paulo, 14040-904 SP, Brazil.
| |
Collapse
|
28
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Yang Y, An S, Liu Y, Guo XX, Gao L, Wei JF, Xu TR. Novel serotonin receptor 2 (5-HT2R) agonists and antagonists: a patent review (2004-2014). Expert Opin Ther Pat 2015; 26:89-106. [PMID: 26609882 DOI: 10.1517/13543776.2016.1113257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in plasma, which increases smooth muscle contraction and mediates platelet aggregation. In addition, it is a monoamine neurotransmitter and is implicated in diverse behaviors. The serotonin receptor 2 (5-HT2) subfamily is best known for biased signaling and is strongly expressed mainly in the brain regions postulated to be involved in the modulation of higher cognitive and affective functions. Modulators of the 5-HT2 receptor are currently used to treat a variety of diseases including chronic pain and psychonosema. These properties suggest that 5-HT2 receptors may become an important therapeutic target for the treatment of various pathological conditions. AREAS COVERED This review highlights the significant progress that has been made in the discovery and development of 5-HT2 receptor agonists and antagonists based on an analysis of the patent literature between January 2004 and December 2014. EXPERT OPINION Cumulative evidence over the past decade supports the notion that the modulation of 5-HT2 receptors has a positive effect on human cognition and emotion. Therefore, we suggest that new agonists and antagonists may play an important role in the treatment of disorders such as schizophrenia, addiction and obesity.
Collapse
Affiliation(s)
- Yang Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Shu An
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Ying Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Xiao-Xi Guo
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Linghuan Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| | - Ji-Fu Wei
- b Research Division of Clinical Pharmacology , The First Affiliated Hospital with Nanjing Medical University , 300 Guangzhou Road, Nanjing 210029 , China
| | - Tian-Rui Xu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , China
| |
Collapse
|
30
|
Zhang G, Stackman RW. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 2015; 6:225. [PMID: 26500553 PMCID: PMC4594018 DOI: 10.3389/fphar.2015.00225] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 01/31/2023] Open
Abstract
Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Gongliang Zhang
- College of Basic Medicine, Anhui Medical University Hefei, China ; Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter FL, USA ; Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Robert W Stackman
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA ; Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
31
|
Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 2014; 90:102-12. [PMID: 25458113 DOI: 10.1016/j.neuropharm.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 01/14/2023]
Abstract
Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.
Collapse
|