1
|
McBurney MI, Tintle NL, Westra J, Harris WS, Curhan SE. Cross-sectional analysis of plasma n-3 fatty acid levels and self-reported hearing difficulty in the UK Biobank Cohort. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102654. [PMID: 39504918 DOI: 10.1016/j.plefa.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Disabling hearing loss affects ∼430 million people globally. Fish consumption and long-chain n-3 polyunsaturated fatty acid (PUFA) intake were inversely associated with risk of hearing loss, but the association of plasma n-3 PUFAs and hearing loss is unclear. OBJECTIVE To examine the associations between plasma n-3 PUFA fractions (as % of total fatty acids), i.e., DHA % and Other n-3 PUFA % (defined as total n-3 PUFA minus DHA), with self-reported hearing difficulty in a population-based cohort in the UK. METHODS Our study includes 175,177 UK Biobank participants (40-69y, 54 % women) with data on plasma n-3 PUFA and hearing status. Baseline plasma PUFA levels were analyzed by nuclear magnetic resonance, and self-reported hearing difficulty was obtained by questionnaire between 2007 and 2010. Logistic regression was used to estimate age-adjusted odds ratios (ORs), multivariable-adjusted odds ratios (MVORs) by adjusting for 14 demographic, behavioral, biomarker and health-related potential confounders, and 95 % confidence intervals (CIs). RESULTS Hearing difficulty was reported by 26.7 % of participants. Higher plasma n-3 PUFA levels were independently associated with lower odds of self-reported hearing difficulty. The prevalence of hearing difficulty rose across age strata (40-49y, 15.8 %; 50-59y, 24.9 % and 60+y, 34.4 %; p < 0.0001) and overall was higher in males (33.2 %) than females (21.3 %). Compared with those in the lowest quintile of plasma DHA % or Other n-3 PUFA %, the MVOR (95 % CI) for hearing difficulty was 0.88 (0.85, 0.92) in highest quintile of plasma DHA %, and 0.91 (0.87, 0.94) in the highest quintile of Other n-3 PUFA %. The associations with DHA % did not differ by age or sex (p-for-interaction 0.83 and 0.58, respectively). MVORs for DHA % and Other n-3 PUFA % were similar among the 44,486 individuals with data on noise exposure at work. CONCLUSIONS Higher plasma n-3 PUFA levels were independently associated with lower odds of hearing difficulty.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Nutritional Sciences & Human Health, University of Guelph, Guelph, ON; Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, University of Illinois, Chicago, IL, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Sharon E Curhan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Samara P, Athanasopoulos M, Markatos N, Athanasopoulos I. From sound waves to molecular and cellular mechanisms: Understanding noise‑induced hearing loss and pioneering preventive approaches (Review). MEDICINE INTERNATIONAL 2024; 4:60. [PMID: 39114262 PMCID: PMC11304036 DOI: 10.3892/mi.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Noise-induced hearing loss (NIHL) is a significant and urgent global public health concern, arising from prolonged exposure to elevated levels of noise. This auditory impairment harms delicate inner ear structures, particularly the essential hair cells transmitting auditory signals to the brain. Recognized by the World Health Organization as a major contributor to worldwide hearing loss, NIHL requires a comprehensive examination of its molecular and cellular mechanisms. Animal models emerge as indispensable tools for unraveling these intricacies, allowing researchers to simulate and study the impact of noise exposure on auditory structures, shedding light on the interplay of oxidative stress, inflammation and immune responses-crucial factors in NIHL progression. The present review focuses on elucidating the molecular mechanisms of NIHL, with a specific emphasis on findings derived from animal models, alongside the exploration of thorough preventive strategies, including protective measures and probing potential interventions. Understanding the molecular underpinnings not only provides insight into targeted treatment approaches, but also unlocks pathways for exploring and implementing preventive actions. This approach not only deepens the current comprehension of NIHL, but also has the potential to influence the shaping of public health policies, offering a nuanced perspective on this prevalent auditory disorder.
Collapse
Affiliation(s)
- Pinelopi Samara
- Children's Oncology Unit ‘Marianna V. Vardinoyannis-ELPIDA’, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | | | - Nikolaos Markatos
- Otolaryngology-Head and Neck Surgery, Athens Pediatric Center, 15125 Athens, Greece
| | | |
Collapse
|
3
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Birru B, Veit JGS, Arrigali EM, Van Tine J, Barrett-Catton E, Tonnerre Z, Diaz P, Serban MA. Hyaluronic acid-ibuprofen conjugation: a novel ototherapeutic approach protecting inner ear cells from inflammation-mediated damage. Front Pharmacol 2024; 15:1355283. [PMID: 38425644 PMCID: PMC10902153 DOI: 10.3389/fphar.2024.1355283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
There is a substantial need of effective drugs for the treatment of hearing loss, which affects nearly 500 million individuals globally. Hearing loss can be the result of intense or prolonged noise exposure, ototoxic drugs, infections, and trauma, which trigger inflammatory signaling cascades that lead to irreversible damage to cochlear structures. To address this, we developed and characterized a series of covalent conjugates of anti-inflammatory drugs to hyaluronic acid (HA), for potential use as topical ototherapeutics. These conjugates were tested in in vitro assays designed to mirror physiological processes typically observed with acoustic trauma. Intense noise exposure leads to macrophage recruitment to the cochlea and subsequent inflammatory damage to sensory cells. We therefore first tested our conjugates' ability to reduce the release of inflammatory cytokines in macrophages. This anti-inflammatory effect on macrophages also translated to increased cochlear cell viability. In our initial screening, one conjugate, ibuprofen-HA, demonstrated significantly higher anti-inflammatory potential than its counterparts. Subsequent cytokine release profiling of ibuprofen-HA further confirmed its ability to reduce a wider range of inflammatory markers, to a greater extent than its equivalent unconjugated drug. The conjugate's potential as a topical therapeutic was then assessed in previously developed tympanic and round window membrane tissue permeation models. As expected, our data indicate that the conjugate has limited tympanic membrane model permeability; however, it readily permeated the round window membrane model and to a greater extent than the unconjugated drug. Interestingly, our data also revealed that ibuprofen-HA was well tolerated in cellular and tissue cytocompatibility assays, whereas the unconjugated drug displayed significant cytotoxicity at equivalent concentrations. Moreover, our data highlighted the importance of chemical conjugation of ibuprofen to HA; the conjugate had improved anti-inflammatory effects, significantly reduced cytotoxicity, and is more suitable for therapeutic formulation. Overall, this work suggests that ibuprofen-HA could be a promising safe and effective topical ototherapeutic for inflammation-mediated cochlear damage.
Collapse
Affiliation(s)
- Bhaskar Birru
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joachim G. S. Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jack Van Tine
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Emma Barrett-Catton
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Zachary Tonnerre
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| |
Collapse
|
5
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
6
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Zhou Y, Fang C, Yuan L, Guo M, Xu X, Shao A, Zhang A, Zhou D. Redox homeostasis dysregulation in noise-induced hearing loss: oxidative stress and antioxidant treatment. J Otolaryngol Head Neck Surg 2023; 52:78. [PMID: 38082455 PMCID: PMC10714662 DOI: 10.1186/s40463-023-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Zhang C, Ye M, Bush P, Hu BH. Heterogeneity in macrophages along the cochlear spiral in mice: insights from SEM and functional analyses. Front Cell Neurosci 2023; 17:1222074. [PMID: 37692550 PMCID: PMC10485373 DOI: 10.3389/fncel.2023.1222074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The susceptibility of sensory cells to pathological conditions differs between the apical and basal regions of the cochlea, and the cochlear immune system may contribute to this location-dependent variability. Our previous study found morphological differences in basilar membrane macrophages between the apical and basal regions of the cochlea. However, the details of this site-dependent difference and its underlying structural and biological basis are not fully understood. In this study, we utilized scanning electron microscopy to examine the ultrastructure of macrophages and their surrounding supporting structures. Additionally, we examined the phagocytic activities of macrophages and the expression of immune molecules in both apical and basal regions of the cochlea. We employed two mouse strains (C57BL/6J and B6.129P-Cx3cr1tm1Litt/J) and evaluated three experimental conditions: young normal (1-4 months), aging (11-19 months), and noise-induced damage (120 dB SPL for 1 h). Using scanning electron microscopy, we revealed location-specific differences in basilar membrane macrophage morphology and surface texture, architecture in mesothelial cell layers, and spatial correlation between macrophages and mesothelial cells in both young and older mice. Observations of macrophage phagocytic activities demonstrated that basal macrophages exhibited greater phagocytic activities in aging and noise-damaged ears. Furthermore, we identified differences in the expression of immune molecules between the apical and basal cochlear tissues of young mice. Finally, our study demonstrated that as the cochlea ages, macrophages in the apical and basal regions undergo a transformation in their morphologies, with apical macrophages acquiring certain basal macrophage features and vice versa. Overall, our findings demonstrate apical and basal differences in macrophage phenotypes and functionality, which are related to distinct immune and structural differences in the macrophage surrounding tissues.
Collapse
Affiliation(s)
- Celia Zhang
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Audiology, University of the Pacific, San Francisco, CA, United States
| | - Mengxiao Ye
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Peter Bush
- South Campus Instrument Center, University at Buffalo, Buffalo, NY, United States
| | - Bo Hua Hu
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13:3524-3549. [PMID: 37441605 PMCID: PMC10334830 DOI: 10.7150/thno.83383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Noise accounts for one-third of hearing loss worldwide. Regretfully, noise-induced hearing loss (NIHL) is deemed to be irreversible due to the elusive pathogenic mechanisms that have not been fully elucidated. The complex interaction between genetic and environmental factors, which influences numerous downstream molecular and cellular events, contributes to the NIHL. In clinical settings, there are no effective therapeutic drugs other than steroids, which are the only treatment option for patients with NIHL. Therefore, the need for treatment of NIHL that is currently unmet, along with recent progress in our understanding of the underlying regulatory mechanisms, has led to a lot of new literatures focusing on this therapeutic field. The emergence of novel technologies that modify local drug delivery to the inner ear has led to the development of promising therapeutic approaches, which are currently under clinical investigation. In this comprehensive review, we focus on outlining and analyzing the basics and potential therapeutics of NIHL, as well as the application of biomaterials and nanomedicines in inner ear drug delivery. The objective of this review is to provide an incentive for NIHL's fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
12
|
Identification and Characterization of TMEM119-Positive Cells in the Postnatal and Adult Murine Cochlea. Brain Sci 2023; 13:brainsci13030516. [PMID: 36979326 PMCID: PMC10046579 DOI: 10.3390/brainsci13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Transmembrane protein 119 (TMEM119) is expressed in a subset of resident macrophage cells of the brain and was proposed as a marker for native brain microglia. The presence of cells expressing TMEM119 in the cochlea has not yet been described. Thus, the present study aimed to characterize the TMEM119-expressing cells of the postnatal and adult cochlea, the latter also after noise exposure. Immunofluorescent staining of cochlear cryosections detected TMEM119 protein in the spiral limbus fibrocytes and the developing stria vascularis at postnatal Day 3. Applying the macrophage marker Iba1 revealed that TMEM119 is not a marker of cochlear macrophages or a subset of them. In the adult murine cochlea, TMEM119 expression was detected in the basal cells of the stria vascularis and the dark mesenchymal cells of the supralimbal zone. Exposure to noise trauma was not associated with a qualitative change in the types or distributions of the TMEM119-expressing cells of the adult cochlea. Western blot analysis indicated a similar TMEM119 protein expression level in the postnatal cochlea and brain tissues. The findings do not support using TMEM119 as a specific microglial or macrophage marker in the cochlea. The precise role of TMEM119 in the cochlea remains to be investigated through functional experiments. TMEM119 expression in the basal cells of the stria vascularis implies a possible role in the gap junction system of the blood–labyrinth barrier and merits further research.
Collapse
|
13
|
Urata S, Okabe S. Three-dimensional mouse cochlea imaging based on the modified Sca/eS using confocal microscopy. Anat Sci Int 2023:10.1007/s12565-023-00703-z. [PMID: 36773194 DOI: 10.1007/s12565-023-00703-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023]
Abstract
The three-dimensional stria vascularis (SV) and cochlear blood vessel structure is essential for inner ear function. Here, modified Sca/eS, a sorbitol-based optical-clearing method, was reported to visualize SV and vascular structure in the intact mouse cochlea. Cochlear macrophages as well as perivascular-resident macrophage-like melanocytes were detected as GFP-positive cells of the CX3CR1+/GFP mice. This study's method was effective in elucidating inner ear function under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Shinji Urata
- Department of Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Denton AJ, Godur DA, Mittal J, Bencie NB, Mittal R, Eshraghi AA. Recent Advancements in Understanding the Gut Microbiome and the Inner Ear Axis. Otolaryngol Clin North Am 2022; 55:1125-1137. [PMID: 36088154 DOI: 10.1016/j.otc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiome and its dynamic association with organ systems beyond the gastrointestinal tract, such as the nervous and cardiovascular systems, is an emerging area of research. Although the role of the gut microbiome has been extensively characterized in the gut-brain axis, the implications of gut dysbiosis in inner ear inflammation and hearing deficits have still not been explored. With some similarities outlined between the blood-brain barrier (BBB) and the blood labyrinth barrier (BLB) of the inner ear, this review aims to explore the axis between the gut microbiome and the inner ear as it pertains to their bidirectional communication.
Collapse
Affiliation(s)
- Alexa J Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dimitri A Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B Bencie
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther 2022; 22:1163-1176. [PMID: 34904932 DOI: 10.1080/14712598.2022.2012148] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gene therapy provides the exciting opportunity of a curative single treatment for devastating diseases, eradicating the need for chronic medication. Adeno-associated viruses (AAVs) are among the most attractive vector carriers for gene replacement in vivo. Yet, despite the success of recent AAV-based clinical trials, the clinical use of these vectors has been limited. For instance, the AAV packaging capacity is restricted to ~4.7 kb, making it a substantial challenge to deliver large gene products. AREAS COVERED In this review, we explore established and emerging strategies that circumvent the packaging limit of AAVs to make them effective vehicles for gene replacement therapy of monogenic disorders, with a particular focus on diseases affecting the nervous system. We report historical references, design remarks, as well as strengths and weaknesses of these approaches. We additionally discuss examples of neurological disorders for which such strategies have been attempted. EXPERT OPINION The field of AAV-gene therapy has experienced enormous advancements in the last decade. However, there is still ample space for improvement aimed at overcoming existing challenges that are slowing down the progressive trajectory of this field.
Collapse
Affiliation(s)
- Lara Marrone
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Paciello F, Zorzi V, Raspa M, Scavizzi F, Grassi C, Mammano F, Fetoni AR. Connexin 30 deletion exacerbates cochlear senescence and age-related hearing loss. Front Cell Dev Biol 2022; 10:950837. [PMID: 36016655 PMCID: PMC9395607 DOI: 10.3389/fcell.2022.950837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease. Here, we investigated the role of Cx30 in cochlear-aging processes using a transgenic mouse model with total deletion of Cx30 (Cx30 ΔΔ mice), in which Cx30 was removed without perturbing the surrounding sequences. We show that these mice are affected by exacerbated ARHL, with increased morphological cochlear damage, oxidative stress, inflammation, and vascular dysfunctions. Overall, our data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | | | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- Department of Physics and Astronomy, University of Padova, Padova, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| | - Anna Rita Fetoni
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Audiology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| |
Collapse
|
17
|
Ma JH, Lee E, Yoon SH, Min H, Oh JH, Hwang I, Sung Y, Ryu JH, Bok J, Yu JW. Therapeutic effect of NLRP3 inhibition on hearing loss induced by systemic inflammation in a CAPS-associated mouse model. EBioMedicine 2022; 82:104184. [PMID: 35870427 PMCID: PMC9307460 DOI: 10.1016/j.ebiom.2022.104184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cryopyrin-associated periodic syndrome (CAPS) is an inherited autoinflammatory disease caused by a gain-of-function mutation in NLRP3. Although CAPS patients frequently suffer from sensorineural hearing loss, it remains unclear whether CAPS-associated mutation in NLRP3 is associated with the progression of hearing loss. Methods We generated a mice with conditional expression of CAPS-associated NLRP3 mutant (D301N) in cochlea-resident CX3CR1 macrophages and examined the susceptibility of CAPS mice to inflammation-mediated hearing loss in a local and systemic inflammation context. Findings Upon lipopolysaccharide (LPS) injection into middle ear cavity, NLRP3 mutant mice exhibited severe cochlear inflammation, inflammasome activation and hearing loss. However, this middle ear injection model induced a considerable hearing loss in control mice and inevitably caused an inflammation-independent hearing loss possibly due to ear tissue damages by injection procedure. Subsequently, we optimized a systemic LPS injection model, which induced a significant hearing loss in NLRP3 mutant mice but not in control mice. Peripheral inflammation induced by a repetitive low dose of LPS injection caused a blood-labyrinth barrier disruption, macrophage infiltration into cochlea and cochlear inflammasome activation in an NLRP3-dependent manner. Interestingly, both cochlea-infiltrating and -resident macrophages contribute to peripheral inflammation-mediated hearing loss of CAPS mice. Furthermore, NLRP3-specific inhibitor, MCC950, as well as an interleukin-1 receptor antagonist significantly alleviated systemic LPS-induced hearing loss and inflammatory phenotypes in NLRP3 mutant mice. Interpretation Our findings reveal that CAPS-associated NLRP3 mutation is critical for peripheral inflammation-induced hearing loss in our CAPS mice model, and an NLRP3-specific inhibitor can be used to treat inflammation-mediated sensorineural hearing loss. Funding National Research Foundation of Korea Grant funded by the Korean Government and the Team Science Award of Yonsei University College of Medicine.
Collapse
|
18
|
Balouch B, Meehan R, Suresh A, Zaheer HA, Jabir AR, Qatanani AM, Suresh V, Kaleem SZ, McKinnon BJ. Use of biologics for treatment of autoimmune inner ear disease. Am J Otolaryngol 2022; 43:103576. [DOI: 10.1016/j.amjoto.2022.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/01/2022]
|
19
|
Korres G, Kitsos DK, Kaski D, Tsogka A, Giannopoulos S, Giannopapas V, Sideris G, Tyrellis G, Voumvourakis K. The Prevalence of Dizziness and Vertigo in COVID-19 Patients: A Systematic Review. Brain Sci 2022; 12:brainsci12070948. [PMID: 35884754 PMCID: PMC9313303 DOI: 10.3390/brainsci12070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical manifestations of COVID-19 include symptoms of vertigo and dizziness, which is rather unsurprising, since SARS-CoV-2 neurotropism may inflict a broad spectrum of neuropathic effects. The widespread nature of central and peripheral audiovestibular pathways suggests that there may be several probable pathophysiological mechanisms. The cytokine storm, CNS infiltration of the virus through ACE 2 receptors, and other systemic factors can be responsible for the significant number of COVID-19 patients reported to experience symptoms of vertigo and dizziness. In this paper, we present a systematic review of clinical studies reporting the detection of dizziness and vertigo as clinical manifestations of COVID-19 and discuss their etiopathogenesis.
Collapse
Affiliation(s)
- George Korres
- 2nd ENT Department, Attikon University Hospital, 124 62 Athens, Greece; (G.S.); (G.T.)
- Correspondence:
| | - Dimitrios K. Kitsos
- 2nd Department of Neurology, Attikon University Hospital, 124 62 Athens, Greece; (D.K.K.); (A.T.); (S.G.); (K.V.)
| | - Diego Kaski
- Centre for Vestibular and Behavioural Neuroscience, Department of Clinical and Movement Neurosciences, University College London, 33 Queen Square, London WC1N 3BG, UK;
| | - Anthi Tsogka
- 2nd Department of Neurology, Attikon University Hospital, 124 62 Athens, Greece; (D.K.K.); (A.T.); (S.G.); (K.V.)
| | - Sotirios Giannopoulos
- 2nd Department of Neurology, Attikon University Hospital, 124 62 Athens, Greece; (D.K.K.); (A.T.); (S.G.); (K.V.)
| | - Vasileios Giannopapas
- 2nd Department of Neurology, Laboratory of Neuromuscular & Cardiovascular Study of Motion (LANECASM), Attikon University Hospital, 124 62 Athens, Greece;
| | - Giorgos Sideris
- 2nd ENT Department, Attikon University Hospital, 124 62 Athens, Greece; (G.S.); (G.T.)
| | - Giorgos Tyrellis
- 2nd ENT Department, Attikon University Hospital, 124 62 Athens, Greece; (G.S.); (G.T.)
| | - Konstantine Voumvourakis
- 2nd Department of Neurology, Attikon University Hospital, 124 62 Athens, Greece; (D.K.K.); (A.T.); (S.G.); (K.V.)
| |
Collapse
|
20
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
21
|
Hickox AE, Valero MD, McLaughlin JT, Robinson GS, Wellman JA, McKenna MJ, Sewell WF, Simons EJ. Genetic Medicine for Hearing Loss: OTOF as Exemplar. J Am Acad Audiol 2022; 32:646-653. [PMID: 35609591 DOI: 10.1055/s-0041-1730410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss. We will use the example of otoferlin gene (OTOF)-mediated hearing loss, a sensorineural hearing loss due to autosomal recessive mutations of the OTOF gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William F Sewell
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
22
|
Lee SY, Kim S, Han K, Woong Choi J, Byung Chae H, Yeon Choi D, Min Lee S, Kyun Park M, Mun S, Koo JW. Microarray analysis of lipopolysaccharide-induced endotoxemia in the cochlea. Gene 2022; 823:146347. [PMID: 35227853 DOI: 10.1016/j.gene.2022.146347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Lipopolysaccharide (LPS)-induced endotoxemia alters intracochlear homeostasis and potentiates aminoglycoside-induced ototoxicity. However, the pathological mechanisms in the cochlea following systemic LPS-induced inflammation are unclear. In this study, three groups of mice received intraperitoneal injections [group A, saline control (n = 10); group B, 1 mg/kg LPS (n = 10); group C, 10 mg/kg LPS (n = 10)]. After 24 h, gene expression in cochlea samples was analyzed using DNA microarrays covering 28,853 genes in a duplicate manner. A total of 505 differentially expressed genes (DEGs) (≥2.0-fold change; p < 0.05) were identified. Interferon- and chemotaxis-related genes, including gbp2, gbp5, cxcl10, and Rnf125, were dose-dependently upregulated by LPS-induced endotoxemia. These results were verified by RT-qPCR. Upregulated DEGs were associated with inflammation, positive regulation of immune responses, and regulation of cell adhesion, while downregulated ones were associated with chemical synaptic transmission and the synaptic vesicle cycle. Protein-protein interaction included four functional clusters associated with interleukin-4, -10, and -13 and G protein-coupled receptor (GPCR) ligand binding; activation of matrix metalloproteinases and collagen degradation; recruitment of amyloid A proteins; and neutrophil degranulation. The findings of this study provide an additional basis on changes in the expression of genes in the cochlea in response to LPS-induced endotoxemia.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea
| | - Songmi Kim
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Jin Woong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea.
| |
Collapse
|
23
|
Tamura R, Toda M. A Critical Overview of Targeted Therapies for Vestibular Schwannoma. Int J Mol Sci 2022; 23:5462. [PMID: 35628268 PMCID: PMC9143502 DOI: 10.3390/ijms23105462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Vestibular schwannoma (VS) is a benign tumor that originates from Schwann cells in the vestibular component. Surgical treatment for VS has gradually declined over the past few decades, especially for small tumors. Gamma knife radiosurgery has become an accepted treatment for VS, with a high rate of tumor control. For neurofibromatosis type 2 (NF2)-associated VS resistant to radiotherapy, vascular endothelial growth factor (VEGF)-A/VEGF receptor (VEGFR)-targeted therapy (e.g., bevacizumab) may become the first-line therapy. Recently, a clinical trial using a VEGFR1/2 peptide vaccine was also conducted in patients with progressive NF2-associated schwannomas, which was the first immunotherapeutic approach for NF2 patients. Targeted therapies for the gene product of SH3PXD2A-HTRA1 fusion may be effective for sporadic VS. Several protein kinase inhibitors could be supportive to prevent tumor progression because merlin inhibits signaling by tyrosine receptor kinases and the activation of downstream pathways, including the Ras/Raf/MEK/ERK and PI3K/Akt/mTORC1 pathways. Tumor-microenvironment-targeted therapy may be supportive for the mainstays of management. The tumor-associated macrophage is the major component of immunosuppressive cells in schwannomas. Here, we present a critical overview of targeted therapies for VS. Multimodal therapy is required to manage patients with refractory VS.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | | |
Collapse
|
24
|
Shin SH, Jung J, Park HR, Sim NS, Choi JY, Bae SH. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front Cell Neurosci 2022; 16:844480. [PMID: 35496904 PMCID: PMC9039292 DOI: 10.3389/fncel.2022.844480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cochlea macrophages regulate cochlea inflammation and may harbors the potentials to protect hearing function from injury, including acoustic overstimulation. Cochlea macrophage numbers increase at 3–7 days after acoustic stimulation. However, the exact timing of macrophage infiltration and maturation from inflammatory monocytes is unclear. Furthermore, neutrophils may also be involved in this process. Therefore, in this study, we investigated time-dependent immune cell infiltration, macrophage transformation, and neutrophil involvement following acoustic stimulation. Flow cytometry and immunofluorescence were conducted in C-X3-C motif chemokine receptor 1 (CX3CR1)+/GFP mice after acoustic overstimulation (at baseline and at 1, 2, 3, and 5 days after exposure to 120 dB for 1 h) to identify inflammatory monocytes in the cochlea. RNA-sequencing and quantitative polymerase chain reaction were performed to identify differentially expressed genes. Inflammatory monocytes infiltrated into the lower portion of the lateral wall within 2 days after acoustic overstimulation (dpn), followed by transformation into macrophages at 3–5 dpn via CX3CR1 upregulation and Ly6C downregulation. In addition, inflammatory monocytes were aggregated inside the collecting venule only at 1 dpn. Neutrophils were not a major type of phagocyte during this response. The gene encoding C-C motif chemokine ligand 2 gene was significantly upregulated as early as 3 h after acoustic overstimulation. Given these results, treatment to control immune response after a noise-induced hearing loss should be applied as soon as possible.
Collapse
Affiliation(s)
- Seung Ho Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Seong Hoon Bae,
| |
Collapse
|
25
|
Miwa T, Okano T. Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Front Neurol 2022; 13:861992. [PMID: 35463143 PMCID: PMC9019483 DOI: 10.3389/fneur.2022.861992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
Macrophages play important roles in tissue homeostasis and inflammation. Recent studies have revealed that macrophages are dispersed in the inner ear and may play essential roles in eliciting an immune response. Autoinflammatory diseases comprise a family of immune-mediated diseases, some of which involve sensorineural hearing loss, indicating that similar mechanisms may underlie the pathogenesis of immune-mediated hearing loss. Autoimmune inner ear disease (AIED) is an idiopathic disorder characterized by unexpected hearing loss. Tissue macrophages in the inner ear represent a potential target for modulation of the local immune response in patients with AIED/autoinflammatory diseases. In this review, we describe the relationship between cochlear macrophages and the pathophysiology of AIED/autoinflammatory disease.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- *Correspondence: Toru Miwa
| | - Takayuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Fuentes-Santamaría V, Alvarado JC, Mellado S, Melgar-Rojas P, Gabaldón-Ull MC, Cabanes-Sanchis JJ, Juiz JM. Age-Related Inflammation and Oxidative Stress in the Cochlea Are Exacerbated by Long-Term, Short-Duration Noise Stimulation. Front Aging Neurosci 2022; 14:853320. [PMID: 35450058 PMCID: PMC9016828 DOI: 10.3389/fnagi.2022.853320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
We have previously reported that young adult rats exposed to daily, short-duration noise for extended time periods, develop accelerated presbycusis starting at 6 months of age. Auditory aging is associated with progressive hearing loss, cell deterioration, dysregulation of the antioxidant defense system, and chronic inflammation, among others. To further characterize cellular and molecular mechanisms at the crossroads between noise and age-related hearing loss (ARHL), 3-month-old rats were exposed to a noise-accelerated presbycusis (NAP) protocol and tested at 6 and 16 months of age, using auditory brainstem responses, Real-Time Reverse Transcription-Quantitative PCR (RT-qPCR) and immunocytochemistry. Chronic noise-exposure leading to permanent auditory threshold shifts in 6-month-old rats, resulted in impaired sodium/potassium activity, degenerative changes in the lateral wall and spiral ganglion, increased lipid peroxidation, and sustained cochlear inflammation with advancing age. Additionally, at 6 months, noise-exposed rats showed significant increases in the gene expression of antioxidant enzymes (superoxide dismutase 1/2, glutathione peroxidase 1, and catalase) and inflammation-associated molecules [ionized calcium binding adaptor molecule 1, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha]. The levels of IL-1β were upregulated in the spiral ganglion and spiral ligament, particularly in type IV fibrocytes; these cells showed decreased levels of connective tissue growth factor and increased levels of 4-hydroxynonenal. These data provide functional, structural and molecular evidence that age-noise interaction contributes to exacerbating presbycusis in young rats by leading to progressive dysfunction and early degeneration of cochlear cells and structures. These findings contribute to a better understanding of NAP etiopathogenesis, which is essential as it affects the life quality of young adults worldwide.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Susana Mellado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Cruz Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José J. Cabanes-Sanchis
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Department of Otolaryngology, Hannover Medical School, NIFE-VIANNA, Cluster of Excellence Hearing4all-German Research Foundation, Hanover, Germany
| |
Collapse
|
27
|
Huang C, Wang Q, Pan X, Li W, Liu W, Jiang W, Huang L, Peng A, Zhang Z. Up-Regulated Expression of Interferon-Gamma, Interleukin-6 and Tumor Necrosis Factor-Alpha in the Endolymphatic Sac of Meniere's Disease Suggesting the Local Inflammatory Response Underlies the Mechanism of This Disease. Front Neurol 2022; 13:781031. [PMID: 35280304 PMCID: PMC8904419 DOI: 10.3389/fneur.2022.781031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background Immune mediated inflammatory changes affecting the endolymphatic sac (ES) may underlie the pathology of Meniere's disease (MD). The aim of the present study was to explore the differentially expressed cytokines in ES luminal fluid (ELF) of patients with MD, and the correlation between the expression of cytokines in the ELF with that in the serum was determined by quantitatively analyzing the cytokines in human ELF and serum. Methods Human ELF, serum and ES tissues were collected from patients with unilateral MD and patients with acoustic neuroma (AN) during surgery. The Simoa Cytokine 6-Plex Panel kit was used to analyze the levels of cytokines in the ELF and blood samples of the patients. Immunohistochemistry and immunofluorescence were subsequently used to validate the relative expression levels of the cytokines in MD. Results Significant differences were identified in the expression levels of interferon-γ (IFN-γ) (P < 0.001), interleukin (IL)-6 (P = 0.008) and tumor necrosis factor-α (TNF-α) (P = 0.036) in the luminal fluid of the ES comparing between the MD and AN groups. By contrast, the levels of IFN-γ, IL-10, IL-12p70, IL-17A, IL-6 and TNF-α in the serum of the MD group were not significantly different from those of either the AN group or healthy control subjects. In addition, no significant correlations in the expression levels of cytokines compared between the ELF and serum were found for the patients in either the MD or the AN group. Finally, the detection of positive expression of TNF-α, IL-6 and IFN-γ in the epithelial cells of the majority of ES specimens from patients with MD confirmed the up-regulated expression of these cytokines in the ES of patients with MD. Conclusions The identification of up-regulated expression levels of TNF-α, IL-6 and IFN-γ in the ELF in the present study has provided direct evidence for an increased immunologic activity in the microenvironment of the ES in patients with unilateral MD, may suggest the local inflammatory response underlies the mechanism of this disease.
Collapse
Affiliation(s)
- Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Pan
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Gröschel M, Voigt S, Schwitzer S, Ernst A, Basta D. Cytomegalovirus Seropositivity as a Potential Risk Factor for Increased Noise Trauma Susceptibility. Noise Health 2022; 24:1-6. [PMID: 35645133 PMCID: PMC9239143 DOI: 10.4103/nah.nah_4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CONTEXT Cytomegalovirus (CMV) represents the leading congenital viral infection in humans. Although congenital CMV due to vertically transmitted infections is the main cause of CMV-related diseases, adult CMV infections might still be of clinical significance. It is still discussed how far CMV seropositivity, due to horizontal infection in immunocompetent adults, is able to induce significant dysfunction. The present study investigates in how far CMV seropositivity is an additional risk factor for an increasing susceptibility to sensorineural hearing loss induced by acoustic injury during adulthood in a guinea pig CMV (GPCMV) model of noise-induced hearing loss (NIHL). METHODS Two groups (GPCMV seropositive vs. seronegative) of normal hearing adult guinea pigs were exposed to a broadband noise (5-20 kHz) for 2 hours at 115 dB sound pressure level. Frequency-specific auditory brainstem response recordings for determination of auditory threshold shift were carried out and the number of missing outer hair cells was counted 2 weeks after the noise exposure. RESULTS The data show a slightly increased shift in auditory thresholds in seropositive animals compared to the seronegative control group in response to noise trauma. However, the observed difference was significant at least at high frequencies. The differences in threshold shift are not correlated with outer hair cell loss between the experimental groups. CONCLUSION The results point to potential additional pathologies in a guinea pig NIHL model in correlation to GPCMV seropositivity, which should be taken into account when assessing risks of latent/reactivated CMV infection. Due to the relatively slight effect in the present data, the aim of future studies should be a more detailed consideration (e.g., larger sample size) and to localize possible target structures as well as the significance of the infection route.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany,Address for correspondence: Dr Moritz Gröschel, Department of Otolaryngology, Unfallkrankenhaus Berlin, Warener Str 7, 12683 Berlin, Germany. E-mail:
| | - Stefan Voigt
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Susanne Schwitzer
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| |
Collapse
|
29
|
Liu Q, Li N, Yang Y, Yan X, Dong Y, Peng Y, Shi J. Prediction of the Molecular Mechanisms Underlying Erlong Zuoci Treatment of Age-Related Hearing Loss via Network Pharmacology-Based Analyses Combined with Experimental Validation. Front Pharmacol 2021; 12:719267. [PMID: 34887749 PMCID: PMC8650627 DOI: 10.3389/fphar.2021.719267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The traditional Chinese medicine formula ErLong ZuoCi (ELZC) has been extensively used to treat age-related hearing loss (ARHL) in clinical practice in China for centuries. However, the underlying molecular mechanisms are still poorly understood. Objective: Combine network pharmacology with experimental validation to explore the potential molecular mechanisms underlying ELZC with a systematic viewpoint. Methods: The chemical components of ELZC were collected from the Traditional Chinese Medicine System Pharmacology database, and their possible target proteins were predicted using the SwissTargetPrediction database. The putative ARHL-related target proteins were identified from the database: GeneCards and OMIM. We constructed the drug-target network as well as drug-disease specific protein-protein interaction networks and performed clustering and topological property analyses. Functional annotation and signaling pathways were performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Finally, in vitro experiments were also performed to validate ELZC’s key target proteins and treatment effects on ARHL. Results: In total, 63 chemical compounds from ELZC and 365 putative ARHL-related targets were identified, and 1860 ARHL-related targets were collected from the OMIM and GeneCards. A total of 145 shared targets of ELZC and ARHL were acquired by Venn diagram analysis. Functional enrichment analysis suggested that ELZC might exert its pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and the potential targets might be associated with AKT, ERK, and STAT3, as well as other proteins. In vitro experiments revealed that ELZC pretreatment could decrease senescence-associated β-galactosidase activity in hydrogen peroxide-induced auditory hair cells, eliminate DNA damage, and reduce cellular senescence protein p21 and p53. Finally, Western blot analysis confirmed that ELZC could upregulate the predicted target ERK phosphorylation. Conclusion: We provide an integrative network pharmacology approach, in combination with in vitro experiments to explore the underlying molecular mechanisms governing ELZC treatment of ARHL. The protective effects of ELZC against ARHL were predicted to be associated with cellular senescence, inflammatory response, and synaptic connections which might be linked to various pathways such as JNK/STAT3 and ERK cascade signaling pathways. As a prosperous possibility, our experimental data suggest phosphorylation ERK is essential for ELZC to prevent degeneration of cochlear.
Collapse
Affiliation(s)
- Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Zhang C, Frye MD, Riordan J, Sharma A, Manohar S, Salvi R, Sun W, Hu BH. Loss of CX3CR1 augments neutrophil infiltration into cochlear tissues after acoustic overstimulation. J Neurosci Res 2021; 99:2999-3020. [PMID: 34520571 DOI: 10.1002/jnr.24925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
The cochlea, the sensory organ for hearing, has a protected immune environment, segregated from the systemic immune system by the blood-labyrinth barrier. Previous studies have revealed that acute acoustic injury causes the infiltration of circulating leukocytes into the cochlea. However, the molecular mechanisms controlling immune cell trafficking are poorly understood. Here, we report the role of CX3CR1 in regulating the entry of neutrophils into the cochlea after acoustic trauma. We employed B6.129P-Cx3cr1tm1Litt /J mice, a transgenic strain that lacks the gene, Cx3cr1, for coding the fractalkine receptor. Our results demonstrate that lack of Cx3cr1 results in the augmentation of neutrophil infiltration into cochlear tissues after exposure to an intense noise of 120 dB SPL for 1 hr. Neutrophil distribution in the cochlea is site specific, and the infiltration level is positively associated with noise intensity. Moreover, neutrophils are short lived and macrophage phagocytosis plays a role in neutrophil clearance, consistent with typical neutrophil dynamics in inflamed non-cochlear tissues. Importantly, our study reveals the potentiation of noise-induced hearing loss and sensory cell loss in Cx3cr1-/- mice. In wild-type control mice (Cx3cr1+/+ ) exposed to the same noise, we also found neutrophils. However, neutrophils were present primarily inside the microvessels of the cochlea, with only a few in the cochlear tissues. Collectively, our data implicate CX3CR1-mediated signaling in controlling neutrophil migration from the circulation into cochlear tissues and provide a better understanding of the impacts of neutrophils on cochlear responses to acoustic injury.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA.,Department of Audiology, School of Health Sciences, University of the Pacific, San Francisco, CA, USA
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Juliana Riordan
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
32
|
Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021; 15:728610. [PMID: 34526880 PMCID: PMC8435788 DOI: 10.3389/fncel.2021.728610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Hearing impairment is the most frequent sensory deficit, affecting 466 million people worldwide and has been listed by the World Health Organization (WHO) as one of the priority diseases for research into therapeutic interventions to address public health needs. Inner ear gene therapy is a promising approach to restore sensorineural hearing loss, for which several gene therapy applications have been studied and reported in preclinical animal studies. Objective: To perform a systematic review on preclinical studies reporting cochlear gene therapy, with a specific focus on transduction efficiency. Methods: An initial PubMed search was performed on April 1st 2021 using the PRISMA methodology. Preclinical in vivo studies reporting primary data regarding transduction efficiency of gene therapy targeting the inner ear were included in this report. Results: Thirty-six studies were included in this review. Transduction of various cell types in the inner ear can be achieved, according to the viral vector used. However, there is significant variability in the applied vector delivery systems, including promoter, viral vector titer, etc. Conclusion: Although gene therapy presents a promising approach to treat sensorineural hearing loss in preclinical studies, the heterogeneity of methodologies impedes the identification of the most promising tools for future use in inner ear therapies.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021; 15:694292. [PMID: 34408629 PMCID: PMC8365835 DOI: 10.3389/fncel.2021.694292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Immune system dysregulation is increasingly being attributed to the development of a multitude of neurodegenerative diseases. This, in large part, is due to the delicate relationship that exists between neurons in the central nervous system (CNS) and peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis and immune surveillance within a tissue. Classically, the inner ear was thought to be immune privileged due to the presence of a blood-labyrinth barrier. However, it is now well-established that both vestibular and auditory end organs in the inner ear contain a resident (local) population of macrophages which are the phagocytic cells of the innate-immune system. Upon cochlear sterile injury or infection, there is robust activation of these resident macrophages and a predominant increase in the numbers of macrophages as well as other types of leukocytes. Despite this, the source, nature, fate, and functions of these immune cells during cochlear physiology and pathology remains unclear. Migration of local macrophages and infiltration of bone-marrow-derived peripheral blood macrophages into the damaged cochlea occur through various signaling cascades, mediated by the release of specific chemical signals from damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of the cochlea. Despite the known importance of this neuron-immune axis in CNS function and pathology, until recently it was not clear whether this signaling axis played a role in macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will explore the importance of innate immunity in neurodegenerative disease development, specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence for a role of FKN signaling in cochlear neuroprotection.
Collapse
Affiliation(s)
- Andrew Rigel Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
34
|
Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10081188. [PMID: 34439436 PMCID: PMC8388985 DOI: 10.3390/antiox10081188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The cross-talk between oxidative stress and inflammation seems to play a key role in noise-induced hearing loss. Several studies have addressed the role of PPAR receptors in mediating antioxidant and anti-inflammatory effects and, although its protective activity has been demonstrated in several tissues, less is known about how PPARs could be involved in cochlear dysfunction induced by noise exposure. In this study, we used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways. Specifically, we found a progressive decrease in PPAR expression in the cochlea after acoustic trauma, paralleled by an increase in oxidative stress and inflammation. By comparing an antioxidant (Q-ter) and an anti-inflammatory (Anakinra) treatment, we demonstrated that oxidative stress is the primary element of damage in noise-induced cochlear injury and that increased inflammation can be considered a consequence of PPAR down-regulation induced by ROS production. Indeed, by decreasing oxidative stress, PPARs returned to control values, reactivating the negative control on inflammation in a feedback loop.
Collapse
|
35
|
Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021; 13:eabd4816. [PMID: 34261799 PMCID: PMC8409338 DOI: 10.1126/scitranslmed.abd4816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/10/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.
Collapse
Affiliation(s)
- Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lukas D Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yanling Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wenjianlong Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Early
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, UC San Diego Medical Center, San Diego, CA 92103, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Na Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Grace Y Lee
- St. Mark's School, Southborough, MA 01772, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jessica E Sagers
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alona Muzikansky
- Division of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
37
|
Rhyu HJ, Bae SH, Jung J, Hyun YM. Cochlin-cleaved LCCL is a dual-armed regulator of the innate immune response in the cochlea during inflammation. BMB Rep 2021. [PMID: 32635986 PMCID: PMC7526977 DOI: 10.5483/bmbrep.2020.53.9.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The inner ear is a complex and delicate structure composed of the cochlea and the vestibular system. To maintain normal auditory function, strict homeostasis of the inner ear is needed. A proper immune response against infection, thus, is crucial. Also, since excessive immune reaction can easily damage the normal architecture within the inner ear, the immune response should be fine regulated. The exact mechanism how the inner ear’s immune response, specifically the innate immunity, is regulated was unknown. Recently, we reported a protein selectively localized in the inner ear during bacterial infection, named cochlin, as a possible mediator of such regulation. In this review, the immunological function of cochlin and the mechanism behind its role within inner ear immunity is sum-marized. Cochlin regulates innate immunity by physically en-trapping pathogens within scala tympani and recruiting innate immune cells. Such mechanism enables efficient removal of pathogen while preserving the normal inner ear structure from inflammatory damage.
Collapse
Affiliation(s)
- Hyeong-Jun Rhyu
- Departments of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seong Hoon Bae
- Departments of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jinsei Jung
- Departments of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young-Min Hyun
- Departments ofAnatomy, Yonsei University College of Medicine, Seoul 03722; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
38
|
Warnecke A, Prenzler N, Harre J, Köhl U, Gärtner L, Lenarz T, Laner-Plamberger S, Wietzorrek G, Staecker H, Lassacher T, Hollerweger J, Gimona M, Rohde E. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12094. [PMID: 34136108 PMCID: PMC8178433 DOI: 10.1002/jev2.12094] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) derived from the secretome of human mesenchymal stromal cells (MSC) contain numerous factors that are known to exert anti‐inflammatory effects. MSC‐EVs may serve as promising cell‐based therapeutics for the inner ear to attenuate inflammation‐based side effects from cochlear implantation which represents an unmet clinical need. In an individual treatment performed on a ‘named patient basis’, we intraoperatively applied allogeneic umbilical cord‐derived MSC‐EVs (UC‐MSC‐EVs) produced according to good manufacturing practice. A 55‐year‐old patient suffering from Menière's disease was treated with intracochlear delivery of EVs prior to the insertion of a cochlear implant. This first‐in‐human use of UC‐MSC‐EVs demonstrates the feasibility of this novel adjuvant therapeutic approach. The safety and efficacy of intracochlear EV‐application to attenuate side effects of cochlea implants have to be determined in controlled clinical trials.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics Hannover and Institute of Clinical Immunology Hannover Medical School University of Leipzig as well as Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig Germany
| | - Lutz Gärtner
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Sandra Laner-Plamberger
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria
| | - Georg Wietzorrek
- Institute of Molecular and Cellular Pharmacology Medical University of Innsbruck Innsbruck Austria
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery University of Kansas School of Medicine Kansas City Kansas USA
| | - Teresa Lassacher
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Julia Hollerweger
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Mario Gimona
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| | - Eva Rohde
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| |
Collapse
|
39
|
Chai Y, He W, Yang W, Hetrick AP, Gonzalez JG, Sargsyan L, Wu H, Jung TTK, Li H. Intratympanic Lipopolysaccharide Elevates Systemic Fluorescent Gentamicin Uptake in the Cochlea. Laryngoscope 2021; 131:E2573-E2582. [PMID: 33956344 PMCID: PMC8453712 DOI: 10.1002/lary.29610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Objectives/Hypothesis Lipopolysaccharide (LPS), a key component of bacterial endotoxins, activates macrophages and triggers the release of inflammatory cytokines in mammalian tissues. Recent studies have shown that intratympanic injection of LPS simulates acute otitis media (AOM) and results in morphological and functional changes in the inner ear. Here we established an AOM mouse model with LPS to investigate the uptake of ototoxic gentamicin in the inner ear, and elucidated the underlying mechanism by focusing on cochlear inflammation as a result of AOM. Study Design Preclinical rodent animal model. Methods Fluorescently tagged gentamicin (GTTR) was systemically administered to mice with AOM. Iba1‐positive macrophage morphology and inner ear cytokine profile were evaluated by immunofluorescence technique and a mouse cytokine array kit, respectively. Results We observed characteristic symptoms of AOM in the LPS‐treated ears with elevated hearing thresholds indicating a conductive hearing loss. More importantly, the LPS‐induced AOM activated cochlear inflammatory responses, manifested by macrophage infiltration, particularly in the organ of Corti and the spiral ligament, in addition to the up‐regulation of proinflammatory cytokines. Meanwhile, GTTR uptake in the stria vascularis and sensory hair cells from all the LPS‐treated ears was significantly enhanced at 24, 48, and 72‐hour post‐treatment, as the most prominent enhancement was observed in the 48‐hour group. Conclusion In summary, this study suggests that the pathological cochlea is more susceptible to ototoxic drugs, including aminoglycosides, and justified the clinical concern of aminoglycoside ototoxicity in the AOM treatment. Laryngoscope, 131:E2573–E2582, 2021
Collapse
Affiliation(s)
- Yongchuan Chai
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiwei He
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiqiang Yang
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Jessica G Gonzalez
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Timothy T K Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| |
Collapse
|
40
|
Associations between Age-Related Hearing Loss and DietaryAssessment Using Data from Korean National Health andNutrition Examination Survey. Nutrients 2021; 13:nu13041230. [PMID: 33917838 PMCID: PMC8068238 DOI: 10.3390/nu13041230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major and rapidly growing public health problem that causes disability, social isolation, and socioeconomic cost. Nutritional status is known to cause many aging-related problems, and recent studies have suggested that there are interaction effects between ARHL and dietary factors. We aimed to investigate the association between ARHL and dietary assessment using data from the fifth Korean National Health and Nutrition Examination Survey, which is a nationwide cross-sectional survey that included 5201 participants aged ≥50 years from 2010 to 2012. All participants had normal findings on otoscopic examination and symmetric hearing thresholds of <15 dB between both sides. Nutritional survey data included food consumption and nutrient intake using the 24 h recall method. Data were analyzed using multiple regression models with complex sampling adjusted for confounding factors, such as age, sex, educational level, and history of diabetes. Higher intake of seeds and nuts, fruits, seaweed, and vitamin A were positively associated with better hearing. Our findings suggest that dietary antioxidants or anti-inflammatory food may help reduce ARHL.
Collapse
|
41
|
Andreeva VA, Péneau S, Julia C, Shivappa N, Hébert JR, Wirth MD, Touvier M, Hercberg S, Galan P, Kesse-Guyot E. The inflammatory potential of the diet is prospectively associated with subjective hearing loss. Eur J Nutr 2021; 60:3669-3678. [PMID: 33738534 DOI: 10.1007/s00394-021-02531-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE We investigated the association between the inflammatory potential of the diet and hearing loss in the context of aging. METHODS We studied 3435 French adults enrolled in the SU.VI.MAX 2 (2007-2009) cohort. The inflammatory potential of the diet was estimated by the Dietary Inflammatory Index (DII®) using ≥ 3 baseline 24-h dietary records. Subjective hearing loss was assessed after a mean of 12.5 ± 0.7 years by 3 individual items (ability to carry a conversation in a noisy setting, frequently asking for repetition, and need to increase the television/radio volume) and by a composite score, dichotomized for analyses. We fit sex-specific multivariable logistic regression models. RESULTS Compared with males, females had higher DII scores (i.e., more pro-inflammatory diet) and less subjective hearing loss. Among males, a significant positive association between DII (continuous scale) and inability to carry a conversation in a noisy setting was found (OR = 1.10; 95% CI 1.02, 1.18), while the opposite was seen among females (OR = 0.92; 95% CI 0.87, 0.98). Regarding the need to turn up the television/radio volume, a significant positive association with DII (continuous scale) was found only among males (OR = 1.09; 95% CI 1.01, 1.18). A significant association with the subjective hearing loss composite score was found among females (ORQ3 vs Q1 = 0.74; 95% CI 0.57, 0.97). CONCLUSION The findings among males supported the hypothesis that a pro-inflammatory diet could increase risk of hearing loss, whereas the findings among females were unexpected. This study could provide impetus for future research in sensory disability and aging. TRIAL REGISTRATION www.clinicaltrials.gov # NCT00272428.
Collapse
Affiliation(s)
- Valentina A Andreeva
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France.
| | - Sandrine Péneau
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Chantal Julia
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France.,Department of Public Health, AP-HP Paris Seine-Saint-Denis University Hospital System, Bobigny, France
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael D Wirth
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,College of Nursing, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathilde Touvier
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France.,Department of Public Health, AP-HP Paris Seine-Saint-Denis University Hospital System, Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University/INSERM/INRAE/CNAM, Nutritional Epidemiology Research Group (EREN), Epidemiology and Statistics Research Center, University of Paris, 74 rue Marcel Cachin, 93017, Bobigny, France
| |
Collapse
|
42
|
Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y, Qiao Y, Liu H. ROS-Responsive Nanoparticle as a Berberine Carrier for OHC-Targeted Therapy of Noise-Induced Hearing Loss. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7102-7114. [PMID: 33528239 DOI: 10.1021/acsami.0c21151] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overproduction of reactive oxygen species (ROS) and inflammation are two key pathogeneses of noise-induced hearing loss (NIHL), which leads to outer hair cell (OHC) damage and hearing loss. In this work, we successfully developed ROS-responsive nanoparticles as berberine (BBR) carriers (PL-PPS/BBR) for OHC-targeted therapy of NIHL: Prestin-targeting peptide 2 (PrTP2)-modified nanoparticles (PL-PPS/BBR), which effectively accumulated in OHC areas, and poly(propylene sulfide)120 (PPS120), which scavenged ROS and converted to poly(propylene sulfoxide)120 in a ROS environment to disintegrate and provoke the rapid release of BBR with anti-inflammatory and antioxidant effects. In this study, satisfactory anti-inflammatory and antioxidant effects of PL-PPS/BBR were confirmed. Immunofluorescence and scanning electron microscopy (SEM) images showed that PL-PPS/BBR effectively accumulated in OHCs and protected the morphological integrity of OHCs. The auditory brainstem response (ABR) results demonstrated that PL-PPS/BBR significantly improved hearing in NIHL guinea pigs after noise exposure. This work suggested that PL-PPS/BBR may be a new potential treatment for noise-associated injury with clinical application.
Collapse
Affiliation(s)
- Zeqi Zhao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | | | - Konduru Naveena
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Guanxiong Lei
- Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, Xiangnan University, Chenzhou 423000, PR China
- Clinical College, Xiangnan University, Chenzhou 423000, PR China
| | - Shiwei Qiu
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Ting Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Wei Zhuang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yalan Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yuehua Qiao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
43
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
44
|
Bae SH, Yoo JE, Choe YH, Kwak SH, Choi JY, Jung J, Hyun YM. Neutrophils infiltrate into the spiral ligament but not the stria vascularis in the cochlea during lipopolysaccharide-induced inflammation. Am J Cancer Res 2021; 11:2522-2533. [PMID: 33456557 PMCID: PMC7806478 DOI: 10.7150/thno.49121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022] Open
Abstract
It has been challenging to apply intravital imaging for monitoring the inner ear, as the anatomical location and intricate structure hamper the access of imaging instruments to the inner ear of live mice. By employing intravital imaging of the cochlea in live mice with two-photon microscopy, we investigated neutrophil infiltration into the cochlea tissue and its characteristics under a lipopolysaccharide (LPS)-induced inflammatory state. Methods: Cochlea inflammation was induced by LPS injection to the middle ear. Using two-photon intravital microscopy with specifically designed surgical exteriorization of the cochlea in live mice, we investigated the dynamic features of neutrophils in the lateral wall of the cochlea. The molecular expression pattern of the cochlea lateral wall was also investigated during the LPS-induce inflammation. Results: Despite the contention of whether neutrophils are recruited to the spiral ligament (SL) during inflammation, we observed that LPS-induced inflammation of the middle ear, which mimics acute otitis media, triggered neutrophil migration to the SL in the lateral wall. Notably, massive neutrophil infiltration to the SL occurred 2 days after LPS inoculation, but there was no neutrophil infiltration into the stria vascularis (SV) region. At 1 day after LPS-induced cochlear inflammation, increased mRNA expression of interleukin-1β, interleukin-6 were identified in both the SL and SV, while the ICAM-1 mRNA expression increased only in the SL. The differential reactivity of ICAM-1 is likely responsible for the different neutrophil recruitment pattern in the cochlea. Conclusion: Intravital imaging of the cochlea revealed that neutrophil recruitment and infiltration during inflammation are spatially controlled and exclusively observed in the SL but not in the SV and organ of Corti.
Collapse
|
45
|
|
46
|
Schuh JCL. Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals. Toxicol Pathol 2020; 49:472-482. [PMID: 33252012 DOI: 10.1177/0192623320970448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) of special senses is poorly described and can be confused with nonspecific mononuclear cell infiltrates and tertiary lymphoid structures (TLS). In the eye, MALT consists mostly of conjunctiva-associated lymphoid tissue (CALT) and lacrimal drainage-associated lymphoid tissue (LDALT). In humans, CALT and LDALT are important components of the normal eye-associated lymphoid tissue (EALT), but EALT is less frequently described in ocular tissues of animals. The EALT are acquired postnatally in preferential mucosal sites, expand with antigenic exposure, form well-developed lymphoid follicles, and are reported to senesce. Lymphoid follicles that are induced concurrently with chronic inflammation are more appropriately considered TLS but must be differentiated from inflammation in MALT. Less understood is the etiology for formation of lymphoid tissue aggregates in the ciliary body, limbus, or choroid of healthy eyes in animals and humans. In the healthy eustachian tube and middle ear of animals and humans, MALT may be present but is infrequently described. Concurrent with otitis media, lymphoid follicles in the eustachian tube are probably expanded MALT, but lymphoid follicles in the middle ear may be TLS. The purpose of this comparative review is to familiarize toxicologic pathologists with MALT in the special senses and to provide considerations for differentiating and reporting eye and ear MALT from immune or inflammatory cell infiltrates or inflammation in nonclinical studies, and the circumstances for reporting TLS in compartments of the eye and ear.
Collapse
|
47
|
Szepesy J, Miklós G, Farkas J, Kucsera D, Giricz Z, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Varga ZV, Zelles T. Anti-PD-1 Therapy Does Not Influence Hearing Ability in the Most Sensitive Frequency Range, but Mitigates Outer Hair Cell Loss in the Basal Cochlear Region. Int J Mol Sci 2020; 21:ijms21186701. [PMID: 32933159 PMCID: PMC7555949 DOI: 10.3390/ijms21186701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 μg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4–32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4–32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gabriella Miklós
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-210-4416/56297; Fax: +36-1-210-4412
| |
Collapse
|
48
|
Dufek B, Meehan DT, Delimont D, Wilhelm K, Samuelson G, Coenen R, Madison J, Doyle E, Smyth B, Phillips G, Gratton MA, Cosgrove D. RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS One 2020; 15:e0237907. [PMID: 32822386 PMCID: PMC7446819 DOI: 10.1371/journal.pone.0237907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Previous work demonstrates that the hearing loss in Alport mice is caused by defects in the stria vascularis. As the animals age, progressive thickening of strial capillary basement membranes (SCBMs) occurs associated with elevated levels of extracellular matrix expression and hypoxia-related gene and protein expression. These conditions render the animals susceptible to noise-induced hearing loss. In an effort to develop a more comprehensive understanding of how the underlying mutation in the COL4A3 gene influences homeostasis in the stria vascularis, we performed vascular permeability studies combined with RNA-seq analysis using isolated stria vascularis from 7-week old wild-type and Alport mice on the 129 Sv background. Alport SCBMs were found to be less permeable than wild-type littermates. RNA-seq and bioinformatics analysis revealed 68 genes were induced and 61 genes suppressed in the stria from Alport mice relative to wild-type using a cut-off of 2-fold. These included pathways involving transcription factors associated with the regulation of pro-inflammatory responses as well as cytokines, chemokines, and chemokine receptors that are up- or down-regulated. Canonical pathways included modulation of genes associated with glucose and glucose-1-PO4 degradation, NAD biosynthesis, histidine degradation, calcium signaling, and glutamate receptor signaling (among others). In all, the data point to the Alport stria being in an inflammatory state with disruption in numerous metabolic pathways indicative of metabolic stress, a likely cause for the susceptibility of Alport mice to noise-induced hearing loss under conditions that do not cause permanent hearing loss in age/strain-matched wild-type mice. The work lays the foundation for studies aimed at understanding the nature of strial pathology in Alport mice. The modulation of these genes under conditions of therapeutic intervention may provide important pre-clinical data to justify trials in humans afflicted with the disease.
Collapse
Affiliation(s)
- Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Gina Samuelson
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Ross Coenen
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Edward Doyle
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Brendan Smyth
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Grady Phillips
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Michael Anne Gratton
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, United States of America
| |
Collapse
|
49
|
Chang HT, Heuer RA, Oleksijew AM, Coots KS, Roque CB, Nella KT, McGuire TL, Matsuoka AJ. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system. Acta Biomater 2020; 108:111-127. [PMID: 32156626 PMCID: PMC7198367 DOI: 10.1016/j.actbio.2020.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
Although the application of human embryonic stem cells (hESCs) in stem cell-replacement therapy remains promising, its potential is hindered by a low cell survival rate in post-transplantation within the inner ear. Here, we aim to enhance the in vitro and in vivo survival rate and neuronal differentiation of otic neuronal progenitors (ONPs) by generating an artificial stem cell niche consisting of three-dimensional (3D) hESC-derived ONP spheroids with a nanofibrillar cellulose hydrogel and a sustained-release brain-derivative neurotrophic factor delivery system. Our results demonstrated that the transplanted hESC-derived ONP spheroids survived and neuronally differentiated into otic neuronal lineages in vitro and in vivo and also extended neurites toward the bony wall of the cochlea 90 days after the transplantation without the use of immunosuppressant medication. Our data in vitro and in vivo presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear. Using our protocol to create an artificial stem cell niche in the inner ear, it is now possible to work on integrating transplanted hESC-derived ONPs further and also to work toward achieving functional auditory neurons generated from hESCs. Our findings suggest that the provision of an artificial stem cell niche can be a future approach to stem cell-replacement therapy for inner-ear regeneration. STATEMENT OF SIGNIFICANCE: Inner ear regeneration utilizing human embryonic stem cell-derived otic neuronal progenitors (hESC-derived ONPs) has remarkable potential for treating sensorineural hearing loss. However, the local environment of the inner ear requires a suitable stem cell niche to allow hESC-derived ONP engraftment as well as neuronal differentiation. To overcome this obstacle, we utilized three-dimensional spheroid formation (direct contact), nanofibrillar cellulose hydrogel (extracellular matrix), and a neurotrophic factor delivery system to artificially create a stem cell niche in vitro and in vivo. Our in vitro and in vivo data presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear.
Collapse
Affiliation(s)
- Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA; Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
50
|
Gupta S, Curhan SG, Cruickshanks KJ, Klein BE, Klein R, Curhan GC. Chronic kidney disease and the risk of incident hearing loss. Laryngoscope 2020; 130:E213-E219. [PMID: 31135964 PMCID: PMC6881518 DOI: 10.1002/lary.28088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/25/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES There is a strikingly high prevalence of sensorineural hearing loss among patients with chronic kidney disease, with estimates ranging from 36% to 77%; however, longitudinal data are limited. We assessed whether lower baseline estimated glomerular filtration rate calculated using creatinine (eGFRCr ), as well as decline in eGFRCr over time, were associated with incident hearing loss. METHODS Serum creatinine was measured in 1,843 individuals aged 48 to 80 years without hearing loss at the start of the Epidemiology of Hearing Loss Study in 1993. Follow-up creatinine assessments were conducted at 5 (n = 1,526) and 10 (n = 1,095) years. Hearing tests were conducted at baseline and at 5-, 10-, and 15-year follow-up visits. The risk of hearing loss was assessed as a function of baseline eGFRCr as well as a function of a 20% decline in eGFRCr between baseline and 5 years and between 5 and 10 years. Cox proportional hazards regression was used to examine the risk of incident speech-frequency hearing loss, defined as pure tone average (PTA) > 25 decibels hearing loss for thresholds at 0.5, 1, 2, and 4 kHz (PTA0.5,1,2,4 ) in either ear. RESULTS During 15,676 person-years of follow up, there were 802 cases of incident hearing loss. There was no statistically significant association between lower baseline eGFRCr and risk of incident hearing loss. Decline in eGFRCr was also not associated with incident hearing loss at speech frequencies. CONCLUSION Overall, there was no significant association between eGFRCr or decline in eGFRCr using the serum creatinine-based equation and risk of incident hearing loss. LEVEL OF EVIDENCE 2 Laryngoscope, 130:E213-E219, 2020.
Collapse
Affiliation(s)
- Shruti Gupta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA; Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Sharon G. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Karen J. Cruickshanks
- University of Wisconsin, Department of Population Health Sciences, School of Medicine and Public Health, Madison, WI; University of Wisconsin, Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, Madison, WI
| | - Barbara E.K. Klein
- University of Wisconsin, Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, Madison, WI
| | - Ronald Klein
- University of Wisconsin, Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, Madison, WI
| | - Gary C. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA; Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA; Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|