1
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
2
|
Gharehchelou B, Mehrarya M, Sefidbakht Y, Uskoković V, Suri F, Arjmand S, Maghami F, Siadat SOR, Karima S, Vosough M. Mesenchymal stem cell-derived exosome and liposome hybrids as transfection nanocarriers of Cas9-GFP plasmid to HEK293T cells. PLoS One 2025; 20:e0315168. [PMID: 39804902 PMCID: PMC11729927 DOI: 10.1371/journal.pone.0315168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods. Relative to filtration and spin column condensation, the size exclusion chromatography led to the isolation of exosomes with the highest purity. These exosomes were then hybridized with liposomes using freeze-thaw cycles and direct mixing techniques to evaluate whether this combination enhances the transfection efficiency of large plasmids. The efficiency of these hybrids in transferring the Cas9-green fluorescent protein plasmid (pCas9-GFP) into the human embryonic kidney 293T (HEK293T) cells was evaluated compared to the pure exosomes. Both Cas9-GFP-loaded exosomes and exosome-liposome hybrids were taken up well by the HEK293T cells and were able to transfect them with their plasmid loads. Meanwhile, the treatment of the cells with plasmids alone, without any vesicles, resulted in no transfection, indicating that the exosome and exosome-liposome hybrids are essential for the transfer of the plasmids across the cell membrane. The pure exosomes and the hybrids incorporating liposomes obtained by the heating method transfected the cells more efficiently than those containing liposomes obtained by the thin film hydration technique. Interestingly, the method of combining exosomes with liposomes (freeze-thaw vs. direct mixing) proved to be more decisive in determining the size of the vesicular hybrid than their composition. In contrast, the liposome component in the hybrids proved to be decisive for determining the transfection efficiency.
Collapse
Affiliation(s)
| | | | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- TardigradeNano, LLC, Irvine, CA, United States of America
- Division of Natural Sciences, Fullerton College, Fullerton, CA, United States of America
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farnaz Maghami
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Namini MS, Beheshtizadeh N, Ebrahimi-Barough S, Ai J. Human endometrial stem cell-derived small extracellular vesicles enhance neurite outgrowth and peripheral nerve regeneration through activating the PI3K/AKT signaling pathway. J Transl Med 2025; 23:6. [PMID: 39754260 PMCID: PMC11699817 DOI: 10.1186/s12967-024-06048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines. For this purpose, hEnSC-derived small EVs were extracted by ultracentrifuge and characterized by DLS, SEM, TEM, and western blot. Also, dil-staining of hEnSC-derived small EVs was done to determine the penetration of hEnSC-derived small EVs into PC12 cells. The MTT assay, scratch assay, and western blot assay were applied to PC12 cells that were exposed to different concentrations of small EVs (0, 50, 100, and 150 µg/ml). Our results demonstrated that small EVs significantly increased neurite outgrowth, proliferation, and migration in PC12 cells in a dose-dependent manner. Moreover, the analysis of western blots showed increased expression of the PI3k/AKT signaling pathway in PC12 cells exposed to hEnSC-derived small EVs in a dose-dependent manner. Also, the results of this study indicated that hEnSC-derived small EVs can enhance cell proliferation and migration and promote neural outgrowth by activating the PI3k/AKT signaling pathway. Accordingly, hEnSC-derived small EVs became an effective strategy for cell-free therapies. Altogether, these positive effects make hEnSC-derived small EVs a new efficient approach in regenerative medicine, especially for the cure of neural injury.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
5
|
Tsai SC, Wan BH, Tsai FJ, Yang JS. Artificial intelligence (AI)-powered bibliometric analysis of global trends in mesenchymal stem cells (MSCs)-derived exosome research: 2014-2023. Biomedicine (Taipei) 2024; 14:61-77. [PMID: 39777112 PMCID: PMC11703396 DOI: 10.37796/2211-8039.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction In recent years, significant progress has been made in regenerative medicine, specifically in using mesenchymal stem cells (MSCs) due to their regenerative and differentiating abilities. An exciting development in this area is the utilization of exosomes derived from MSCs, which have shown promise in tissue restoration, immune system modulation, and cancer treatment. Objectives This study aims to analyze global research trends and the academic impact of MSCs-derived exosomes from 2014 to 2023, providing a comprehensive overview of this emerging field. Materials and methods The Web of Science database selected 948 relevant publications from 2014 to 2023. Artificial intelligence (AI)-bibliometric tools, including Bibliometrix, CiteSpace, and VOSviewer, were employed to analyze and visualize the data. The focus was on publication quantity, research nations, institutional partnerships, keywords, and research focal points. Results The study revealed that China, Japan, Taiwan, and the United States are the leaders in publication volume and impact in MSCs-derived exosome research. China has the highest number of publications, while the United States and Iran excel in research quality and influence. Primary research themes were identified through keyword and clustering analyses, including tissue repair, immune modulation, bone regeneration, and cancer treatment. The study also emphasized the importance of international collaboration, with China and the United States demonstrating the most robust cooperation. Conclusion MSCs-derived exosome research rapidly expands worldwide, showing promising prospects in regenerative medicine and cell therapy. With continued research and international collaboration, MSCs-derived exosomes are expected to play a vital role in future therapeutic application.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung,
Taiwan
| | - Bing-Han Wan
- Department of Biological Science and Technology, China Medical University, Taichung,
Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung,
Taiwan
- China Medical University Children’s Hospital, Taichung,
Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung,
Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung,
Taiwan
| |
Collapse
|
6
|
Osawa S, Kato H, Kemmoku D, Yamaguchi S, Jiang L, Tsuchiya Y, Takakura H, Izawa T. Exercise training-driven exosomal miRNA-323-5p activity suppresses adipogenic conversion of 3T3-L1 cells via the DUSP3/ERK pathway. Biochem Biophys Res Commun 2024; 734:150447. [PMID: 39083976 DOI: 10.1016/j.bbrc.2024.150447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined. EX-ASCexos but not SED-ASCexos attenuated 3T3-L1 adipocyte differentiation with increased phosph-Ser112PPARγ expression, the inactive form of PPARγ. These differentiated adipocytes were also accompanied by increased phosph-Thr202/Tyr204ERK and decreased dual-specificity phosphatase 3 (DUSP3) levels. The exosomal miRNAs miR-323-5p, miR-433-3p, and miR-874-3p were identified specifically in EX-ASCexos. Of these, miR-323-5p mimic replicated the EX-ASCexo-induced suppression of 3T3-L1 adipocyte differentiation and altered adipogenesis-related factor expression. In conclusion, exercise training-driven exosomal miR-323-5p suppressed 3T3-L1 adipogenesis by increasing phosph-Ser112PPARγ expression, while phosph-Thr202/Tyr204ERK accumulation inhibited DUSP3 expression.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan; Japan Society for the Promotion of Sci., Tokyo, Japan
| | - Hisashi Kato
- Organization for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Daigo Kemmoku
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Sachiko Yamaguchi
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Lureien Jiang
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Yoshifumi Tsuchiya
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan.
| |
Collapse
|
7
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
8
|
Yu J, Huang D, Liu H, Cai H. Optimizing Conditions of Polyethylene Glycol Precipitation for Exosomes Isolation From MSCs Culture Media for Regenerative Treatment. Biotechnol J 2024; 19:e202400374. [PMID: 39295548 DOI: 10.1002/biot.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes, as a cell-free alternative to MSCs, offer enhanced safety and significant potential in regenerative medicine. However, isolating these exosomes poses a challenge, complicating their broader application. Commonly used methods like ultracentrifugation (UC) and tangential flow filtration are often impractical due to the requirement for costly instruments and ultrafiltration membranes. Additionally, the high cost of commercial kits limits their use in processing large sample volumes. Polyethylene glycol (PEG) precipitation offers a more convenient and cost-effective alternative, but there is a critical need for optimized and standardized isolation protocols using PEG precipitation across different cell types and fluids to ensure consistent quality and yield. In this work, we optimized the PEG precipitation method for exosomes isolation and compared its effectiveness to two commonly used methods: UC and commercial exosome isolation kits (ExoQuick). The recovery rate of the optimized PEG method (about 61.74%) was comparable to that of the commercial ExoQuick kit (about 62.19%), which was significantly higher than UC (about 45.80%). Exosome cargo analysis validated no significant differences in miRNA and protein profiles associated with the proliferation and migration of exosomes isolated by UC and PEG precipitation, which was confirmed by gap closure and CCK8 assays. These findings suggest that PEG-based exosomes isolation could be a highly efficient and high-quality method and may facilitate the development of exosome-based therapies for regenerative medicine.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Daqiang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hanwen Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
9
|
Liu X, Chen Y, Zhang T. Mechanism study of BMSC-exosomes combined with hyaluronic acid gel in the treatment of posttraumatic osteoarthritis. Heliyon 2024; 10:e34192. [PMID: 39100446 PMCID: PMC11295849 DOI: 10.1016/j.heliyon.2024.e34192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Objective To explore the mechanism and efficacy of gel in the treatment of posttraumatic osteoarthritis (PTOA), combined with hyaluronic acid (HA) and bone marrow mesenchymal stem cell exosomes (BMSC-EXOs), and to explain its role in alleviating oxidative stress damage induced by mitochondrial reactive oxygen species (ROS). Methods How is the therapeutic potential of toa influenced by bone marrow mesenchymal stem cells-EXO to be evaluated both in vitro and in vivo. In vitro, BMSC-EXOs were extracted and characterized from rat specimens and labeled with Dil. Rat primary chondrocytes were then isolated to create a cellular PTOA model. BMSC-EXOs + HA group, BMSC-EXOs + HA + 740Y-P group, model group, BMSC-EXOs group, HA group, and control group were included in the cell group, and the function of cartilage matrix and the level of oxidative stress could be evaluated. Cartilage matrix integrity and oxidative stress can be assessed by grouping rats. At the same time, a rat model of ptosis can be established by excision of the anterior cruciate ligament, and joint rehabilitation, with pro-inflammatory and Enzyme-linked immunosorbent assay (ELISA) can be used to determine anti-inflammatory markers. Result sThe combined use of BMSC-EXOs and HA gel was found to significantly reduce oxidative stress in chondrocytes and PTOA rat models, improving cartilage mechanical properties more effectively than BMSC-EXOs alone. Conclusion BMSC-EXOs combined with HA gel offer a promising treatment for PTOA by modulating damage caused by mitochondrial ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Xianqiang Liu
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Yongshuai Chen
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Tao Zhang
- Beichen District Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
10
|
Vizoso FJ, Costa LA, Eiro N. Mesenchymal Stem Cells and Their Derived Products in Ageing and Diseases. Int J Mol Sci 2024; 25:6979. [PMID: 39000084 PMCID: PMC11241289 DOI: 10.3390/ijms25136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Despite the enormous efforts of the pharmaceutical industry in the generation of new drugs (55 new ones last year) [...].
Collapse
Affiliation(s)
- Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijón, Spain
| | | | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijón, Spain
| |
Collapse
|
11
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Perera CJ, Hosen SZ, Khan T, Fang H, Mekapogu AR, Xu Z, Falasca M, Chari ST, Wilson JS, Pirola R, Greening DW, Apte MV. Proteomic profiling of small extracellular vesicles derived from mouse pancreatic cancer and stellate cells: Role in pancreatic cancer. Proteomics 2024; 24:e2300067. [PMID: 38570832 DOI: 10.1002/pmic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.
Collapse
Affiliation(s)
- Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Sm Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Tanzila Khan
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Haoyun Fang
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, M. D Anderson Cancer Centre, University of Texas, Houston, Texas, USA
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Ron Pirola
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
13
|
Wang T, Xue Y, Zhang W, Zheng Z, Peng X, Zhou Y. Collagen sponge scaffolds loaded with Trichostatin A pretreated BMSCs-derived exosomes regulate macrophage polarization to promote skin wound healing. Int J Biol Macromol 2024; 269:131948. [PMID: 38688338 DOI: 10.1016/j.ijbiomac.2024.131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The process of wound healing includes the inflammatory stage, which plays an important role. Macrophages can promote inflammatory response and also promote angiogenesis, wound contraction and tissue remodeling required for wound healing. It is crucial to promote macrophages to polarize from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype at a critical time for the quality of wound healing. Because mesenchymal stem cell-derived exosomes have broad therapeutic prospects in the field of tissue repair and regeneration, in this study, we explored whether trichostatin A pretreated bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (T-Exo) could promote wound healing by binding to biomaterial scaffolds through certain anti-inflammatory effects. In the cell experiment, we established macrophage inflammation model and then treated with T-Exo, and finally detected the expression levels of macrophage polarization proteins CD206, CD86 and TNF-α, iNOS, and Arg-1 by Western Blot and immunofluorescence staining; detected the expression levels of inflammation-related genes TNF-α, iNOS, IL-1β, IL-10 and anti-inflammatory genes CD206 and Arg-1 by qRT-PCR; explored the promoting ability of T-Exo to promote cell migration and tube formation by cell scratch experiment and angiogenesis experiment. The results showed that T-Exo could promote the polarization of M1 macrophages to M2 macrophages, and promote the migration and angiogenesis of HUVECs. Because TSA pretreatment may bring about changes in the content and function of BMSCs-derived exosomes, proteomic analysis was performed on T-Exo and unpretreated BMSCs-derived exosomes (Exo). The results showed that the differentially expressed proteins in T-Exo were related to some pathways that promote angiogenesis, cell migration, proliferation, and re-epithelialization. Then, exosome/collagen sponge (T-Exo/Col) biological scaffolds were prepared, and the physicochemical properties and biocompatibility of the scaffolds were investigated. Animal skin wound models were established, and the therapeutic effect and anti-inflammatory effect of T-Exo/Col in wound repair were evaluated by small animal in vivo imaging, H&E staining, Masson trichrome staining, immunohistochemical staining, Western Blot, and qRT-PCR. The results showed that T-Exo significantly promoted wound healing by inhibiting inflammation, thereby further promoting angiogenesis and collagen formation in vivo. Moreover, the existence of Col scaffold in T-Exo/Col enabled T-Exo to achieve a certain sustained release effect. Finally, we further explored whether TSA exerts beneficial effects by inhibiting HDAC6 gene of BMSCs, but the results showed that knockdown of HDAC6 gene would cause oxidative stress damage to BMSCs, which means that TSA does not produce these beneficial effects by inhibiting HDAC6 gene. What molecular mechanisms TSA exerts beneficial effects through needs to be further elucidated in the future.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Yuanye Xue
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Lange M, Babczyk P, Tobiasch E. Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. Int J Mol Sci 2024; 25:5204. [PMID: 38791243 PMCID: PMC11120942 DOI: 10.3390/ijms25105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Babczyk
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| |
Collapse
|
15
|
Liu Y, Lin S, Xu Z, Wu Y, Wang G, Yang G, Cao L, Chang H, Zhou M, Jiang X. High-Performance Hydrogel-Encapsulated Engineered Exosomes for Supporting Endoplasmic Reticulum Homeostasis and Boosting Diabetic Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309491. [PMID: 38380490 PMCID: PMC11077675 DOI: 10.1002/advs.202309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche. Additionally, the underlying therapeutic mechanism of exosomes is elucidated. The results reveal that exosomes can directly provide recipient cells with SHP2 for the activation of mitophagy and elimination of mtROS, which is the immediate cause of ER dysfunction. To maximize the therapeutic effect of engineered exosomes, a high-performance hydrogel with self-healing, bioadhesive, and exosome-conjugating properties is applied to encapsulate the engineered exosomes for in vivo application. In vivo, evaluation in diabetic bone defect repair models demonstrates that the engineered exosomes delivering hydrogel system intensively enhance osteogenesis. These findings provide crucial insight into the design and biological mechanism of ER homeostasis-based tissue-engineering strategies for diabetic bone regeneration.
Collapse
Affiliation(s)
- Yulan Liu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Sihan Lin
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Zeqian Xu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Yuqiong Wu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Guifang Wang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Guangzheng Yang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Lingyan Cao
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Haishuang Chang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200125China
| | - Mingliang Zhou
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Xinquan Jiang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| |
Collapse
|
16
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
17
|
Ranjbar FE, Ranjbar AE, Malekshahi ZV, Taghdiri-Nooshabadi Z, Faradonbeh DR, Youseflee P, Ghasemi S, Vatanparast M, Azim F, Nooshabadi VT. Bone tissue regeneration by 58S bioactive glass scaffolds containing exosome: an in vivo study. Cell Tissue Bank 2024; 25:389-400. [PMID: 38159136 DOI: 10.1007/s10561-023-10120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Exosomes, the naturally secreted nanocarriers of cells, have recently been demonstrated to have therapeutic benefits in a variety of disease models where parent cells are not present. However, the use of exosomes in bone defect regeneration has been unusual, and little is documented about the underlying processes. In recent study we produced and characterized exosomes derived human endometrial mesenchymal stem stromal cells and 58S bioactive glass scaffolds; in following, in this research exosome loaded scaffolds synthetized and release of exosome, porosity and bioactivity of them were assessed. More over the effect of scaffolds on repair of critical-size bone defects in rat's calvaria was evaluated by histological examination and micro computed tomography (µ CT). The findings confirmed that constructed porous scaffolds consistently release exosomes; additionally, in vivo findings including Hematoxilin & Eosin staining, Immunohistochemistry, Masson's trichrome, histomorphometric analysis, and µ CT clarified that our implant has osteogenic properties. We discovered that Exo-treated scaffolds might promote osteogenesis especially compared to pure scaffolds, indicating that produced scaffolds containing exosomes could be a potential replacement in bone tissue engineering.
Collapse
Affiliation(s)
- Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Afsaneh Esmaeili Ranjbar
- Emergency Department, Ali Ebn Abitaleb Hospital, Faculty of medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Youseflee
- Medical student, Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Medical student, Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fazli Azim
- Isolation Hospital & Infections Treatment Center (IHITC), MNHSR&C, Islamabad, Pakistan
| | | |
Collapse
|
18
|
Zheng X, Ai H, Qian K, Li G, Zhang S, Zou Y, Lei C, Fu W, Hu S. Small extracellular vesicles purification and scale-up. Front Immunol 2024; 15:1344681. [PMID: 38469310 PMCID: PMC10925713 DOI: 10.3389/fimmu.2024.1344681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted by cells. With advances in the study of sEVs, they have shown great potential in the diagnosis and treatment of disease. However, sEV therapy usually requires a certain dose and purity of sEVs to achieve the therapeutic effect, but the existing sEV purification technology exists in the form of low yield, low purity, time-consuming, complex operation and many other problems, which greatly limits the application of sEVs. Therefore, how to obtain high-purity and high-quality sEVs quickly and efficiently, and make them realize large-scale production is a major problem in current sEV research. This paper discusses how to improve the purity and yield of sEVs from the whole production process of sEVs, including the upstream cell line selection and cell culture process, to the downstream isolation and purification, quality testing and the final storage technology.
Collapse
Affiliation(s)
- Xinya Zheng
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongru Ai
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Kewen Qian
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Yitan Zou
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fahe Life Science and Technology Inc., Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Civelek E, Kabatas S, Savrunlu EC, Diren F, Kaplan N, Ofluoğlu D, Karaöz E. Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study. World J Stem Cells 2024; 16:19-32. [PMID: 38292440 PMCID: PMC10824039 DOI: 10.4252/wjsc.v16.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses. Currently, there is a lack of effective pharmacological interventions for nerve damage, despite the existence of several small compounds, peptides, hormones, and growth factors that have been suggested as potential enhancers of neuron regeneration. Despite the objective of achieving full functional restoration by surgical intervention, the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries. AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage. METHODS A male individual, aged 24, who is right-hand dominant and an immigrant, arrived with an injury caused by a knife assault. The cut is located on the left arm, specifically below the elbow. The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage. The sural autograft was utilized for repair, followed by the application of 1 mL of mesenchymal stem cell-derived exosome, comprising 5 billion microvesicles. This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway. The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing. RESULTS The duration of the patient's follow-up period was 180 d. An increasing Tinel's sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting. Upon the conclusion of the 6-mo post-treatment period, an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve. This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale. The results indicated that the level of improvement in motor function was classified as M5, denoting an excellent outcome. Additionally, the level of improvement in sensory function was classified as S3+, indicating a good outcome. It is noteworthy that these assessments were conducted in the absence of physical therapy. At the 10th wk post-injury, despite the persistence of substantial axonal damage, the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography (EMG). In contrast to the preceding. EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up, indicating ongoing regeneration. CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage, as well as the experimental and therapy approaches delineated in this investigation, holds the potential to catalyze future clinical progress.
Collapse
Affiliation(s)
- Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey.
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Çorlu 59860, Tekirdağ, Turkey
| | - Demet Ofluoğlu
- Department of Physical Medicine and Rehabilitation, Ofluoğlu Klinik, Göztepe 34728, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Beşiktaş 34340, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Zeytinburnu 34010, Istanbul, Turkey
- Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, Beşiktaş 34340, Istanbul, Turkey
| |
Collapse
|
20
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Li Y, Cao H, Qiu D, Wang N, Wang Y, Wen T, Wang J, Zhu H. The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in Helicobacter pylori infection. Cancer Cell Int 2023; 23:272. [PMID: 37974232 PMCID: PMC10652618 DOI: 10.1186/s12935-023-03131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. METHODS EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. RESULTS A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. CONCLUSION This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, 215300, People's Republic of China
| | - Nan Wang
- The School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Tingting Wen
- Department of Pharmacy, First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
22
|
Mendes-Pinheiro B, Campos J, Marote A, Soares-Cunha C, Nickels SL, Monzel AS, Cibrão JR, Loureiro-Campos E, Serra SC, Barata-Antunes S, Duarte-Silva S, Pinto L, Schwamborn JC, Salgado AJ. Treating Parkinson's Disease with Human Bone Marrow Mesenchymal Stem Cell Secretome: A Translational Investigation Using Human Brain Organoids and Different Routes of In Vivo Administration. Cells 2023; 12:2565. [PMID: 37947643 PMCID: PMC10650433 DOI: 10.3390/cells12212565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sarah L. Nickels
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Anna S. Monzel
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|
23
|
Tang L, Li J, Hu C, Zhou B, Lam PKS, Chen L. Isothiazolinone dysregulates the pattern of miRNA secretion: Endocrine implications for neurogenesis. ENVIRONMENT INTERNATIONAL 2023; 181:108308. [PMID: 37939439 DOI: 10.1016/j.envint.2023.108308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Isothiazolinones are extensively used as preservatives and disinfectants in personal care products and household items. The unintended exposure of humans and animals to isothiazolinones has led to increasing concerns about their health hazards. The compound 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a representative isothiazolinone, can simultaneously induce endocrine disruption and neurotoxicity. However, the underlying mechanisms and linkages remain unclear. Our purpose was to elucidate the role of miRNAs as the signaling communicator during the crosstalk between endocrine and nervous systems in response to DCOIT stress. H295R cells were exposed to DCOIT, after which the alterations in intracellular miRNA composition, exosome secretory machinery, and extracellular miRNA composition were examined. Then, a PC12 cell line of neuronal differentiation potential was cultured with the extract of extracellular miRNAs from DCOIT-exposed H295R cell media to explore the functional implications in neurogenesis. The results showed that DCOIT exposure resulted in 349 differentially expressed miRNAs (DEMs) in H295R cells, which were closely related to the regulation of multiple endocrine pathways. In the media of H295R cells exposed to DCOIT, 66 DEMs were identified, showing distinct compositions compared to intracellular DEMs with only 2 common DEMs (e.g., novel-m0541-5p of inverse changes in the cell and medium). Functional annotation showed that extracellular DEMs were not only associated with sex endocrine synchronization, but were also implicated in nervous system development, morphogenesis, and tumor. Incubating PC12 cells with the extracellular exosomes (containing miRNAs) from DCOIT-exposed H295R cells significantly increased the neurite growth, promoted neuronal differentiation, and shaped the transcriptomic fingerprint, implying that miRNAs may communicate transduction of toxic information of DCOIT in endocrine system to neurons. Overall, the present findings provide novel insight into the endocrine disrupting and neural toxicity of DCOIT. The miRNAs have the potential to serve as the epigenetic mechanism of systems toxicology.
Collapse
Affiliation(s)
- Lizhu Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
24
|
Lu W, Qu J, Yan L, Tang X, Wang X, Ye A, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in liver cirrhosis: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:301. [PMID: 37864199 PMCID: PMC10590028 DOI: 10.1186/s13287-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
AIM Although the efficacy and safety of mesenchymal stem cell therapy for liver cirrhosis have been demonstrated in several studies. Clinical cases of mesenchymal stem cell therapy for patients with liver cirrhosis are limited and these studies lack the consistency of treatment effects. This article aimed to systematically investigate the efficacy and safety of mesenchymal stem cells in the treatment of liver cirrhosis. METHOD The data source included PubMed/Medline, Web of Science, EMBASE, and Cochrane Library, from inception to May 2023. Literature was screened by the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the data from each study's outcome indicators were extracted for a combined analysis. Outcome indicators of the assessment included liver functions and adverse events. Statistical analysis was performed using Review Manager 5.4. RESULTS A total of 11 clinical trials met the selection criteria. The pooled analysis' findings demonstrated that both primary and secondary indicators had improved. Compared to the control group, infusion of mesenchymal stem cells significantly increased ALB levels in 2 weeks, 1 month, 3 months, and 6 months, and significantly decreased MELD score in 1 month, 2 months, and 6 months, according to a subgroup analysis using a random-effects model. Additionally, the hepatic arterial injection favored improvements in MELD score and ALB levels. Importantly, none of the included studies indicated any severe adverse effects. CONCLUSION The results showed that mesenchymal stem cell was effective and safe in the treatment of liver cirrhosis, improving liver function (such as a decrease in MELD score and an increase in ALB levels) in patients with liver cirrhosis and exerting protective effects on complications of liver cirrhosis and the incidence of hepatocellular carcinoma. Although the results of the subgroup analysis were informative for the selection of mesenchymal stem cells for clinical treatment, a large number of high-quality randomized controlled trials validations are still needed.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiayang Qu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Anqi Ye
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
25
|
Olumesi KR, Goldberg DJ. A review of exosomes and their application in cutaneous medical aesthetics. J Cosmet Dermatol 2023; 22:2628-2634. [PMID: 37498301 DOI: 10.1111/jocd.15930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Exosomes have gained recent popularity in aesthetic medicine; however, there is still a dearth of understanding on the etiology of exosomes, their physiologic function, and regenerative capabilities. OBJECTIVE The purpose of this article is to summarize some of the physiologic functions of exosomes, their mechanistic role, and current commercial landscape in regenerative aesthetics. METHODS A Medline search was conducted with the keywords, exosomes, extracellular vesicles, stem cells, skin rejuvenation, and cutaneous aesthetics. MeSH term "exosomes" filtered by relevant subheadings was also utilized. Pertinent original articles encompassing animal studies, cell studies, and human studies were included. We restricted to articles published in the last 10 years. RESULTS Pre-clinical studies have demonstrated the therapeutic capabilities of exosomes in wound healing, scar modulation, alopecia, and skin rejuvenation. Exosomes primarily exert their effects in a paracrine function and modulate the interactions between keratinocytes and other cells of the skin. Exogenous exosomes can be utilized in a variety of settings to bring about desired aesthetic outcomes and to date, has only been approved for topical administration. CONCLUSION The safety, efficacy, potency, and dosages of exosomes remains to be determined via robust human clinical trials. Isolation and purification techniques have yet to be standardized, and this would be required for regulatory approval of all delivery modes. Overall, exosomes deliver yet another therapeutic option in regenerative aesthetics.
Collapse
Affiliation(s)
- Kehinde Raji Olumesi
- Skin Laser and Surgery Specialists- A Division of Schweiger Dermatology Group, Hackensack, New Jersey, USA
| | - David J Goldberg
- Skin Laser and Surgery Specialists- A Division of Schweiger Dermatology Group, Hackensack, New Jersey, USA
| |
Collapse
|
26
|
Geng Y, Long X, Zhang Y, Wang Y, You G, Guo W, Zhuang G, Zhang Y, Cheng X, Yuan Z, Zan J. FTO-targeted siRNA delivery by MSC-derived exosomes synergistically alleviates dopaminergic neuronal death in Parkinson's disease via m6A-dependent regulation of ATM mRNA. J Transl Med 2023; 21:652. [PMID: 37737187 PMCID: PMC10515429 DOI: 10.1186/s12967-023-04461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), characterized by the progressive loss of dopaminergic neurons in the substantia nigra and striatum of brain, seriously threatens human health, and is still lack of effective treatment. Dysregulation of N6-methyladenosine (m6A) modification has been implicated in PD pathogenesis. However, how m6A modification regulates dopaminergic neuronal death in PD remains elusive. Mesenchymal stem cell-derived exosomes (MSC-Exo) have been shown to be effective for treating central nervous disorders. We thus propose that the m6A demethylase FTO-targeted siRNAs (si-FTO) may be encapsulated in MSC-Exo (Exo-siFTO) as a synergistic therapy against dopaminergic neuronal death in PD. METHODS In this study, the effect of m6A demethylase FTO on dopaminergic neuronal death was evaluated both in vivo and in vitro using a MPTP-treated mice model and a MPP + -induced MN9D cellular model, respectively. The mechanism through which FTO influences dopaminergic neuronal death in PD was investigated with qRT-PCR, western blot, immumohistochemical staining, immunofluorescent staining and flow cytometry. The therapeutic roles of MSC-Exo containing si-FTO were examined in PD models in vivo and in vitro. RESULTS The total m6A level was significantly decreased and FTO expression was increased in PD models in vivo and in vitro. FTO was found to promote the expression of cellular death-related factor ataxia telangiectasia mutated (ATM) via m6A-dependent stabilization of ATM mRNA in dopaminergic neurons. Knockdown of FTO by si-FTO concomitantly suppressed upregulation of α-Synuclein (α-Syn) and downregulation of tyrosine hydroxylase (TH), and alleviated neuronal death in PD models. Moreover, MSC-Exo were utilized to successfully deliver si-FTO to the striatum of animal brain, resulting in the significant suppression of α-Syn expression and dopaminergic neuronal death, and recovery of TH expression in the brain of PD mice. CONCLUSIONS MSC-Exo delivery of si-FTO synergistically alleviates dopaminergic neuronal death in PD via m6A-dependent regulation of ATM mRNA.
Collapse
Affiliation(s)
- Yan Geng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gaoming Zhuang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Yuanyuan Zhang
- The affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Xiao Cheng
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Li X, Hu X, Chen Q, Jiang T. Bone marrow mesenchymal stem cell-derived exosomes carrying E3 ubiquitin ligase ITCH attenuated cardiomyocyte apoptosis by mediating apoptosis signal-regulated kinase-1. Pharmacogenet Genomics 2023; 33:117-125. [PMID: 37306338 DOI: 10.1097/fpc.0000000000000499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have been verified to perform an effective role in treating acute myocardial infarction (MI). Herein, we aimed to investigate the role of BMSC-derived exosomes carrying itchy E3 ubiquitin ligase (ITCH) in MI and the underlying mechanism involved. METHODS BMSCs were isolated from rat bone marrow and exosomes were extracted using ultra-high speed centrifugation. Exosomes uptake by cardiomyoblasts was determined by PKH-67 staining. Rat cardiomyoblast cell line H9C2 was stimulated by hypoxia, as in vitro model. H9C2 cell apoptosis was determined by flow cytometry. Cell viability was examined by cell counting kit-8 assay. Western blotting was performed to determine the expression of ITCH, apoptosis signal-regulated kinase-1 (ASK1), and apoptotic-related protein cleaved-caspase 3 and Bcl-2. Ubiquitination assay was employed to measure the levels of ASK1 ubiquitination. RESULTS Exosomes derived from BMSCs were endocytosed by H9C2 cardiomyoblasts. BMSC-Exo downregulated cleaved-caspase 3 expression, upregulated Bcl-2 expression, further suppressed H9C2 cell apoptosis under hypoxia treatment, meanwhile the expression of ASK1 was downregulated, and similar effects were observed in BMSC-cultured supernatant (BMSC-S). However, these effects were reversed by exosome inhibitor GW4869. BMSC-derived exosomes enhanced ASK1 ubiquitination and degradation. Mechanically, exosomes of ITCH-knockdown BMSCs promoted H9C2 cell apoptosis and upregulated ASK1 expression. Overexpression of ITCH enhanced ASK1 ubiquitination and degradation. Further, the protein expression of ASK1 and cleaved-caspase 3 was upregulated and Bcl-2 protein expression was downregulated. ITCH-knockdown BMSC exosomes increased cardiomyoblast apoptosis. CONCLUSION BMSC-derived exosomes carrying ITCH suppressed cardiomyoblast apoptosis, promoted cardiomyoblast viability, and improved myocardial injury in AMI by mediating ASK1 ubiquitination.
Collapse
Affiliation(s)
- Xuejun Li
- Department of Cardiac Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | | |
Collapse
|
28
|
Nie W, Huang X, Zhao L, Wang T, Zhang D, Xu T, Du L, Li Y, Zhang W, Xiao F, Wang L. Exosomal miR-17-92 derived from human mesenchymal stem cells promotes wound healing by enhancing angiogenesis and inhibiting endothelial cell ferroptosis. Tissue Cell 2023; 83:102124. [PMID: 37269748 DOI: 10.1016/j.tice.2023.102124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos. METHODS Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers. RESULTS MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.
Collapse
Affiliation(s)
- Wenbo Nie
- Laboratory Management Office, Jilin University, Changchun, Jilin 130021, PR China; Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Xuemiao Huang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lijing Zhao
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Taiwei Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxin Xu
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lin Du
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Yuxiang Li
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Weiyuan Zhang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Lisheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
29
|
Yang L, Fang C, Song C, Zhang Y, Zhang R, Zhou S. Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5 + Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Eng Regen Med 2023; 20:739-751. [PMID: 37326937 PMCID: PMC10352229 DOI: 10.1007/s13770-023-00541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Radiation enteritis (RE) is a common complication of abdominal or pelvic radiotherapy, which when severe, could be life-threatening. Currently, there are no effective treatments. Studies have shown that mesenchymal stem cells (MSCs)-derived exosomes (MSC-exos) exhibit promising therapeutic effects in inflammatory diseases. However, the specific role of MSC-exos in RE and the regulatory mechanisms remain elusive. METHODS In vivo assay was carried out by injecting MSC-exos into the total abdominal irradiation (TAI)-induced RE mouse model. For in vitro assay, Lgr5-positive intestinal epithelial stem cells (Lgr5+ IESC) were extracted from mice, followed by irradiation along with MSC-exos treatment. HE staining was performed to measure histopathological changes. mRNA expression of inflammatory factors TNF-α and IL-6 and stem cell markers LGR5, and OCT4 were quantified by RT-qPCR. EdU and TUNEL staining was performed to estimate cell proliferation and apoptosis. MiR-195 expression in TAI mice and radiation-induced Lgr5+ IESC was tested. RESULTS We found that the injection of MSC-exos inhibited inflammatory reaction, increased stem cell marker expression, and maintained intestinal epithelial integrity in TAI mice. Furthermore, MSC-exos treatment increased the proliferation and simultaneously suppressed apoptosis in radiation-stimulated Lgr5+ IESC. MiR-195 expression increased by radiation exposure was decreased by MSC-exos therapy. MiR-195 overexpression facilitated the progress of RE by counteracting the effect of MSC-exos. Mechanistically, the Akt and Wnt/β-catenin pathways inhibited by MSC-exos were activated by miR-195 upregulation. CONCLUSION MSC-Exos are effective in treating RE and are essential for the proliferation and differentiation of Lgr5+ IESCs. Moreover, MSC-exos mediates its function by regulating miR-195 Akt β-catenin pathways.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Caifang Song
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Yaya Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
30
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
31
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|
33
|
Lu Y, Mai Z, Cui L, Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res Ther 2023; 14:55. [PMID: 36978165 PMCID: PMC10053084 DOI: 10.1186/s13287-023-03275-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mesenchymal stem cell-based therapy has become an effective therapeutic approach for bone regeneration. However, there are still limitations in successful clinical translation. Recently, the secretome of mesenchymal stem cells, especially exosome, plays a critical role in promoting bone repair and regeneration. Exosomes are nanosized, lipid bilayer-enclosed structures carrying proteins, lipids, RNAs, metabolites, growth factors, and cytokines and have attracted great attention for their potential application in bone regenerative medicine. In addition, preconditioning of parental cells and exosome engineering can enhance the regenerative potential of exosomes for treating bone defects. Moreover, with recent advancements in various biomaterials to enhance the therapeutic functions of exosomes, biomaterial-assisted exosomes have become a promising strategy for bone regeneration. This review discusses different insights regarding the roles of exosomes in bone regeneration and summarizes the applications of engineering exosomes and biomaterial-assisted exosomes as safe and versatile bone regeneration agent delivery platforms. The current hurdles of transitioning exosomes from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
34
|
Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against Parkinson's disease. Neurol Sci 2023:10.1007/s10072-023-06706-y. [PMID: 36949298 DOI: 10.1007/s10072-023-06706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
Parkinson's disease (PD) is a chronic, progressive, neurodegenerative disease. The predominant pathology of PD is the loss of dopaminergic cells in the substantia nigra. Cell transplantation is a strategy with significant potential for treating PD; mesenchymal stem cells (MSCs) are a tremendous therapeutic cell source because they are easily accessible. MSC-derived exosomes with potential protective action in lesioned sites serve as an essential promoter of neuroprotection, and neurodifferentiation, by modulating neural stem cells, neurons, glial cells, and axonal growth in vitro and in vivo environments. The biological properties of MSC-derived exosomes have been proposed as a beneficial tool in different pathological conditions, including PD. Therefore, in this review, we assort the current understanding of MSC-derived exosomes as a new possible therapeutic strategy for PD by providing an overview of the potential role of miRNAs as a component of exosomes in the cellular and molecular basis of PD.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neda Yazdanfar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Karami Fath M, Moayedi Banan Z, Barati R, Mohammadrezakhani O, Ghaderi A, Hatami A, Ghiabi S, Zeidi N, Asgari K, Payandeh Z, Barati G. Recent advancements to engineer mesenchymal stem cells and their extracellular vesicles for targeting and destroying tumors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:1-16. [PMID: 36781149 DOI: 10.1016/j.pbiomolbio.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Mesenchymal stem cells (MSCs) have the ability to migrate into tumor sites and release growth factors to modulate the tumor microenvironment. MSC therapy have shown a dual role in cancers, promoting or inhibiting. However, MSCs could be used as a carrier of anticancer agents for targeted tumor therapy. Recent technical improvements also allow engineering MSCs to improve tumor-targeting properties, protect anticancer agents, and decrease the cytotoxicity of drugs. While some of MSC functions are mediated through their secretome, MSCs-derived extracellular vesicles (EVs) are also proposed as a possible viechle for cancer therapy. EVs allow efficient loading of anticancer agents and have an intrinsic ability to target tumor cells, making them suitable for targeted therapy of tumors. In addition, the specificity and selectivity of EVs to the tumor sites could be enhanced by surface modification. In this review, we addressed the current approaches used for engineering MSCs and EVs to effectively target tumor sites and deliver anticancer agents.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Moayedi Banan
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Barati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadrezakhani
- Faculty of Pharmacy, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aliasghar Ghaderi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hatami
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Zeidi
- Division of Pharmaceutical Science, Long Island University, Brooklyn, NY, USA
| | - Katayoon Asgari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
36
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X, Xu J. Mesenchymal Stromal Cell-Based Targeted Therapy Pancreatic Cancer: Progress and Challenges. Int J Mol Sci 2023; 24:ijms24043559. [PMID: 36834969 PMCID: PMC9966548 DOI: 10.3390/ijms24043559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high mortality rates and poor prognoses. Despite rapid progress in the diagnosis and treatment of pancreatic cancer, the efficacy of current therapeutic strategies remains limited. Hence, better alternative therapeutic options for treating pancreatic cancer need to be urgently explored. Mesenchymal stromal cells (MSCs) have recently received much attention as a potential therapy for pancreatic cancer owing to their tumor-homing properties. However, the specific antitumor effect of MSCs is still controversial. To this end, we aimed to focus on the potential anti-cancer treatment prospects of the MSC-based approach and summarize current challenges in the clinical application of MSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| |
Collapse
|
38
|
Cha KY, Cho W, Park S, Ahn J, Park H, Baek I, Lee M, Lee S, Arai Y, Lee SH. Generation of bioactive MSC-EVs for bone tissue regeneration by tauroursodeoxycholic acid treatment. J Control Release 2023; 354:45-56. [PMID: 36586671 DOI: 10.1016/j.jconrel.2022.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized carriers that reflect the parent cell's information and are known to mediate cell-cell communication. In order to overcome the disadvantages of mesenchymal stem cells (MSCs) in cell therapy, such as unexpected differentiation leading to tumorization, immune rejection, and other side effects, EVs derived from MSCs (MSC-EVs) with the tissue regenerative function have been studied as new cell-free therapeutics. However, therapeutic applications of EVs require overcoming several challenges. First, the production efficiency of MSC-EVs should be increased at least as much as the quantity of them are required to their clinical application; second, MSC-EVs needs to show various functionality further, thereby increasing tissue regeneration efficiency. In this study, we treated tauroursodeoxycholic acid (TUDCA), a biological derivative known to regulate cholesterol, to MSCs and investigated whether TUDCA treatment would be able to increase EV production efficiency and tissue regenerative capacity of EVs. Indeed, it appears that TUDCA priming to MSC increases the yield of MSC-EVs >2 times by reducing the cellular cholesterol level in MSCs and increasing the exocytosis-related CAV1 expression. Interestingly, it was found that the EVs derived from TUDCA-primed MSCs (T-EV) contained higher amounts of anti-inflammatory cytokines (IL1RN, IL6, IL10, and IL11) and osteogenic proteins (ALP, RUNX2, BMP2, BMPR1, and BMPR2) than those in control MSC-EVs (C-EV). Besides, it was shown that T-EV not only regulated M1/M2 macrophages differentiation of monocytes, also effectively increased the osteogenic differentiation of MSCs as well as bone tissue regeneration in a bone defect rat model. Based on these results, it is concluded that TUDCA treatment to MSC as a new approach endows EV with high-yield production and functionality. Thus, we strongly believe T-EV would be a powerful therapeutic material for bone tissue regeneration and potentially could be expanded to other types of tissue regeneration for clinical applications.
Collapse
Affiliation(s)
- Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Woongjin Cho
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Hyoeun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Minju Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Sunjun Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea.
| |
Collapse
|
39
|
Dai Y, Chen Y, Hu Y, Zhang L. Current knowledge and future perspectives on exosomes in the field of regenerative medicine: a bibliometric analysis. Regen Med 2023; 18:123-136. [PMID: 36325823 DOI: 10.2217/rme-2022-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: This study aimed to use bibliometric analysis to qualitatively and quantitatively evaluate the research of exosomes in the field of regenerative medicine and to provide research hotspots and trends in this field. Materials & methods: Bibliometric analysis and data presentation were performed by VOSviewer and Microsoft Excel. Results: China was the major contributor to research in this field and enjoys a high reputation in academia. The highest contributing institution is Shanghai Jiao Tong University. Research hotspots included exosome-mediated neurovascular regeneration, exosome mechanism research, exosome-mediated cartilage regeneration and repair and exosome-mediated cardiac regeneration. Research was trending in the treatment of osteoarthritis, knee disease and cartilage regeneration and repair. Conclusion: This study provides a panoramic view of the application of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Yuxuan Dai
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yu Chen
- Division of Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiming Hu
- Department of Plastic & Aesthetic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
40
|
Xiong QH, Zhao L, Wan GQ, Hu YG, Li XL. Exosomes derived from mesenchymal stem cells overexpressing miR-210 inhibits neuronal inflammation and contribute to neurite outgrowth through modulating microglia polarization. Open Med (Wars) 2023; 18:20220618. [PMID: 36660450 PMCID: PMC9816459 DOI: 10.1515/med-2022-0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2023] Open
Abstract
Inflammatory responses play a critical role in the progress of neurodegenerative disorders. MSC-Exos is considered to have an anti-inflammatory effect on the treatment strategy for brain injury. However, the therapeutic effect and possible mechanism of Exosomal miR-210 on microglia polarization-induced neuroinflammation and neurite outgrowth have not been reported. MSC-Exos were isolated by ultracentrifugation, identified by Nanosight NS300, transmission electron microscopy, and western bolt. In vitro, to explore the protective mechanism of MSC-Exos against neuroinflammation, the microglial BV2 cell was exposed to lipopolysaccharide to assess inflammatory changes. The intake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-MSC-Exos into microglia was observed by fluorescence microscopy. The results showed that Exosomal miR-210 treatment significantly inhibited the production of nitric oxide and pro-inflammatory cytokines. Exosomal miR-210 treatment also increased the number of M2 microglia cells and inhibited M1 microglia polarization. In addition, western blot demonstrated that Exosomal miR-210 reduced neuronal apoptosis. Thus, Exosomal miR-210 attenuated neuronal inflammation and promoted neurite outgrowth. Exosomal miR-210 from MSCs attenuated neuronal inflammation and contributed to neurogenesis possibly by inhibiting microglial M1 polarization.
Collapse
Affiliation(s)
- Qing-hua Xiong
- Department of Plastic and Maxillofacial Surgery, Jiangxi People’s Hospital/Jiangxi Province Key Laboratory of Maxillofacial Plastic and Reconstruction, Nanchang, China
| | - Lei Zhao
- Department of Plastic and Maxillofacial Surgery, Jiangxi People’s Hospital/Jiangxi Province Key Laboratory of Maxillofacial Plastic and Reconstruction, Nanchang, China
| | - Guan-qun Wan
- Department of Plastic and Maxillofacial Surgery, Jiangxi People’s Hospital/Jiangxi Province Key Laboratory of Maxillofacial Plastic and Reconstruction, Nanchang, China
| | - Yun-gang Hu
- Department of Plastic and Maxillofacial Surgery, Jiangxi People’s Hospital/Jiangxi Province Key Laboratory of Maxillofacial Plastic and Reconstruction, Nanchang, China
| | - Xiao-lin Li
- Department of Plastic and Maxillofacial Surgery, Jiangxi People’s Hospital/Jiangxi Province Key Laboratory of Maxillofacial Plastic and Reconstruction, Nanchang, China
| |
Collapse
|
41
|
Adelipour M, Lubman DM, Kim J. Potential applications of mesenchymal stem cells and their derived exosomes in regenerative medicine. Expert Opin Biol Ther 2023; 23:491-507. [PMID: 37147781 PMCID: PMC10330313 DOI: 10.1080/14712598.2023.2211203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Regenerative medicine involves the replacement of damaged cells, tissues, or organs to restore normal function. Mesenchymal stem cells (MSCs) and exosomes secreted by MSCs have unique advantages that make them a suitable candidate in the field of regenerative medicine. AREAS COVERED This article provides a comprehensive overview of regenerative medicine, focusing on the use of MSCs and their exosomes as potential therapies for replacing damaged cells, tissues, or organs. This article discusses the distinct advantages of both MSCs and their secreted exosomes, including their immunomodulatory effects, lack of immunogenicity, and recruitment to damaged areas. While both MSCs and exosomes have these advantages, MSCs also have the unique ability to self-renew and differentiate. This article also assesses the current challenges associated with the application of MSCs and their secreted exosomes in therapy. We have reviewed proposed solutions for improving MSC or exosome therapy, including ex-vivo preconditioning strategies, genetic modification, and encapsulation. Literature search was conducted using Google Scholar and PubMed databases. EXPERT OPINION Providing insight into the future development of MSC and exosome-based therapies and to encourage the scientific community to focus on the identified gaps, develop appropriate guidelines, and enhance the clinical application of these therapies.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Marote A, Santos D, Mendes-Pinheiro B, Serre-Miranda C, Anjo SI, Vieira J, Ferreira-Antunes F, Correia JS, Borges-Pereira C, Pinho AG, Campos J, Manadas B, Teixeira MR, Correia-Neves M, Pinto L, Costa PM, Roybon L, Salgado AJ. Cellular Aging Secretes: a Comparison of Bone-Marrow-Derived and Induced Mesenchymal Stem Cells and Their Secretome Over Long-Term Culture. Stem Cell Rev Rep 2023; 19:248-263. [PMID: 36152233 DOI: 10.1007/s12015-022-10453-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) hold promising therapeutic potential in several clinical applications, mainly due to their paracrine activity. The implementation of future secretome-based therapeutic strategies requires the use of easily accessible MSCs sources that provide high numbers of cells with homogenous characteristics. MSCs obtained from induced pluripotent stem cells (iMSCs) have been put forward as an advantageous alternative to the gold-standard tissue sources, such as bone marrow (BM-MSCs). In this study, we aimed at comparing the secretome of BM-MSCs and iMSCs over long-term culture. For that, we performed a broad characterization of both sources regarding their identity, proteomic secretome analysis, as well as replicative senescence and associated phenotypes, including its effects on MSCs secretome composition and immunomodulatory action. Our results evidence a rejuvenated phenotype of iMSCs, which is translated into a superior proliferative capacity before the induction of replicative senescence. Despite this significant difference between iMSCs and BM-MSCs proliferation, both untargeted and targeted proteomic analysis revealed a similar secretome composition for both sources in pre-senescent and senescent states. These results suggest that shifting from the use of BM-MSCs to a more advantageous source, like iMSCs, may yield similar therapeutic effects as identified over the past years for this gold-standard MSC source.
Collapse
Affiliation(s)
- Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Joana Vieira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal.,Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (HealthResearch Network), Portuguese Oncology Institute of Porto (IPO Porto) / PortoComprehensive Cancer Center, Porto, Portugal
| | - Filipa Ferreira-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Caroline Borges-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia G Pinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Manuel R Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal.,Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (HealthResearch Network), Portuguese Oncology Institute of Porto (IPO Porto) / PortoComprehensive Cancer Center, Porto, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Behavioral and Molecular Lab (Bn'ML), University of Minho, Braga, Portugal
| | - Pedro M Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., Guimarães, Portugal
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Lund, Sweden.,Strategic Research Area MultiPark, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
43
|
Graça AL, Gomez-Florit M, Gomes ME, Docheva D. Tendon Aging. Subcell Biochem 2023; 103:121-147. [PMID: 37120467 DOI: 10.1007/978-3-031-26576-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tendons are mechanosensitive connective tissues responsible for the connection between muscles and bones by transmitting forces that allow the movement of the body, yet, with advancing age, tendons become more prone to degeneration followed by injuries. Tendon diseases are one of the main causes of incapacity worldwide, leading to changes in tendon composition, structure, and biomechanical properties, as well as a decline in regenerative potential. There is still a great lack of knowledge regarding tendon cellular and molecular biology, interplay between biochemistry and biomechanics, and the complex pathomechanisms involved in tendon diseases. Consequently, this reflects a huge need for basic and clinical research to better elucidate the nature of healthy tendon tissue and also tendon aging process and associated diseases. This chapter concisely describes the effects that the aging process has on tendons at the tissue, cellular, and molecular levels and briefly reviews potential biological predictors of tendon aging. Recent research findings that are herein reviewed and discussed might contribute to the development of precision tendon therapies targeting the elderly population.
Collapse
Affiliation(s)
- Ana Luísa Graça
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Manuela Estima Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
44
|
Wu Z, Li W, Cheng S, Liu J, Wang S. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102616. [PMID: 36374915 DOI: 10.1016/j.nano.2022.102616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, myocardial regeneration through stem cell transplantation and tissue engineering has been viewed as a promising technique for treating myocardial infarction. As a result, the researcher attempts to see whether co-culturing modified mesenchymal stem cells with Au@Ch-SF macro-hydrogel and H9C2 may help with tissue regeneration and cardiac function recovery. The gold nanoparticles (Au) incorporated into the chitosan-silk fibroin hydrogel (Au@Ch-SF) were validated using spectral and microscopic examinations. The most essential elements of hydrogel groups were investigated in detail, including weight loss, mechanical strength, and drug release rate. Initially, the cardioblast cells (H9C2 cells) was incubated with Au@Ch-SF macro-hydrogel, followed by mesenchymal stem cells (2 × 105) were transplanted into the Au@Ch-SF macro-hydrogel+H9C2 culture at the ratio of 2:1. Further, cardiac phenotype development, cytokines expression and tissue regenerative performance of modified mesenchymal stem cells treatment were studied through various in vitro and in vivo analyses. The Au@Ch-SF macro-hydrogel gelation time was much faster than that of Ch and Ch-SF hydrogels, showing that Ch and SF exhibited greater intermolecular interactions. The obtained Au@Ch-SF macro-hydrogel has no toxicity on mesenchymal stem cells (MS) or cardiac myoblast (H9C2) cells, according to the biocompatibility investigation. MS cells co-cultured with Au@Ch-SF macro-hydrogel and H9C2 cells also stimulated cardiomyocyte fiber restoration, which has been confirmed in myocardial infarction rats using -MHC and Cx43 myocardial indicators. We developed a novel method of co-cultured therapy using MS cells, Au@Ch-SF macro-hydrogel, and H9C2 cells which could promote the regenerative activities in myocardial ischemia cells. These study findings show that co-cultured MS therapy might be effective for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China.
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| |
Collapse
|
45
|
Niitsu Y, Komiya C, Takeuchi A, Hara K, Horino M, Aoki J, Okazaki R, Murakami M, Tsujimoto K, Ikeda K, Yamada T. Increased serum extracellular vesicle miR-144-3p and miR-486a-3p in a mouse model of adipose tissue regeneration promote hepatocyte proliferation by targeting Txnip. PLoS One 2023; 18:e0284989. [PMID: 37141242 PMCID: PMC10159167 DOI: 10.1371/journal.pone.0284989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
Adipose-derived stem cells are expected to be applied to regenerative medicine for various incurable diseases including liver cirrhosis. Although microRNAs contained in extracellular vesicles (EV-miRNAs) have been implicated in their regenerative effects, the precise mechanism has not been fully elucidated. Tamoxifen-inducible adipocyte-specific insulin receptor knockout (iFIRKO) mice are known to exhibit acute adipose tissue regeneration with increased numbers of adipose stem and progenitor cells (ASPCs). Because adipose tissue is the major source of circulating EV-miRNAs, we investigated alterations in serum EV-miRNAs in iFIRKO mice. A comprehensive analysis using miRNA sequencing on serum EVs revealed that most EV-miRNAs were decreased due to the loss of mature adipocytes, but there were 19 EV-miRNAs that were increased in the serum of iFIRKO mice. Among them, miR-144-3p and miR-486a-3p were found to be increased in the liver as well as serum EVs. While the expression levels of pri-miR-144-3p and pri-miR-486a-3p were not increased in the liver, they were elevated in the adipose tissue, suggesting that these miRNAs may be delivered from ASPCs increased in the adipose tissue to the liver via EVs. Increased hepatocyte proliferation was observed in the liver of iFIRKO mice, and we found that both miR-144-3p and miR-486a-3p have a function to promote hepatocyte proliferation by suppressing Txnip expression as a target gene. miR-144-3p and miR-486a-3p can be candidate therapeutic tools for conditions requiring hepatocyte proliferation, such as liver cirrhosis, and our current study suggests that examining EV-miRNAs secreted in vivo may lead to the discovery of miRNAs involved in regenerative medicine that have not been identified by in vitro analysis.
Collapse
Affiliation(s)
- Yoshihiro Niitsu
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunari Hara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Horino
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Aoki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rei Okazaki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
46
|
Ren SW, Cao GQ, Zhu QR, He MG, Wu F, Kong SM, Zhang ZY, Wang Q, Wang F. Exosomes derived from human umbilical cord mesenchymal stem cells promote osteogenesis through the AKT signaling pathway in postmenopausal osteoporosis. Aging (Albany NY) 2022; 14:10125-10136. [PMID: 36575048 PMCID: PMC9831744 DOI: 10.18632/aging.204453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Postmenopausal osteoporosis (PMO) is a relatively common disease characterized by low bone mass and microstructural changes of trabecular bone. The reduced bone strength is caused a variety of complications, including fragility fracture and sarcopenia. We used CCK-8 and EdU assays to evaluate cell proliferation rates. The osteogenesis effect was detected using ALP staining, alizarin red staining, and q-PCR. In vivo, the effects of exosomes derived from HUC-MSCs were evaluated using HE staining, IHC staining and Masson staining. In addition, we explored the mechanism of exosomes and found that the AKT signaling pathway played an important role in osteogenesis and cell proliferation. This paper mainly explored the function of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) and provided a new strategy for the treatment of postmenopausal osteoporosis. In conclusion, exogenous administration of exosomes can contribute to the treatment postmenopausal osteoporosis to a certain extent.
Collapse
Affiliation(s)
- Shi-Wei Ren
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Guang-Qing Cao
- Department of Spine Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Qing-Run Zhu
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Min-Gang He
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Fang Wu
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Su-Mei Kong
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Zhao-Yan Zhang
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Qiang Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Feng Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| |
Collapse
|
47
|
Yan J, Zhang L, Li L, He W, Liu W. Developmentally engineered bio-assemblies releasing neurotrophic exosomes guide in situ neuroplasticity following spinal cord injury. Mater Today Bio 2022; 16:100406. [PMID: 36065352 PMCID: PMC9440432 DOI: 10.1016/j.mtbio.2022.100406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
The emerging tissue-engineered bio-assemblies are revolutionizing the regenerative medicine, and provide a potential program to guarantee predictive performance of stem-cell-derived treatments in vivo and hence support their clinical translation. Mesenchymal stem cell (MSC) showed the attractive potential for the therapy of nervous system injuries, especially spinal cord injury (SCI), and yet failed to make an impact on clinical outcomes. Herein, under the guidance of the embryonic development theory that appropriate cellular coarctations or clustering are pivotal initiators for the formation of geometric and functional tissue structures, a developmentally engineered strategy was established to assemble DPMSCs into a bio-assembly termed Spinor through a three-level sequential induction programme including reductant, energy and mechanical force stimulation. Spinor exhibited similar geometric construction with spinal cord tissue and attain autonomy to released exosome with the optimized quantity and quality for suppressing cicatrization and inflammation and promoting axonal regeneration. As a spinal cord fascia and exosome mothership, Spinor guided the in-situ neuroplasticity of spinal cord in vivo, and caused the significant motor improvement, sensory recovery, and faster urinary reflex restoration in rats following SCI, while maintaining a highly favorable biosafety profile. Collectively, Spinor not only is a potentially clinical therapeutic paradigm as a living “exosome mothership” for revisiting Prometheus' Myth in SCI, but can be viewed allowing developmentally engineered manufacturing of biomimetic bio-assemblies with complex topology features and inbuilt biofunction attributes towards the regeneration of complex tissues including nervous system.
Collapse
Affiliation(s)
- Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Liqiang Zhang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Liya Li
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Corresponding author. Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Wenjia Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Corresponding author. National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
48
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
49
|
Mesenchymal stem cells-derived exosomal miR-24-3p ameliorates non-alcohol fatty liver disease by targeting Keap-1. Biochem Biophys Res Commun 2022; 637:331-340. [DOI: 10.1016/j.bbrc.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
50
|
Feng S, Lou K, Luo C, Zou J, Zou X, Zhang G. Obesity-Related Cross-Talk between Prostate Cancer and Peripheral Fat: Potential Role of Exosomes. Cancers (Basel) 2022; 14:5077. [PMID: 36291860 PMCID: PMC9600017 DOI: 10.3390/cancers14205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of obesity-induced cancer progression have been extensively explored because of the significant increase in obesity and obesity-related diseases worldwide. Studies have shown that obesity is associated with certain features of prostate cancer. In particular, bioactive factors released from periprostatic adipose tissues mediate the bidirectional communication between periprostatic adipose tissue and prostate cancer. Moreover, recent studies have shown that extracellular vesicles have a role in the relationship between tumor peripheral adipose tissue and cancer progression. Therefore, it is necessary to investigate the feedback mechanisms between prostate cancer and periglandular adipose and the role of exosomes as mediators of signal exchange to understand obesity as a risk factor for prostate cancer. This review summarizes the two-way communication between prostate cancer and periglandular adipose and discusses the potential role of exosomes as a cross-talk and the prospect of using adipose tissue as a means to obtain exosomes in vitro. Therefore, this review may provide new directions for the treatment of obesity to suppress prostate cancer.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|