1
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
3
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
4
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Sun Y, Yang X, Xu L, Jia M, Zhang L, Li P, Yang P. The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury. Curr Neuropharmacol 2023; 21:1405-1420. [PMID: 36453490 PMCID: PMC10324331 DOI: 10.2174/1570159x21666221129100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ischemic stroke includes two related pathological damage processes: brain injury caused by primary ischemia and secondary ischemia reperfusion (I/R) injury. I/R injury has become a worldwide health problem. Unfortunately, there is still a lack of satisfactory drugs for ameliorating cerebral I/R damage. Nrf2 is a vital endogenous antioxidant protein, which combines with Keap1 to maintain a dormant state under physiological conditions. When pathological changes such as I/R occurs, Nrf2 dissociates from Keap1 and activates the expression of downstream antioxidant proteins to exert a protective effect. Recent research have shown that the activated Nrf2 not only effectively inhibits oxidative stress, but also performs the ability to repair the function of compromised mitochondria, alleviate endoplasmic reticulum stress, eliminate inflammatory response, reduce blood-brain barrier permeability, inhibit neuronal apoptosis, enhance the neural network remolding, thereby exerting significant protective effects in alleviating the injuries caused by cell oxygen-glucose deprivation, or animal cerebral I/R. However, no definite clinical application report demonstrated the efficacy of Nrf2 activators in the treatment of cerebral I/R. Therefore, further efforts are needed to elaborate the role of Nrf2 activators in the treatment of cerebral I/R. Here, we reviewed the possible mechanisms underlying its potential pharmacological benefits in alleviating cerebral I/R injury, so as to provide a theoretical basis for studying its mechanism and developing Nrf2 activators.
Collapse
Affiliation(s)
- Yu Sun
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Xu Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Lijun Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Mengxiao Jia
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Limeng Zhang
- School of Nursing, Pingdingshan Polytenchnic College, Pingdingshan, 467001, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Pengfei Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| |
Collapse
|
6
|
Qu Z, Zhang B, Kong L, Gong Y, Feng M, Gao X, Wang D, Yan L. Receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis signaling pathway and related therapeutic natural compounds. Front Pharmacol 2022; 13:1043975. [PMID: 36438811 PMCID: PMC9683337 DOI: 10.3389/fphar.2022.1043975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Osteoclast is a hematopoietic precursor cell derived from the mononuclear macrophage cell line, which is the only cell with bone resorption function. Its abnormal activation can cause serious osteolysis related diseases such as rheumatoid arthritis, Paget's disease and osteoporosis. In recent years, the adverse effects caused by anabolic anti-osteolytic drugs have increased the interest of researchers in the potential therapeutic and preventive effects of natural plant derivatives and natural compounds against osteolytic diseases caused by osteoclasts. Natural plant derivatives and natural compounds have become major research hotspots for the treatment of osteolysis-related diseases due to their good safety profile and ability to improve bone. This paper provides an overview of recent advances in the molecular mechanisms of RANKL and downstream signaling pathways in osteoclast differentiation, and briefly outlines potential natural compounds with antiosteoclast activity and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Saporito-Magriñá C, Lairion F, Musacco-Sebio R, Fuda J, Torti H, Repetto MG. Biochemical regulatory processes in the control of oxidants and antioxidants production in the brain of rats with iron and copper chronic overloads. J Biol Inorg Chem 2022; 27:665-677. [PMID: 36171446 DOI: 10.1007/s00775-022-01960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Iron [Fe(II)] and copper [Cu(II)] overloads in rat brain are associated with oxidative stress and damage. The purpose of this research is to study whether brain antioxidant enzymes are involved in the control of intracellular redox homeostasis in the brain of rats male Sprague-Dawley rats (80-90 g) that received drinking water supplemented with either 1.0 g/L of ferrous chloride (n = 24) or 0.5 g/L cupric sulfate (n = 24) for 42 days. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione transferase (GT) activities in brain were determined by spectrophotometric methods and NO production by the content of nitrite concentration in the organ. Chronic treatment with Fe(II) and Cu(II) led to a significant decrease of nitrite content and SOD activity in brain. Activity of NADPH oxidase increased with Cu(II) treatment. Concerning Fe(II), catalase and GT activities increased in brain after 28 and 4 days of treatment, respectively. In the case of Cu(II), catalase activity decreased whereas GT activity increased after 2 and 14 days, respectively. The regulation of redox homeostasis in brain involves changes of the activity of these enzymes to control the steady state of oxidant species related to redox signaling pathways upon Cu and Fe overload. NO may serve to detoxify cells from superoxide anion and hydrogen peroxide with the concomitant formation of peroxynitrite. However, the latest is a powerful oxidant which leads to oxidative modifications of biomolecules. These results suggest a common pathway to oxidative stress and damage in brain for Cu(II) and Fe(II).
Collapse
Affiliation(s)
- Christian Saporito-Magriñá
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General E Inorgánica, Universidad de Buenos Aires, Junin 956, CP: 1113AAD, Buenos Aires, Argentina
| | - Fabiana Lairion
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General E Inorgánica, Universidad de Buenos Aires, Junin 956, CP: 1113AAD, Buenos Aires, Argentina
| | - Rosario Musacco-Sebio
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General E Inorgánica, Universidad de Buenos Aires, Junin 956, CP: 1113AAD, Buenos Aires, Argentina
| | - Julian Fuda
- Facultad de Farmacia Y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio Torti
- Facultad de Farmacia Y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Gabriela Repetto
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General E Inorgánica, Universidad de Buenos Aires, Junin 956, CP: 1113AAD, Buenos Aires, Argentina.
- Instituto de Bioquímica Y Medicina Molecular Prof. Alberto Boveris(CONICET, IBIMOL), Consejo Nacional de Investigaciones Científicas Y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Xiong Y, Zhang Y, Zhou F, Liu Y, Yi Z, Gong P, Wu Y. FOXO1 differentially regulates bone formation in young and aged mice. Cell Signal 2022; 99:110438. [PMID: 35981656 DOI: 10.1016/j.cellsig.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
It is a great challenge to develop a safe and effective treatment strategy for age-related osteoporosis and fracture healing. As one of the four FOXO transcription factors, FOXO1 is essential for cell proliferation, survival, senescence, energy metabolism, and oxidative stress in various cells. Our previous study demonstrated that specific Foxo1 gene deletion in osteoblasts in young mice results in bone loss while that in aged mice shows the opposite effect. However, the mechanism underlying the differential regulation of bone metabolism by FOXO1 remains to be elucidated. In this study, we generated osteoblast-specific Foxo1 knockout mice by using Foxo1fl/fl and Bglap-Cre mice. In young mice, Foxo1 gene deletion inhibits osteoblast differentiation, leading to a decreased osteoblast number and decreased bone formation rate because of the weakened ability to resist oxidative stress, eventually resulting in bone loss and delayed healing of bone defects. In aged mice, high levels of reactive oxygen species (ROS) promote the diversion of CTNNB1 (β-catenin) from T cell factor 4 (TCF4)- to FOXO1-mediated transcription, thereby inhibiting Wnt/β-catenin signaling and leading to decreased osteogenic activity. Conversely, FOXO1 deficiency indirectly promotes the binding of β-catenin and TCF4 and activates Wnt/β-catenin signaling, thereby alleviating age-related bone loss and improving bone defect healing. Our study proves that FOXO1 has differential effects on bone metabolism in young and aged mice and elucidates its underlying mechanism. Further, this study provides a new perspective on the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yeyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Structural characterization of a mannoglucan polysaccharide from Dendrobium huoshanense and evaluation of its osteogenesis promotion activities. Int J Biol Macromol 2022; 211:441-449. [PMID: 35577191 DOI: 10.1016/j.ijbiomac.2022.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/31/2022]
Abstract
Dendrobium huoshanense, a valuable traditional Chinese herb, is widely used to prolong life in China. Our study aims to characterize the structure and osteogenesis-promotion effects of a heteropolysaccharide component isolated from Dendrobium huoshanense (DHPW1). The structure of DHPW1 was characterized using gas chromatography-mass spectrometry and nuclear magnetic resonance, while its osteogenic activity was evaluated using MG-63 cells and zebrafish skulls. The results showed that the molecular weight of DHPW1 was 230 kDa and it was mainly composed of mannose and glucose. In addition, the DHPW1 backbone consisted of (1 → 4)-linked-β-D-Mannopyranosyl and (1 → 4)-linked-β-d-Glucopyranosyl. Furthermore, DHPW1 significantly increased ALP activity and mineralized nodule formation in MG-63 cells. DHPW1 in zebrafish skull models significantly enhanced the relative fluorescence intensity of bone mass and increased the degree of bone mineralization. These results suggested that the DHPW1 component in D. huoshanense has potential to promote osteogenesis.
Collapse
|
10
|
Zhuang C, Yuan J, Du Y, Zeng J, Sun Y, Wu Y, Gao XH, Chen HD. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front Nutr 2022; 9:754707. [PMID: 35571897 PMCID: PMC9094493 DOI: 10.3389/fnut.2022.754707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Carotenoids protect organs, tissues, and cells from the damaging action of singlet oxygen, oxygen radicals, and lipid peroxides. This systematic review was sought to evaluate the influence of oral carotenoids on antioxidant/oxidative markers, blood carotenoids levels, and lipid/lipoprotein parameters in human subjects. A comprehensive review of relevant literature was conducted in PubMed, Web of Sciences, and the Cochrane library, from 2000 to December 2020. Randomized controlled trials, case-controlled trials, or controlled trials were identified. A total of eighteen trials were included, with the target populations being healthy subjects in 16 studies, athletes in 1 study, and pregnant women in 1 study. The meta-analysis results showed that carotenoids complex supplementation significantly increased the levels of antioxidative parameters ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) [standardized mean difference (SMD) = 0.468; 95% CI: 0.159-0.776, p = 0.003; SMD = 0.568; 95% CI: 0.190-0.947, p = 0.003] and decreased the blood triglyceride (TG) level (SMD = -0.410, 95% CI: -0.698 to -0.122, p = 0.005). Oral carotenoids supplement significantly increased the blood levels of β-carotene (SMD = 0.490, 95% CI: 0.123-0.858, p = 0.009), α-tocopherol (SMD = 0.752, 95%CI: 0.020-1.485, p = 0.044), and the intaking durations were 8 weeks. The levels of antioxidative enzymes and other lipid/lipoprotein parameters were not different between subjects receiving carotenoids and controls (p > 0.05). In conclusion, our systematic review showed that the carotenoids complex is beneficial for alleviating potential oxidative stress via interacting with free radicals or decreasing blood TG levels. The intaking duration of carotenoids should be 8 weeks to reach enough concentration for function.
Collapse
Affiliation(s)
- Chengfei Zhuang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jinping Yuan
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Zeng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Li J, Zhang Z, Wang L, Jiang L, Qin Z, Zhao Y, Su B. Maresin 1 Attenuates Lipopolysaccharide-Induced Acute Kidney Injury via Inhibiting NOX4/ROS/NF-κB Pathway. Front Pharmacol 2021; 12:782660. [PMID: 34955852 PMCID: PMC8703041 DOI: 10.3389/fphar.2021.782660] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a common complication in hospitalized and critically ill patients, which increases the risk of multiple comorbidities and is associated with extremely high mortality. Maresin 1 (MaR1), a lipid mediator derived from the omega-3 fatty acid docosahexaenoic acid has been reported to protect against inflammation and promote the regression of acute inflammation. This study proposed to systematically investigate the renoprotective effects and potential molecular mechanism of MaR1 in septic acute kidney injury. We established a S-AKI animal model by a single intraperitoneal injection of lipopolysaccharide (LPS), 10 mg/kg, on male C57BL/6J mice. LPS-stimulated (100 μg/ml) mouse kidney tubular epithelium cells (TCMK-1) were used to simulate septic AKI in vitro. The results showed that pretreatment with MaR1 significantly reduced serum creatinine and blood urea nitrogen levels as well as tubular damage scores and injury marker neutrophil gelatinase-associated lipocalin in septic AKI mice. Meanwhile, MaR1 administration obviously diminished pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and MCP-1), downregulated BAX and cleaved caspase-3 expression, and upregulated BCL-2 expression in the injured kidney tissues and TCMK-1 cells. In addition, MaR1 reduced malondialdehyde production and improved the superoxide dismutase activity of renal tissues while inhibiting reactive oxygen species (ROS) production and protecting the mitochondria. Mechanistically, LPS stimulated the expression of the NOX4/ROS/NF-κB p65 signaling pathway in S-AKI kidneys, while MaR1 effectively suppressed the activation of the corresponding pathway. In conclusion, MaR1 attenuated kidney inflammation, apoptosis, oxidative stress, and mitochondrial dysfunction to protect against LPS-induced septic AKI via inhibiting the NOX4/ROS/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Jiameng Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Liya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Qin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuliang Zhao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Torres ML, Wanionok NE, McCarthy AD, Morel GR, Fernández JM. Systemic oxidative stress in old rats is associated with both osteoporosis and cognitive impairment. Exp Gerontol 2021; 156:111596. [PMID: 34678425 DOI: 10.1016/j.exger.2021.111596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated both with an increase in memory loss and with comorbidities such as Osteoporosis, which could be causatively linked. In the present study, a deleterious effect on bone is demonstrated for the first time in a model of aged rats with impaired memory. We show that bone marrow progenitor cells obtained from rats with memory deficit have a decrease in their osteogenic capacity, and an increase both in their osteoclastogenic profile and adipogenic capacity, when compared to aged rats with preserved memory. Rats with impaired (versus preserved) memory also show alterations in long-bone micro-architecture (decreased trabecular bone and osteocyte density, increased TRAP-positive osteoclasts), lower bone quality (decreased trabecular bone mineral content and density) and an increase in bone marrow adiposity. Interestingly, the development of bone alterations and memory deficit in old rats is associated with significantly higher levels of serum oxidative stress (versus unaffected aged rats). In conclusion, we have found for the first time in an aged rat model, a relationship between alterations in bone quality and memory impairment, with increased systemic oxidative stress as a possible unifying mechanism.
Collapse
Affiliation(s)
- María Luz Torres
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Nahuel Ezequiel Wanionok
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Antonio Desmond McCarthy
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Gustavo Ramón Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan Manuel Fernández
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
13
|
Wang M, Xu P, Liao L, Gao L, Amakye WK, Zhang Y, Yao M, Ren J. Haematococcus Pluvialis Extends Yeast Lifespan and Improves Slc25a46 Gene Knockout-Associated Mice Phenotypic Defects. Mol Nutr Food Res 2021; 65:e2100086. [PMID: 34672083 DOI: 10.1002/mnfr.202100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/02/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Aging has become one of major concern worldwide. It is therefore of great significance in finding food resources as therapeutic candidates for aging-related functional decline improvement and prevention. This study aimed to define the potency of Haematococcus pluvialis (H. pluvialis) as an anti-aging food resource. METHODS AND RESULTS Yeast is used to explore the anti-aging effects of H. pluvialis. The result showed that H. pluvialis extract could effectively extend yeast chronological lifespan (CLS) by reducing intracellular reactive oxygen species (ROS) levels, promoting mitochondrial membrane potential (MMP) levels and accumulating storage carbohydrate (glycogen). Subsequently, Slc25a46 knockout (Slc25a46-/- ) mice with mitochondrial dysfunction are fed with 100 mg kg-1 H. pluvialis extracts for 10 days. The in vivo data demonstrated that H. pluvialis extract could effectively improve the phenotypic deficits, including underweight, muscle weakness, redox imbalance, and mitochondrial respiratory chain dysfunction, etc., in Slc25a46-/- mice. CONCLUSIONS This work highlights that the mitochondria may be a potential therapeutic target for combating aging, and demonstrated that H. pluvialis, as a dietary supplement, may potentially be an effective preventive substance that may contribute to the promotion of healthy aging.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Piao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Linfeng Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Ying Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
14
|
Wu Y, Hu Y, Zhao Z, Xu L, Chen Y, Liu T, Li Q. Protective Effects of Water Extract of Fructus Ligustri Lucidi against Oxidative Stress-Related Osteoporosis In Vivo and In Vitro. Vet Sci 2021; 8:vetsci8090198. [PMID: 34564592 PMCID: PMC8473267 DOI: 10.3390/vetsci8090198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Fructus Ligustri Lucidi (FLL) is the fruit of Ligustrum lucidum Ait and is a component of many kidney-tonifying traditional Chinese medicine formulae for treating osteoporosis. Accumulating evidence has linked oxidative stress with the progression of bone diseases. The present study aimed to identify the effects of FLL on oxidative stress-related osteoporosis in vivo and in vitro. To construct animal models, we utilized d-galactose (D-gal) injection to induce oxidative stress combined with a low calcium (the exact percentage in the diet was 0.1%) diet. Thirteen-week-old Kunming female mice were gavaged with water extract of FLL for 20 days. Then, eight-month-old Kunming female mice were treated with FLL under standard administration and diet as the aged group. In vitro, MC3T3-E1 cells stimulated by H2O2 were treated with FLL for 24 h. The micro-CT results showed that the modeling approach combining oxidative stress with a low calcium diet caused low conversion type osteoporosis in mice. FLL exerted a prominent effect on preventing osteoporosis by inhibiting oxidative stress, increasing bone mineral density (BMD), improving bone microstructure, and promoting osteoblast proliferation and osteoprotegerin (OPG) protein expression; however, FLL had no therapeutic effect on bone loss in aged mice. In conclusion, FLL showed outstanding anti-bone loss ability both in vivo and in vitro and could probably be developed as a prophylactic agent for osteoporosis.
Collapse
Affiliation(s)
- Yi Wu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zeguang Zhao
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Lina Xu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Ye Chen
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Tongtong Liu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Qin Li
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
- Correspondence:
| |
Collapse
|
15
|
Kubo Y, Drescher W, Fragoulis A, Tohidnezhad M, Jahr H, Gatz M, Driessen A, Eschweiler J, Tingart M, Wruck CJ, Pufe T. Adverse Effects of Oxidative Stress on Bone and Vasculature in Corticosteroid-Associated Osteonecrosis: Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 in Cytoprotection. Antioxid Redox Signal 2021; 35:357-376. [PMID: 33678001 DOI: 10.1089/ars.2020.8163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Osteonecrosis (ON) is characterized by bone tissue death due to disturbance of the nutrient artery. The detailed process leading to the necrotic changes has not been fully elucidated. Clinically, high-dose corticosteroid therapy is one of the main culprits behind osteonecrosis of the femoral head (ONFH). Recent Advances: Numerous studies have proposed that such ischemia concerns various intravascular mechanisms. Of all reported risk factors, the involvement of oxidative stress in the irreversible damage suffered by bone-related and vascular endothelial cells during ischemia simply cannot be overlooked. Several articles also have sought to elucidate oxidative stress in relation to ON using animal models or in vitro cell cultures. Critical Issues: However, as far as we know, antioxidant monotherapy has still not succeeded in preventing ONFH in humans. To provide this desideratum, we herein summarize the current knowledge about the influence of oxidative stress on ON, together with data about the preventive effects of administering antioxidants in corticosteroid-induced ON animal models. Moreover, oxidative stress is counteracted by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent cytoprotective network through regulating antioxidant expressions. Therefore, we also describe Nrf2 regulation and highlight its role in the pathology of ON. Future Directions: This is a review of all available literature to date aimed at developing a deeper understanding of the pathological mechanism behind ON from the perspective of oxidative stress. It may be hoped that this synthesis will spark the development of a prophylactic strategy to benefit corticosteroid-associated ONFH patients. Antioxid. Redox Signal. 35, 357-376.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany.,Department of Orthopaedics and Traumatology, Rummelsberg Hospital, Schwarzenbruck, Germany
| | | | | | - Holger Jahr
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias Gatz
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
17
|
Cook B, Walker N, Zhang Q, Chen S, Evans T. The small molecule DIPQUO promotes osteogenic differentiation via inhibition of glycogen synthase kinase 3-beta signaling. J Biol Chem 2021; 296:100696. [PMID: 33895139 PMCID: PMC8138761 DOI: 10.1016/j.jbc.2021.100696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 10/24/2022] Open
Abstract
Bone fractures are common impact injuries typically resolved through natural processes of osteogenic regeneration and bone remodeling, restoring the biological and mechanical function. However, dysfunctionality in bone healing and repair often arises in the context of aging-related chronic disorders, such as Alzheimer's disease (AD). There is unmet need for effective pharmacological modulators of osteogenic differentiation and an opportunity to probe the complex links between bone biology and cognitive disorders. We previously discovered the small molecule DIPQUO, which promotes osteoblast differentiation and bone mineralization in mouse and human cell culture models, and in zebrafish developmental and regenerative models. Here, we examined the detailed function of this molecule. First, we used kinase profiling, cellular thermal shift assays, and functional studies to identify glycogen synthase kinase 3-beta (GSK3-β) inhibition as a mechanism of DIPQUO action. Treatment of mouse C2C12 myoblasts with DIPQUO promoted alkaline phosphatase expression and activity, which could be enhanced synergistically by treatment with other GSK3-β inhibitors. Suppression of the expression or function of GSK3-β attenuated DIPQUO-dependent osteogenic differentiation. In addition, DIPQUO synergized with GSK3-β inhibitors to stimulate expression of osteoblast genes in human multipotent progenitors. Accordingly, DIPQUO promoted accumulation and activation of β-catenin. Moreover, DIPQUO suppressed activation of tau microtubule-associated protein, an AD-related effector of GSK3-β signaling. Therefore, DIPQUO has potential as both a lead candidate for bone therapeutic development and a pharmacological modulator of GSK3-β signaling in cell culture and animal models of disorders including AD.
Collapse
Affiliation(s)
- Brandoch Cook
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA.
| | - Nicholas Walker
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA; Program in Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, New York, New York, USA
| | - Qisheng Zhang
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
18
|
Effects of 6-Month Multimodal Physical Exercise Program on Bone Mineral Density, Fall Risk, Balance, and Gait in Patients with Alzheimer's Disease: A Controlled Clinical Trial. Brain Sci 2021; 11:brainsci11010063. [PMID: 33419016 PMCID: PMC7825330 DOI: 10.3390/brainsci11010063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
We aimed to determine the short- and medium-term effects of a multimodal physical exercise program (MPEP) on bone health status, fall risk, balance, and gait in patients with Alzheimer’s disease. A single-blinded, controlled clinical trial was performed where 72 subjects were allocated in a 3:1 ratio to an intervention group (IG; n = 53) and control group (CG; n = 19), where the IG’s subjects were admitted to live in a State Reference Center of Alzheimer’s disease, which offers the targeted exercise program, while the CG’s subjects resided in independent living. A multidisciplinary health team assessed all patients before allocation, and dependent outcomes were again assessed at one, three, and six months. During the study, falls were recorded, and in all evaluations, bone mineral density was measured using a calcaneal quantitative ultrasound densitometer; balance and gait were measured using the performance-oriented mobility assessment (POMA), the timed up and go test (TUG), the one-leg balance test (OLB), and the functional reach test (FR). There were no differences between groups at baseline for all outcome measures. The prevalence of falls was significantly lower in the IG (15.09%) than in the CG (42.11%) (χ2 = 5.904; p = 0.015). We also found that there was a significant time*group interaction, with a post hoc Šidák test finding significant differences of improved physical function, especially in gait, for the IG, as assessed by POMA-Total, POMA-Gait, and TUG with a large effect size (ƞ2p = 0.185–0.201). In balance, we found significant differences between groups, regardless of time, and a medium effect size as assessed by POMA-Balance and the OLB (ƞ2p = 0.091–0.104). Clinically relevant effects were observed, although without significant differences in bone health, with a slowing of bone loss. These results show that a multimodal physical exercise program reduces fall risk and produces an improvement in gait, balance, and bone mineral density in the short and medium term in institutionalized patients with Alzheimer’s disease.
Collapse
|
19
|
Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases. PLoS One 2020; 15:e0239219. [PMID: 32941527 PMCID: PMC7498011 DOI: 10.1371/journal.pone.0239219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are increasing serious menaces to human health in the recent years. Despite exhibiting different clinical phenotypes and selective neuronal loss, there are certain common features in these disorders, suggesting the presence of commonly dysregulated pathways. Identifying causal genes and dysregulated pathways can be helpful in providing effective treatment in these diseases. Interestingly, in spite of the considerable researches on NDDs, to the best of our knowledge, no dysregulated genes and/or pathways were reported in common across all the major NDDs so far. In this study, for the first time, we have applied the three-way interaction model, as an approach to unravel sophisticated gene interactions, to trace switch genes and significant pathways that are involved in six major NDDs. Subsequently, a gene regulatory network was constructed to investigate the regulatory communication of statistically significant triplets. Finally, KEGG pathway enrichment analysis was applied to find possible common pathways. Because of the central role of neuroinflammation and immune system responses in both pathogenic and protective mechanisms in the NDDs, we focused on immune genes in this study. Our results suggest that "cytokine-cytokine receptor interaction" pathway is enriched in all of the studied NDDs, while "osteoclast differentiation" and "natural killer cell mediated cytotoxicity" pathways are enriched in five of the NDDs each. The results of this study indicate that three pathways that include "osteoclast differentiation", "natural killer cell mediated cytotoxicity" and "cytokine-cytokine receptor interaction" are common in five, five and six NDDs, respectively. Additionally, our analysis showed that Rps27a as a switch gene, together with the gene pair {Il-18, Cx3cl1} form a statistically significant and biologically relevant triplet in the major NDDs. More specifically, we suggested that Cx3cl1 might act as a potential upstream regulator of Il-18 in microglia activation, and in turn, might be controlled with Rps27a in triggering NDDs.
Collapse
|
20
|
Lee HN, Kim A, Kim Y, Kim GT, Sohn DH, Lee SG. Higher serum uric acid levels are associated with reduced risk of hip osteoporosis in postmenopausal women with rheumatoid arthritis. Medicine (Baltimore) 2020; 99:e20633. [PMID: 32541502 PMCID: PMC7302629 DOI: 10.1097/md.0000000000020633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although the positive correlation between serum uric acid (UA) levels and bone mineral density (BMD) has been reported in the general population, there are little data regarding the effect of serum UA levels on bone loss in patients with rheumatoid arthritis (RA).We investigated whether increased serum UA levels were associated with a reduced risk of osteoporosis in postmenopausal women with RA.In this retrospective cross-sectional study, 447 postmenopausal female patients with RA and 200 age-matched, postmenopausal healthy controls underwent BMD examination by dual energy x-ray absorptiometry and serum UA levels measurement. Osteoporosis was diagnosed when the T-score was <-2.5.The median UA level in postmenopausal RA patients was found to be significantly lower than that in the healthy women (4 vs 4.1 mg/dL, P = .012) and the frequency of osteoporosis incidence in the lumbar spine, hip, and either site in RA patients was 25.5%, 15.9%, and 32.5%, respectively; the values were significantly higher than those of the controls. After adjusting for confounding factors, a significantly lower risk for osteoporosis of the hip in RA patients was observed within the highest quartile (odds ratio [OR] = 0.37, 95% confidence interval [CI] = 0.16-0.72, P = .021) and the second highest quartile (OR = 0.44, 95% CI = 0.2-0.95, P = .038) of serum UA levels as compared with the lowest quartile, but this association was not found to be consistent with respect to the lumbar spine. Serum UA levels also showed an independently positive correlation with femoral neck BMD (β = 0.0104, P = .01) and total hip BMD (β = 0.0102, P = .017), but not with lumbar BMD.Our data suggest that UA may exert a protective effect on bone loss in RA, especially in the hip.
Collapse
Affiliation(s)
- Han-Na Lee
- Divsion of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine
- Biomedical Research Institute, Pusan National University Hospital
| | - Aran Kim
- Divsion of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine
- Biomedical Research Institute, Pusan National University Hospital
| | - Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seung-Geun Lee
- Divsion of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine
- Biomedical Research Institute, Pusan National University Hospital
| |
Collapse
|
21
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16:91-103. [PMID: 31792439 PMCID: PMC6980376 DOI: 10.1038/s41574-019-0282-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in 'systems genetics and genomics'. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
22
|
Zhao Y, Wang HL, Li TT, Yang F, Tzeng CM. Baicalin Ameliorates Dexamethasone-Induced Osteoporosis by Regulation of the RANK/RANKL/OPG Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:195-206. [PMID: 32021104 PMCID: PMC6970258 DOI: 10.2147/dddt.s225516] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Background Osteoporosis is a chronic bone metabolism disorder affecting millions of the world population. The RANKL/RANK/OPG signaling pathway has been confirmed to be the main regulator of osteoporosis. It is of great interest to identify appropriate therapeutic agents that can regulate the RANKL/RANK/OPG pathway. Baicalin (BA) is a well-known traditional Chinese medicine formula against various inflammatory diseases with a proven role of the RANKL/RANK/OPG pathway regulation. However, the potential effect of BA on osteoporosis and the mechanisms underlying this remain unclear. In the present study, we aimed to evaluate the efficacy of BA in the prevention of dexamethasone (DEX)-induced osteoporosis in zebrafish. Methods In this study, growth and development changes of zebrafish and calcein staining were assessed with a micrograph. The expression levels of RANKL and OPG and transcription factors in response to DEX induction and BA administration were evaluated by Western blotting and qRT-PCR. In addition, the intermolecular interactions of BA and RANKL were investigated by molecular docking. Results Results show that BA enhances the growth and development of dexamethasone (DEX)-induced osteoporosis in zebrafish larvae. Calcein staining and calcium and phosphorus determination revealed that BA ameliorates mineralization of DEX-induced osteoporosis zebrafish larvae. BA also regulates the expression of RANKL and OPG and hampers the changes in gene expression related to bone formation and resorption under the induction of DEX in zebrafish. It can be inferred by molecular docking that BA may interact directly with the extracellular domain of RANKL. Conclusion The findings, herein, reveal that BA ameliorates DEX-induced osteoporosis by regulation of the RANK/RANKL/OPG signaling pathway.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China.,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Hui-Ling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Tong-Tong Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Fei Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China
| |
Collapse
|
23
|
|
24
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
25
|
Chen F, Wang Y, Guo Y, Wang J, Yang A, Lv Q, Liu Y, Ma G, Liu Y, Wang D. Specific higher levels of serum uric acid might have a protective effect on bone mineral density within a Chinese population over 60 years old: a cross-sectional study from northeast China. Clin Interv Aging 2019; 14:1065-1073. [PMID: 31354250 PMCID: PMC6572710 DOI: 10.2147/cia.s186500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background and objective: Oxidative stress has been demonstrated to be a mechanism that leads to bone mass reduction, and according to many studies, serum uric acid (UA) is a strong endogenous antioxidant that can protect bone mineral density (BMD). To date, there have been no large-scale, cross-sectional studies based on the population in northeast China to assess the relationship between serum UA and BMD. Therefore, we examined the association between serum UA and BMD among a Chinese population older than 60 years old in northeast China. Methods: This research was a cross-sectional study of 3465 Chinese individuals over 60 years old in nine communities from the city of Shenyang, which is the capital of northeast China’s Liaoning Province. Participants were stratified into three groups by serum UA or BMD levels, and then Pearson’s correlation analysis and multiple regression analysis were used to study the relationship between serum UA and BMD. Results: We found that participants with higher serum UA levels had significantly greater BMD and T-values compared to those of participants with lower serum UA levels. After adjusting for confounding factors, Pearson’s correlation analysis and multiple regression analysis showed that higher serum UA levels remained associated with higher BMD levels (P<0.05). In different models, the prevalence of osteoporosis (OP) among participants with higher serum UA levels was reduced by 23% to 26% (P<0.05) compared to that in individuals with lower serum UA levels. In addition, serum UA levels were negatively correlated with estimated glomerular filtration rate (eGFR) and positively correlated with 25-hydroxy vitamin D3 [25-(OH)D3] (P<0.05). Conclusion: We concluded that higher serum UA levels are associated with greater BMD, and serum UA might have a protective effect on bone metabolism due to its antioxidant properties.
Collapse
Affiliation(s)
- Feng Chen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yingfang Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yan Guo
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Jiabei Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Aolin Yang
- Department of Nutrition, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qingqing Lv
- Department of Nutrition, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yixuan Liu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Guojing Ma
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Difei Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
26
|
Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:243-258. [DOI: 10.1007/s00210-018-1583-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
|
27
|
Shim KS, Ma JY. Pine needles attenuate receptor activator for nuclear factor-B ligand (RANKL)-induced trabecular bone loss by inhibiting osteoclast differentiation. Integr Med Res 2018; 7:374-380. [PMID: 30591892 PMCID: PMC6303373 DOI: 10.1016/j.imr.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/19/2022] Open
Abstract
Background The leaf of Pinus densiflora known as pine needles has been used to treat vascular disease, gastrointestinal diseases, and urinary diseases in traditional medicine. We evaluated anti-osteoporotic effect of water extract of Pinus densiflora (WEPN) on acute bone loss and osteoclastogenesis induced by receptor activator for nuclear factor-κB ligand (RANKL). Methods After oral administration of WEPN (0.25 g/kg) for 5 days, femora were collected, and bone parameter [trabecular bone volume/tissue volume (BV/TV), trabecular thickness (Tb. Th), trabecular separation (Tb. Sp), trabecular number (Tb. N), and bone mineral density (BMD)] were analyzed by micro-CT analysis. Anti-osteoclastic effect of WEPN was examined using tartrate-resistant acid phosphatase activity and activation of RANKL signaling pathway. Results We found that WEPN significantly attenuated RANKL-induced decrease of BV/TV, Tb.Th., Tb.N, and BMD but increase of Tb. Sp in femora. WEPN dose-dependently decreased osteoclastogenesis accompanied by inhibiting the activation of RANKL signaling components (JNK, p38, and p65) and mRNA expression level of osteoclast specific genes (NFATc1, c-Fos, TRAP, cathepsin K, DC-STAMP, and carbonic anhydrate). Conclusion WEPN inhibition on osteoclastogenesis could contribute to attenuate RANKL-induced trabecular bone loss in vivo. Therefore, it might suggest that WEPN could be prescribed in traditional medicine or used in health functional food to prevent or treat osteoporotic bone diseases.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Jin Yeul Ma
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daegu, Korea
| |
Collapse
|
28
|
Usategui-Martín R, Gutiérrez-Cerrajero C, Jiménez-Vázquez S, Calero-Paniagua I, García-Aparicio J, Corral-Gudino L, Del Pino-Montes J, González-Sarmiento R. Polymorphisms in genes implicated in base excision repair (BER) pathway are associated with susceptibility to Paget's disease of bone. Bone 2018; 112:19-23. [PMID: 29630930 DOI: 10.1016/j.bone.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 01/28/2023]
Abstract
Paget's disease of bone (PDB) is a chronic bone metabolic disorder. Currently, PDB is the second most frequent bone disorder. PDB is a focal disorder affecting the skeleton segmentally but the cause of which is unknown. It has been hypothesised that somatic mutations could be responsible for the mosaicism described in PDB patients. Therefore, our hypothesis is that defective response to DNA damage may lead to somatic mutations favouring an increased risk of PDB. So that we have analysed polymorphisms in DNA repair genes involved in the BER, NER and DSBR pathways in order to evaluate the role of these variants in modulating PDB risk. We found statistically significant differences in genotypic and allelic distribution for polymorphisms in genes implicated in the BER pathway. Our results showed that carrying the allele T of XRCC1 rs1799782 polymorphism and the allele G of APEX rs1130409 polymorphism increased the risk of developing PDB. These polymorphisms could cause a lower DNA repair efficiency and this might lead to local somatic mutations favouring bone metabolic alterations characteristic of PDB. This is the first report showing an association between polymorphism in genes implicated in the BER pathway with PDB.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Carlos Gutiérrez-Cerrajero
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Sonia Jiménez-Vázquez
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| | | | - Judit García-Aparicio
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, Spain.
| | | | - Javier Del Pino-Montes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Servicio de Reumatología, Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain.
| |
Collapse
|
29
|
Association between Osteoporosis, Bone Mineral Density Levels and Alzheimer's Disease: A Systematic Review and Meta-analysis. INT J GERONTOL 2018. [DOI: 10.1016/j.ijge.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Zhu S, Wei W, Liu Z, Yang Y, Jia H. Tanshinone‑IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF‑κB signaling pathway. Mol Med Rep 2018; 17:6969-6976. [PMID: 29568934 PMCID: PMC5928650 DOI: 10.3892/mmr.2018.8741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Osteoclasts are responsible for bone resorption caused by bone microstructural damage and bone-related disorders. Evidence shows that tanshinone IIA (Tan‑IIA), a traditional Chinese medicine, is used clinically as a drug for the treatment of cardiovascular and cerebrovascular diseases. However, the efficacy and mechanism underlying the effect of Tan‑IIA on the viability of osteoclasts remain to be fully elucidated. The present study investigated the therapeutic effects of Tan‑IIA on osteoblast differentiation and oxidative stress in vitro and in vivo. Cell viability was analyzed and oxidative stress was examined in the osteoblasts. Wnt1sw/sw mice were used to investigate the therapeutic effects of Tan‑IIA on spontaneous tibia fractures and severe osteopenia. The bone strength, collagen and mineral were examined in the tibia. Osteoblast activity was also analyzed in the experimental mice. The Tan‑IIA‑induced differentiation of osteoclasts and the mechanism of action were investigated in osteocytes. The data showed that Tan‑IIA treatment improved cell viability. The data also demonstrated that Tan‑IIA decreased the levels of H2O2, accumulation of reactive oxygen species and apoptosis of osteoblasts. Tan‑IIA inhibited the deleterious outcomes triggered by oxidative stress. In addition, Tan‑IIA inhibited the activation of nuclear factor (NF)‑κB and its target genes, tumor necrosis factor (TNF)‑α, inducible nitric oxide synthase and cyclooxygenase 2, and increased the levels of TNF receptor‑associated factor 1 and inhibitor of apoptosis protein‑1/2 in the osteocytes. Furthermore, it was shown that Tan‑IIA reduced the propensity to fractures and severe osteopenia in mice with osteoporosis. Tan‑IIA also exhibited improved bone strength, mineral and collagen in the bone matrix of the experimental mice. It was found that the Tan‑IIA‑mediated benefits on osteoblast activity and function were through the NF‑κB signaling pathway. Taken together, the data obtained in the present study suggested that Tan‑IIA had protective effects against oxidative stress in osteoblastic differentiation in mice with osteoporosis by regulating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Shaowen Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wanfu Wei
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zhiwei Liu
- Basic Medicine Institution, Public Health Center, Peking University, Beijing 100871, P.R. China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Haobo Jia
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
31
|
Nanoscale Architecture for Controlling Cellular Mechanoresponse in Musculoskeletal Tissues. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Xiong Y, Zhang Y, Xin N, Yuan Y, Zhang Q, Gong P, Wu Y. 1α,25-Dihydroxyvitamin D 3 promotes osteogenesis by promoting Wnt signaling pathway. J Steroid Biochem Mol Biol 2017; 174:153-160. [PMID: 28859991 DOI: 10.1016/j.jsbmb.2017.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) remarkably affects bone metabolism and causes multiple skeletal disorders, which are associated with the increased oxidative stress that activates Forkhead family of transcription factors (FoxOs). 1α,25-Dihydroxy vitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, plays a potential role in the prevention of glucose tolerance. However, its mechanism of action in high glucose-induced energy disorders remains unclear. In vitro study shows that 1,25(OH)2D3 promotes osteogenesis in high glucose-induced oxidative stress mainly results from increased osteoblasts proliferation and decreased apoptosis. Cells treated with 1,25(OH)2D3 exhibit an increased osteogenic differentiation capacity and an elevated level of osteogenic phenotype (i.e. alkaline phosphatase, collagen 1, osteocalcin, and osteopontin). We also found that the effect of 1,25(OH)2D3 on osteogenesis is achieved by FoxO1 inactivation and nuclear exclusion through PI3K/Akt pathway in a time- and dose-dependent manner. Moreover, the diversion of β-catenin from FoxO1- to Wnt/TCF4-mediated transcription was indirectly promoted by the inactivation of FoxO1. These data together reveals that the activated Wnt/β-catenin signaling is involved in the regulatory action of 1,25(OH)2D3 on osteogenesis in oxidative stress. This study also provides a novel understanding of the effect of 1,25(OH)2D3 on skeleton in oxidative stress condition.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, Sun L, Tang J, Zhao D, Mo F, Niu J, Jiang G, Fu M, Brömme D, Zhang D, Gao S. Antioxidant Effect of Fructus Ligustri Lucidi Aqueous Extract in Ovariectomized Rats Is Mediated through Nox4-ROS-NF-κB Pathway. Front Pharmacol 2017; 8:266. [PMID: 28588482 PMCID: PMC5438993 DOI: 10.3389/fphar.2017.00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
Purpose: This study is designed to explore whether Fructus ligustri lucidi (FLL) exhibits antioxidant effect in ovariectomized (OVX) rats, and to identify the signaling pathway involved in this process. Methods: OVX rats were treated with FLL aqueous extract (3.5 g/kg) for 12 weeks. Serum, uteri, and tibias were harvested from the rats and the levels of total antioxidant capacity (TAC), nitric oxide (NO), malondialdehyde (MDA), 8-hydroxy-desoxyguanosine (8-OHdG), and superoxide dismutase (SOD) were determined. Changes in the levels of NF-κB-p65, phosphorylation of NF-κB-p65 (NF-κB-pp65), NF-κB inhibitor alpha (IκBα), phosphorylation of IκBα (p-IκBα), and NADPH oxidase 4 (Nox4) in uteri and tibias were determined by western blot, immunofluorescent and immunohistochemical analysis, respectively. In addition, the expression of cytochrome C (Cyto-C) and B-cell lymphoma-2 (Bcl-2) were determined in the tibias of rats. Histopathological changes in the bones were evaluated by hematoxylin-eosin staining. Bone mineral density (BMD) was determined in rat femurs by dual X-ray absorptiometry. Results: Treatment of OVX rats with FLL aqueous extract improved redox homeostasis by increasing the levels of TAC and NO as well as decreasing the levels of MDA and 8-OHdG in serum, tibias, and uteri. Further, FLL extract also downregulated the expression of Nox4, NF-κB-p65, NF-κB-pp65, and p-IκBα in the uteri and tibias. Furthermore, administration of FLL–OVX rats increased Bcl-2 expression and prevented cytoplasmic release of mitochondrial Cyto-C in the tibias. In addition, FLL treatment also improved bone microstructure and increased cortical bone thickness as well as increased BMD values in the femurs of OVX rats. Conclusions: FLL treatment may suppress oxidative stress response in OVX rats via regulating the Nox4/ROS/NF-κB signaling pathway. These results suggest the potential of using FLL as a natural antioxidant agent in preventing the development of osteoporosis.
Collapse
Affiliation(s)
- Lili Wang
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Rufeng Ma
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Yubo Guo
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Jing Sun
- Chinese Material Medica School, Beijing University of Chinese MedicineBeijing, China
| | - Haixia Liu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Ruyuan Zhu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese MedicineBeijing, China
| | - Jun Li
- Modern Research Center for TCM, Beijing University of Chinese MedicineBeijing, China
| | - Lin Li
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Beibei Chen
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Liping Sun
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Jinfa Tang
- The First Affiliated Hospital of He'nan TCM University, ZhengzhouHenan, China
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Fangfang Mo
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Jianzhao Niu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Guangjian Jiang
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Min Fu
- The Research Institute of McGill University Health CenterMontreal, QC, Canada
| | - Dieter Brömme
- Oral Biological Medicinal Science, University of British ColumbiaVancouver, BC, Canada
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
34
|
Wu H, Zhong Q, Wang J, Wang M, Fang F, Xia Z, Zhong R, Huang H, Ke Z, Wei Y, Feng L, Shi Z, Sun E, Song J, Jia X. Beneficial Effects and Toxicity Studies of Xian-ling-gu-bao on Bone Metabolism in Ovariectomized Rats. Front Pharmacol 2017; 8:273. [PMID: 28588485 PMCID: PMC5438972 DOI: 10.3389/fphar.2017.00273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Xian-ling-gu-bao (XLGB) is a well-known patented traditional Chinese prescription widely used to treat osteoporosis, osteoarthritis, aseptic bone necrosis, or climacteric syndrome. However, recent reports have suggested that XLGB may cause liver injury in humans. In the present study, we aimed to evaluate the efficacy of XLGB in the prevention of osteoporosis in the zebrafish and ovariectomized (OVX) rats, both of which have been used as osteoporosis models. The safety of XLGB after long-term administration to OVX rats was also assessed. OVX rats were administered by oral gavage 270 mg/kg (recommended daily dose), 1350 mg/kg, and 1800 mg/kg of XLGB for 26 weeks. Bone mineral density, relative bone surface to bone volume, relative bone volume to total volume, trabecular number, mean trabecular thickness, and mean trabecular spacing in OVX rats were examined at the end of the 26-week dosing period. Additionally, OPG and RANKL expression in the femur were determined by western blot and immunohistochemical staining. To evaluate the safety of XLGB, body weight, hematology, serum biochemistry markers related to toxicology, and organ histopathology were determined in each group of OVX rats. Conversely, the zebrafish was treated with prednisolone to induce osteoporosis in the embryo. Disodium etidronate was used as a treatment control. XLGB was shown to be effective in preventing osteoporosis in both the OVX rats and the prednisolone-treated zebrafish. Similarly, XLGB increased OPG protein and decreased RANKL protein in OVX rats. Interestingly, no obvious toxicity was observed in the heart, liver, kidney, small intestine, or stomach at dosages of up to 1800 mg/kg after treating the OVX rats for 26 weeks. XLGB was shown to be very effective in treating osteoporosis in OVX rats. No obvious toxicity or adverse effects developed in OVX rats at dosages up to 1800 mg/kg, which is equivalent to six times the daily-recommended dose. Therefore, XLGB should be considered a good option for the treatment of post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Hao Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| | - Qingxiang Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Man Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| | - Fang Fang
- College of Nursing, Huanghai UniversityQingdao, China
| | - Zhi Xia
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Rongling Zhong
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Houcai Huang
- Laboratory Animal Center, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Zhongcheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Yingjie Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Ziqi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese MedicineNanjing, China.,College of Pharmacy, Anhui University of Chinese MedicineHefei, China
| |
Collapse
|
35
|
Abstract
This report summarises talks given at the 8th International Yakult Symposium, held on 23-24 April 2015 in Berlin. Two presentations explored different aspects of probiotic intervention: the small intestine as a probiotic target and inclusion of probiotics into integrative approaches to gastroenterology. Probiotic recommendations in gastroenterology guidelines and current data on probiotic efficacy in paediatric patients were reviewed. Updates were given on probiotic and gut microbiota research in obesity and obesity-related diseases, the gut-brain axis and development of psychobiotics, and the protective effects of equol-producing strains for prostate cancer. Recent studies were presented on probiotic benefit for antibiotic-associated diarrhoea and people with HIV, as well as protection against the adverse effects of a short-term high-fat diet. Aspects of probiotic mechanisms of activity were discussed, including immunomodulatory mechanisms and metabolite effects, the anti-inflammatory properties of Faecalibacterium prausnitzii, the relationship between periodontitis, microbial production of butyrate in the oral cavity and ageing, and the pathogenic mechanisms of Campylobacter. Finally, an insight was given on a recent expert meeting, which re-examined the probiotic definition, advised on the appropriate use and scope of the term and outlined different probiotic categories and the prevalence of different mechanisms of activity.
Collapse
|
36
|
Surai P, Fisinin V. 25. Antioxidant system regulation: from vitamins to vitagenes. HANDBOOK OF CHOLESTEROL 2016. [DOI: 10.3920/978-90-8686-821-6_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- P.F. Surai
- Feed-Food Ltd., 53 Dongola Road, KA7 3BN Ayr, UK
- Trakia University, Studentski Grad, Stara Zagora 6000, Bulgaria
- Szent Istvan University, Godollo 2103, Hungary
- Sumy National Agrarian University, Kirova Street 160, Sumy 40021, Ukraine
- Odessa National Academy of Food Technologies, Kanatna Street 112, Odessa 65000, Ukraine
| | - V.I. Fisinin
- All Russian Institute of Poultry Husbandry, Ptitzegradskaya Street 10, Sergiev Posad, Moscow region 141311, Russia
| |
Collapse
|
37
|
Fröhlich E, Wahl R. MECHANISMS IN ENDOCRINOLOGY: Impact of isolated TSH levels in and out of normal range on different tissues. Eur J Endocrinol 2016; 174:R29-41. [PMID: 26392471 DOI: 10.1530/eje-15-0713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
Abstract
Routine treatment of thyroid cancer (TC) includes long-term suppression of TSH. The necessity of this treatment in low- and intermediate-risk patients as well as the extent of TSH suppression is currently under discussion. A literature search was performed to illustrate the role of TSH in extrathyroidal cells and to identify potential reasons for different effects of exogenously suppressed and endogenously low TSH levels. Although adverse effects of subnormal and supranormal TSH blood levels on heart and brain have not been consistently found, studies show a clear negative effect of suppressed TSH levels on bone mineral density. Experimental data also support an important role of TSH in the immune system. The ability of levothyroxine (l-T4) to regulate TSH levels and triiodothyronine levels in a physiological manner is limited. Reduction of circadian changes in TSH levels, decrease of thyroid hormone-binding proteins, prevention of potential compensatory increases of TSH levels (e.g., in old age), and unresponsiveness of TSH-producing cells to TRH on l-T4 treatment might cause adverse effects of suppressed TSH levels. In view of the adverse effects of aggressive TSH suppression, achieving the suggested levels of TSH between 0.9 and 1 mU/l in the treatment of low-to-intermediate risk TC patients appears justified.
Collapse
Affiliation(s)
| | - Richard Wahl
- Center for Medical ResearchMedical University of Graz, Stiftingtalstraße 24, Graz, AustriaInternal Medicine (Department of EndocrinologyMetabolism, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, Tuebingen, Germany
| |
Collapse
|
38
|
Zhao DD, Jiao PL, Yu JJ, Wang XJ, Zhao L, Xuan Y, Sun LH, Tao B, Wang WQ, Ning G, Liu JM, Zhao HY. Higher Serum Uric Acid Is Associated with Higher Bone Mineral Density in Chinese Men with Type 2 Diabetes Mellitus. Int J Endocrinol 2016; 2016:2528956. [PMID: 27022396 PMCID: PMC4789039 DOI: 10.1155/2016/2528956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 02/14/2016] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that oxidative stress is associated with osteoporosis. Serum uric acid (UA) is a strong endogenous antioxidant. Therefore, we investigated the relationship between the serum UA and BMD in Chinese men with T2DM. In this cross-sectional study of 621 men with T2DM, BMDs at lumbar spine (L2-4), femoral neck (FN), and total hip (TH) were measured by dual-energy X-ray absorptiometry (DXA). Serum levels of UA, calcium (Ca), 25-OH vitamin D3 (vitD3), parathyroid hormone (PTH), and creatinine (Cr) were also tested. Data analyses revealed that serum UA levels were positively associated with BMD at all sites (p < 0.05) in men with T2DM after adjusting for multiple confounders. The serum UA levels were positively correlated with body weight (r = 0.322), body mass index (BMI) (r = 0.331), Ca (r = 0.179), and Cr (r = 0.239) (p < 0.001) and were also positively associated with the concentrations of PTH (r = 0.10, p < 0.05). When compared with those in the lowest tertile of UA levels, men with T2DM in the highest tertile had a lower prevalence of osteoporosis or osteopenia (adjusted odds ratio 0.54, 95% confidence interval [CI] 0.31-0.95). These data suggest that higher serum levels of UA are associated with higher BMDs and lower risks of osteoporosis in Chinese men with T2DM.
Collapse
Affiliation(s)
- Dian-dian Zhao
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Pei-lin Jiao
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Jing-jia Yu
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Xiao-jing Wang
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Lin Zhao
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Yan Xuan
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Li-hao Sun
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Bei Tao
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Wei-qing Wang
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Guang Ning
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Jian-min Liu
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
| | - Hong-yan Zhao
- Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai 310000, China
- *Hong-yan Zhao:
| |
Collapse
|
39
|
Hormesis: Decoding Two Sides of the Same Coin. Pharmaceuticals (Basel) 2015; 8:865-83. [PMID: 26694419 PMCID: PMC4695814 DOI: 10.3390/ph8040865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
In the paradigm of drug administration, determining the correct dosage of a therapeutic is often a challenge. Several drugs have been noted to demonstrate contradictory effects per se at high and low doses. This duality in function of a drug at different concentrations is known as hormesis. Therefore, it becomes necessary to study these biphasic functions in order to understand the mechanistic basis of their effects. In this article, we focus on different molecules and pathways associated with diseases that possess a duality in their function and thus prove to be the seat of hormesis. In particular, we have highlighted the pathways and factors involved in the progression of cancer and how the biphasic behavior of the molecules involved can alter the manifestations of cancer. Because of the pragmatic role that it exhibits, the imminent need is to draw attention to the concept of hormesis. Herein, we also discuss different stressors that trigger hormesis and how stress-mediated responses increase the overall adaptive response of an individual to stress stimulus. We talk about common pathways through which cancer progresses (such as nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), sirtuin-forkhead box O (SIRT-FOXO) and others), analyzing how diverse molecules associated with these pathways conform to hormesis.
Collapse
|
40
|
Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, Koverech G, Luca M, Serra A, Toscano MA, Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer's disease pathogenesis. Neurotoxicology 2015; 53:350-358. [PMID: 26433056 DOI: 10.1016/j.neuro.2015.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Collapse
Affiliation(s)
- A Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - R Siracusa
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - M Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - V Fronte
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - G Koverech
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Luca
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Serra
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - M A Toscano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Petralia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - S Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - V Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
41
|
Murakami A, Nesumi A, Maeda-Yamamoto M, Yamaguchi H, Yashima K, Miura M, Nakano T, Nekoshima K. Anthocyanin-rich tea Sunrouge upregulates expressions of heat shock proteins in the gastrointestinal tract of ICR mice: A comparison with the conventional tea cultivar Yabukita. J Food Drug Anal 2015; 23:407-416. [PMID: 28911697 PMCID: PMC9351784 DOI: 10.1016/j.jfda.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 01/07/2023] Open
Abstract
Sunrouge is an anthocyanin-rich, new tea cultivar that contains similar levels of catechins as Yabukita, the most popular tea cultivar consumed in Japan. Interestingly, Sunrouge preparations have previously been shown to have more pronounced acetylcholinesterase inhibitory and anticolitis activities than those of Yabukita. In this study, we examined their effects on expressions of self-defensive molecules, including heat shock proteins (HSPs), which are molecular chaperones involved in homeostasis and longevity. Hot water extract from freeze-dried Sunrouge significantly upregulated messenger RNA (mRNA) expressions of HSP40, HSP70, and HSP32 (heme oxygenase-1), with grades greater than those shown by Yabukita. Oral administration of freeze-dried preparation of Sunrouge to male ICR mice at a dose of 1% in the basal diet for 1 month resulted in marked upregulations of several HSP mRNA expressions in mucosa from the gastrointestinal tract, especially the upper small intestine. Again, its efficacy was remarkably higher than that of Yabukita. Moreover, exposure of Caenorhabditis elegans to Sunrouge conferred thermoresistant phenotype, and also resulted in a significant life-span elongation. Taken together, our results suggest that Sunrouge is a unique and promising tea cultivar for regulating self-defense systems.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Atsushi Nesumi
- National Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization, Setocho, Makurazaki, Kagoshima 898-0087, Japan
| | - Mari Maeda-Yamamoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | | | - Koji Yashima
- Nepuree Corporation, Chuo-Ku, Tokyo 104-0031, Japan
| | | | | | | |
Collapse
|
42
|
Azizi G, Navabi SS, Al-Shukaili A, Seyedzadeh MH, Yazdani R, Mirshafiey A. The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer's Disease. Sultan Qaboos Univ Med J 2015; 15:e305-16. [PMID: 26357550 DOI: 10.18295/squmj.2015.15.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder associated with advanced age, is the most common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic research aims in the field of AD and similar diseases.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran; ; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi S Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Al-Shukaili
- Health & Social Services Sector, The Research Council Oman, Muscat, Oman
| | - Mir H Seyedzadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran ; Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Zhao L, Liu S, Wang Y, Zhang Q, Zhao W, Wang Z, Yin M. Effects of Curculigoside on Memory Impairment and Bone Loss via Anti-Oxidative Character in APP/PS1 Mutated Transgenic Mice. PLoS One 2015; 10:e0133289. [PMID: 26186010 PMCID: PMC4505858 DOI: 10.1371/journal.pone.0133289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/25/2015] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) and osteoporosis are two closely related multifactorial progressively degenerative diseases that predominantly affect aged people. These two diseases share many common risk factors, including old age, being female, smoking, excessive drinking, low estrogen, and vitamin D3 levels. Additionally, oxidative damage and the dysfunction of the antioxidant system play important roles in the pathogenesis of osteoporosis and AD. Aβ not only leads to impaired memory but also plays a crucial role in the demineralization process of bone tissues of older people and women with menopause. Curculigoside can promote calcium deposition and increase the levels of ALP and Runx2 in osteoblasts under oxidative stress via anti-oxidative character. Therefore, we investigated the effects of CUR on the spatial learning and memory by the Morris water maze and brain immunohistochemistry, and bone microstructure and material properties of femurs by micro-computed tomography and mechanical testing in APP/PS1 mutated transgenic mice. Oral administration of CUR can significantly enhance learning performance and ameliorate bone loss in APP/PS1 mutated transgenic mice, and the mechanism may be related to its antioxidant effect. Based on these results, CUR has real potential as a new natural resource for developing medicines or dietary supplements for the prevention and treatment of the two closely linked multifactorial progressive degenerative disorders, AD and osteoporosis.
Collapse
Affiliation(s)
- Lu Zhao
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Sichuan, China
| | - Yin Wang
- People's Liberation Army (PLA) 455 Hospital, Shanghai, China
| | - Qiaoyan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
44
|
Hegedűs C, Robaszkiewicz A, Lakatos P, Szabó É, Virág L. Poly(ADP-ribose) in the bone: from oxidative stress signal to structural element. Free Radic Biol Med 2015; 82:179-86. [PMID: 25660995 DOI: 10.1016/j.freeradbiomed.2015.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2-Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Division of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
45
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
46
|
Martins CPS, Gomes OA, Martins ML, de Carvalho LD, de Souza JG, Da Fonseca FG, dos Santos RGS, Andrade MS, Zani CL, de Souza-Fagundes EM, Barbosa-Stancioli EF. A reduction of viral mRNA, proteins and induction of altered morphogenesis reveals the anti-HTLV-1 activity of the labdane-diterpene myriadenolide in vitro. BMC Microbiol 2014; 14:331. [PMID: 25539906 PMCID: PMC4302425 DOI: 10.1186/s12866-014-0331-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
Background Human T-lymphotropic virus 1 (HTLV-1) has been associated with leukemia/lymphoma (ATL) and myelopathy/tropical spastic paraparesis (HAM/TSP), in addition to other inflammatory diseases as well as infection complications. Therapeutic approaches for HTLV-1-related pathologies are limited. The labdane diterpene myriadenolide (AMY) is a natural product that exhibit biological activities, such as anti-inflammatory and antiviral activity as reported for HIV and herpesvirus. Results We demonstrated that this natural product was able to inhibit the expression of gag-pol mRNA and substantially reduced the expression of the structural proteins p19 and gp46. Comparison of treated and untreated cells shows that AMY alters both the morphology and the release of viral particles. The Atomic Force Microscopy assay showed that the AMY treatment reduced the number of particles on the cell surface by 47%. Conclusion We demonstrated that the labdane diterpene myriadenolide reduced the expression of the structural proteins and the budding of viral particles, besides induces altered morphogenesis of HTLV-1, conferring on AMY a new antiviral activity that may be useful for the development of new compounds with specific anti-HTLV-1 activity.
Collapse
Affiliation(s)
- Camila Pacheco Silveira Martins
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. .,Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| | - Orlando Abreu Gomes
- Núcleo de Ciências Exatas - FACE - Universidade FUMEC, Belo Horizonte, Minas Gerais, Brazil.
| | - Marina Lobato Martins
- Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil. .,Serviço de Pesquisa, Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| | - Luciana Debortoli de Carvalho
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. .,Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| | - Jaqueline Gontijo de Souza
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. .,Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| | - Flavio Guimaraes Da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodrigo Gonçalves Silva dos Santos
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. .,Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Carlos Leomar Zani
- Centro de Pesquisas Renè Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. .,Interdisciplinary HTLV Research Group - GIPH - Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale C, Salinaro AT, Scuto M, Calabrese EJ, Genazzani AR. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J Cell Commun Signal 2014; 8:369-84. [PMID: 25381162 PMCID: PMC4390801 DOI: 10.1007/s12079-014-0253-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose-response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes.
Collapse
Affiliation(s)
- V Calabrese
- Department of Biomedical Sciences, University of Catania, Via Andrea Doria, 95100, Catania, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mancuso C, Gaetani S. Preclinical and clinical issues in Alzheimer's disease drug research and development. Front Pharmacol 2014; 5:234. [PMID: 25389404 PMCID: PMC4211396 DOI: 10.3389/fphar.2014.00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome Rome, Italy
| |
Collapse
|