1
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
2
|
Gabai P, Novel-Catin E, Reynaud Q, Nove-Josserand R, Pelletier S, Fouque D, Koppe L, Durieu I. Kidney effects of triple CFTR modulator therapy in people with cystic fibrosis. Clin Kidney J 2024; 17:sfae256. [PMID: 39359568 PMCID: PMC11443170 DOI: 10.1093/ckj/sfae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Elexacaftor/tezacaftor/ivacaftor (ETI) is a new cystic fibrosis transmembrane conductance regulator (CFTR) modulator that has transformed the respiratory prognosis of people with cystic fibrosis (pwCF). However, its impact on other organs such as the kidneys, where CFTR is expressed, remains unclear. Since pwCF are risk of both kidney disease and urolithiasis, we aimed to study the potential effects of ETI on renal function, volume status, and risk factors for urolithiasis. Methods This prospective, observational, single-center, before-after cohort study, involved adult pwCF eligible for ETI. The changes in plasma and urinary profiles were assessed by comparing renal function (using 2021 CKD-EPIcreatinine and 2021 CKD-EPIcreatinine-cystatin C formulas), volume status (using aldosterone/renin ratio and blood pressure), and risk factors for urolithiasis, at the time of ETI introduction (M0) and 7 months after (M7). Results Nineteen pwCF were included. No significant change in renal function was observed between M0 and M7 (2021 CKD-EPIcreatinine: 105.5 ml/min/1.73 m² at M0 vs. 103.3 ml/min/1.73 m² at M7; P = .17). There was a significant reduction in aldosterone level (370.3 pmol/l at M0 vs. 232.4 pmol/l at M7; P = .02) and aldosterone/renin ratio (33.6 at M0 vs. 21.8 at M7; P = .03). Among the risk factors for urolithiasis, a significant reduction in magnesuria level was found (4.6 mmol/d at M0 vs. 3.8 mmol/d at M7; P = .01). Conclusion These findings suggest that ETI seem to have no short-term impact on the renal function of adult pwCF and appears to correct secondary hyperaldosteronism due to excessive sweat losses. Further investigations are needed to determine the potential impact of decreased magnesuria observed under ETI therapy on the risk of urolithiasis.
Collapse
Affiliation(s)
- Pierre Gabai
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Etienne Novel-Catin
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Quitterie Reynaud
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Frankfurt Region, Germany
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockfeller, Lyon Cedex 08, Rhône, France
| | - Raphaële Nove-Josserand
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Solenne Pelletier
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
| | - Denis Fouque
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre-Bénite, Rhône, France
| | - Laetitia Koppe
- Service de Néphrologie, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre-Bénite, Rhône, France
| | - Isabelle Durieu
- Centre de Ressource et de Compétences de la mucoviscidose, Service de médecine Interne et de Pathologie Vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, Rhône, France
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Frankfurt Region, Germany
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockfeller, Lyon Cedex 08, Rhône, France
| |
Collapse
|
3
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Capraz Yavuz B, Yalcin E, Nayir Buyuksahin H, Sunman B, Guzelkas I, Alboga D, Akgul Erdal M, Demir HI, Atan R, Emiralioglu N, Dogru D, Ozcelik U, Kiper N. Impact of interruption of CFTR modulator therapies. J Cyst Fibros 2024; 23:947-949. [PMID: 38762388 DOI: 10.1016/j.jcf.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Novel drug therapy targeting the defective cystic fibrosis transmembrane conductance regulator protein has the potential to significantly enhance the quality of life for numerous patients with cystic fibrosis. However, in some countries social insurance does not pay for modulators because these drugs are extremely expensive. This study sought to understand the impact on the health of children whose modulator treatments were interrupted because of legal procedures and delivery processes. Our study identified that the significant increase in percent-predicted forced expiratory volume levels (FEV1) and BMI z-score values associated with modulator therapies decreased sharply with their discontinuation. Significant worsening in FEV1, BMI z-scores, and BW z-scores were detected in the first follow-up visit after therapy discontinuation within 1 month. Eight patients had a reduction of FEV1 of more than 10%. The findings suggest that modulatory treatment continuation is important, and it is crucial that treatment is not interrupted.
Collapse
Affiliation(s)
- Burcu Capraz Yavuz
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye.
| | - Ebru Yalcin
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Halime Nayir Buyuksahin
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Birce Sunman
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Ismail Guzelkas
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Didem Alboga
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Meltem Akgul Erdal
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Havva Ipek Demir
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Raziye Atan
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Nagehan Emiralioglu
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Deniz Dogru
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Ugur Ozcelik
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| | - Nural Kiper
- Department of Paediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Türkiye
| |
Collapse
|
5
|
Vaccarin C, Veit G, Hegedus T, Torres O, Chilin A, Lukacs GL, Marzaro G. Synthesis and Biological Evaluation of Pyrazole-Pyrimidones as a New Class of Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2024; 67:13891-13908. [PMID: 39137389 DOI: 10.1021/acs.jmedchem.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound 4172 that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661. Here, novel CFTR correctors were designed by applying a classical medicinal chemistry approach on the 4172 scaffold. Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted to propose a plausible binding site and design more potent and effective analogs. We identified three optimized compounds, which, in combination with VX-809 and the investigational corrector 3151, increased the plasma membrane density and function of F508del-CFTR and other rare CFTR mutants resistant to the currently approved therapies.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tamas Hegedus
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest 1052, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
7
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
8
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
9
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
10
|
Li D, Zhu Y, Donnelley M, Parsons D, Habgood MD, Schneider-Futschik EK. Fetal drug exposure after maternally administered CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor in a rat model. Biomed Pharmacother 2024; 171:116155. [PMID: 38232663 DOI: 10.1016/j.biopha.2024.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The potential effects of the very effective cystic fibrosis triple combination drug, Elexacaftor/Tezacaftor/Ivacaftor (ETI) in pregnancy on prenatal development of offspring remain largely unknown. RESEARCH QUESTION We aimed to investigate the fetal tissue distribution pattern of maternally administered ETI by placental transfer in the rat fetuses. STUDY DESIGN AND METHODS Sprague Dawley pregnant rats were administered ETI (6.7 mg/kg/d elexacaftor + 3.5 mg/kg/d tezacaftor + 25 mg/kg/d ivacaftor) traced with [3 H]-ivacaftor in single dose acute experiments (intraperitoneal injection) or treated orally with ETI (the same dose) for 7 days in sub-chronic experiments. Fetal tissue samples were collected at embryonic day (E) 19 and analyzed using liquid scintillation counting for acute experiments or liquid chromatography-mass spectrometry for sub-chronic experiments. RESULTS On day E19, after acute exposure, the entry of ivacaftor into fetal brain (brain/plasma concentration ratios <50%) was significantly lower than to other tissues (>100%). However, after sub-chronic exposure, the entry of all 3 components into the developing brain was comparably extensive as into other tissues (tissue/plasma ratios, 260 - 1000%). Each component of ETI accumulated in different fetal tissues to approximately equal extent. Inter-litter differences on fetal drug distribution were found in cortex for ivacaftor, muscle for tezacaftor and cortex and mid/hindbrain for elexacaftor. Fetal plasma concentrations of ETI (ng/mL) were variable between litters. The entry of ivacaftor and tezacaftor into adult brain appeared to be restricted (<100%). INTERPRETATION Fetal rats are exposed to maternally ingested ETI after sub-chronic exposure, potentially impacting fetal development. The brain entry data highlights the need for attention be paid to any long-term potential effects ETI exposure could have on normal brain development.
Collapse
Affiliation(s)
- Danni Li
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia 5006, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia 5006, Australia
| | - Mark D Habgood
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K Schneider-Futschik
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
11
|
Ondra M, Lenart L, Centorame A, Dumut DC, He A, Zaidi SSZ, Hanrahan JW, De Sanctis JB, Radzioch D, Hajduch M. CRISPR/Cas9 bioluminescence-based assay for monitoring CFTR trafficking to the plasma membrane. Life Sci Alliance 2024; 7:e202302045. [PMID: 37918963 PMCID: PMC10622324 DOI: 10.26508/lsa.202302045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
CFTR is a membrane protein that functions as an ion channel. Mutations that disrupt its biosynthesis, trafficking or function cause cystic fibrosis (CF). Here, we present a novel in vitro model system prepared using CRISPR/Cas9 genome editing with endogenously expressed WT-CFTR tagged with a HiBiT peptide. To enable the detection of CFTR in the plasma membrane of live cells, we inserted the HiBiT tag in the fourth extracellular loop of WT-CFTR. The 11-amino acid HiBiT tag binds with high affinity to a large inactive subunit (LgBiT), generating a reporter luciferase with bright luminescence. Nine homozygous clones with the HiBiT knock-in were identified from the 182 screened clones; two were genetically and functionally validated. In summary, this work describes the preparation and validation of a novel reporter cell line with the potential to be used as an ultimate building block for developing unique cellular CF models by CRISPR-mediated insertion of CF-causing mutations.
Collapse
Affiliation(s)
- Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Lukas Lenart
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Amanda Centorame
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | - Daciana C Dumut
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | | | | | - John W Hanrahan
- RI-MUHC, Montreal, Canada
- Physiology, McGill University, Montreal, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
12
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Salazar-Barragan M, Taub DR. The Effects of Elexacaftor, Tezacaftor, and Ivacaftor (ETI) on Blood Glucose in Patients With Cystic Fibrosis: A Systematic Review. Cureus 2023; 15:e41697. [PMID: 37575762 PMCID: PMC10413995 DOI: 10.7759/cureus.41697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder resulting from defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which in turn results in a multi-systemic disorder. There are numerous known CF alleles associated with different mutations of the CFTR gene, with the most common CF allele being a three-base-pair deletion known as ΔF508. One common manifestation of CF is glycemic dysregulation associated with decreased insulin secretion, often progressing into a distinct form of diabetes known as cystic fibrosis-related diabetes (CFRD). In the past decade, a class of drugs known as CFTR modulators has entered clinical practice. These drugs interact with the CFTR protein to restore its function, with different modulators (or combinations of modulators) suitable for patients with different CFTR mutations. Previous research has established that the modulator ivacaftor is effective in decreasing blood glucose and sometimes resolving CFRD in patients with certain CFTR mutations (class III mutations). However, early modulator therapies for individuals with the common ΔF508 mutation (e.g., a combination of the modulators lumacaftor and ivacaftor) have largely proven ineffective in improving glucose regulation. More recently, a combination therapy of three modulators, namely elexacaftor, tezacaftor, and ivacaftor (ETI), has entered clinical practice for patients with the ΔF508 mutation. However, it is not clear whether this therapy is effective in treating dysglycemia. We searched for studies of any design that examined the effects of ETI on measures of blood glucose. All available studies were observational studies comparing patients before and after initiating ETI therapy. Measures of daily-life blood glucose (those obtained with continuous glucose monitoring systems or by measuring glycated hemoglobin (HbA1c)) and post-prandial glucose spikes from oral glucose tolerance tests showed significant improvements in at least some studies. The majority of studies showed significant improvements from pre- to post-ETI in one or more blood glucose measures. While the interpretation of this evidence is complicated by the lack of randomized controlled trials, it appears that ETI therapy is associated with improved glucose regulation for at least some patients with the ΔF508 mutation.
Collapse
Affiliation(s)
| | - Daniel R Taub
- Biology, Southwestern University, Georgetown, TX, USA
| |
Collapse
|
14
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Taniguchi S, Fukuda R, Okiyoneda T. The multiple ubiquitination mechanisms in CFTR peripheral quality control. Biochem Soc Trans 2023:233016. [PMID: 37140364 DOI: 10.1042/bst20221468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated anion channel, which is expressed on the apical plasma membrane (PM) of epithelial cells. Mutations in the CFTR gene cause cystic fibrosis (CF), one of the most common genetic diseases among Caucasians. Most CF-associated mutations result in misfolded CFTR proteins that are degraded by the endoplasmic reticulum quality control (ERQC) mechanism. However, the mutant CFTR reaching the PM through therapeutic agents is still ubiquitinated and degraded by the peripheral protein quality control (PeriQC) mechanism, resulting in reduced therapeutic efficacy. Moreover, certain CFTR mutants that can reach the PM under physiological conditions are degraded by PeriQC. Thus, it may be beneficial to counteract the selective ubiquitination in PeriQC to enhance therapeutic outcomes for CF. Recently, the molecular mechanisms of CFTR PeriQC have been revealed, and several ubiquitination mechanisms, including both chaperone-dependent and -independent pathways, have been identified. In this review, we will discuss the latest findings related to CFTR PeriQC and propose potential novel therapeutic strategies for CF.
Collapse
Affiliation(s)
- Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
16
|
Yanda MK, Zeidan A, Cebotaru L. Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model. Am J Physiol Gastrointest Liver Physiol 2023; 324:G404-G414. [PMID: 36880660 PMCID: PMC10085553 DOI: 10.1152/ajpgi.00255.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Adi Zeidan
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wang C, Wallerman O, Xue J, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler A, Keough KC, Zheng Z, Zeng J, Wray NR, Li Y, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 2023; 380:eabn2937. [PMID: 37104612 PMCID: PMC10259825 DOI: 10.1126/science.abn2937] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2023] [Indexed: 04/29/2023]
Abstract
Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Jennifer R S Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - BaDoi N Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xue Li
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Diane P Genereux
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael X Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Jessika Nordin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Chao Wang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - James Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Center for System Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Quan Sun
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Laura M Huckins
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyssa Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kathleen C Keough
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Li
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jessica Johnson
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li D, Han X, Habgood M, Schneider-Futschik EK. In Utero Mapping and Development Role of CFTR in Lung and Gastrointestinal Tract of Cystic Fibrosis Patients. ACS Pharmacol Transl Sci 2023; 6:355-360. [PMID: 36926454 PMCID: PMC10012249 DOI: 10.1021/acsptsci.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 02/16/2023]
Abstract
In cystic fibrosis (CF) the ability of the CF transmembrane conductance regulator (CFTR) protein to mediate chloride and water transport is disrupted. While much progress has been made in CF research leading to effective treatments to improve CFTR function, including small molecule modulators, patients present with varying disease manifestations and responses to therapy. For many CF-affected organs, disease onset is known to occur during in utero development before treatments can be administered and progresses over time leading to irreversible damage to these organs. Thus, the role of functional CFTR protein, in particular, during early development needs to be further elucidated. Studies have detected CFTR proteins at very early gestational stages and revealed temporally and spatially variable CFTR expression patterns in fetuses, suggesting a potential role of CFTR in fetal development. However, the actual mechanisms of how defective CFTR in CF results in fetal morphogenetic abnormalities are yet to be established. This review aims to summarize fetal CFTR expression patterns specifically in the lung, pancreas, and gastrointestinal tract (GIT), as compared to adult patterns. Case studies of structural abnormalities in CF fetuses and newborns and the role of CFTR in fetal development will also be discussed.
Collapse
Affiliation(s)
| | | | - Mark Habgood
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wallerman O, Xue JR, Li Y, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler AJ, Keough KC, Zheng Z, Zeng J, Wray NR, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K. Leveraging Base Pair Mammalian Constraint to Understand Genetic Variation and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.531987. [PMID: 36945512 PMCID: PMC10028973 DOI: 10.1101/2023.03.10.531987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Collapse
Affiliation(s)
- Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet; Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Steven Gazal
- Keck School of Medicine, University of Southern California; Los Angeles, CA 90033, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine; Pittsburgh, PA 15261, USA
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Xue Li
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School; Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| | - Jessika Nordin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
| | - Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - James R. Xue
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
| | - Yun Li
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet; Stockholm, Sweden
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Laura M. Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Kathleen C. Keough
- Department of Epidemiology & Biostatistics, University of California San Francisco; San Francisco, CA 94158, USA
- Fauna Bio Incorporated; Emeryville, CA 94608, USA
- Gladstone Institutes; San Francisco, CA 94158, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland; Brisbane, Queensland, Australia
| | - Jessica Johnson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | | | - Benedict Paten
- Genomics Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine; New Haven, CT 06510, USA
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin; Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Katherine S. Pollard
- Department of Epidemiology & Biostatistics, University of California San Francisco; San Francisco, CA 94158, USA
- Gladstone Institutes; San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
- Biodiscovery Institute, University of Nottingham; Nottingham, UK
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| |
Collapse
|
20
|
de Melo ACV, de Souza KSC, da Silva HPV, Maia JMDC, Dantas VM, Bezerra JF, de Rezende AA. Screening by high‐throughput sequencing for pathogenic variants in cystic fibrosis: Benefit of introducing personalized therapies. J Cell Mol Med 2022; 26:5943-5947. [DOI: 10.1111/jcmm.17605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Vera Maria Dantas
- Department of Pediatrics Federal University of Rio Grande do Norte Natal Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
21
|
Shrestha N, McCarron A, Rout-Pitt N, Donnelley M, Parsons DW, Hryciw DH. Essential Fatty Acid Deficiency in Cystic Fibrosis Disease Progression: Role of Genotype and Sex. Nutrients 2022; 14:nu14214666. [PMID: 36364928 PMCID: PMC9657825 DOI: 10.3390/nu14214666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Adequate intake of nutrients such as essential fatty acids (EFA) are critical in cystic fibrosis (CF). The clinical course of deterioration of lung function in people with CF has been shown to relate to nutrition. Independent of the higher energy consumption and malabsorption due to pancreatic insufficiency, EFA deficiency is closely associated with the risk of pulmonary infection, the most significant pathology in CF. This review will focus on the EFA deficiency identified in people with CF, as well as the limited progress made in deciphering the exact metabolic pathways that are dysfunctional in CF. Specifically, people with CF are deficient in linoleic acid, an omega 6 fatty acid, and the ratio of arachidonic acid (omega 6 metabolite) and docosahexaenoic acid (omega 3 metabolite) is increased. Analysis of the molecular pathways in bronchial cells has identified changes in the enzymes that metabolise EFA. However, fatty acid metabolism primarily occurs in the liver, with EFA metabolism in CF liver not yet investigated, indicating that further research is required. Despite limited understanding in this area, it is well known that adequate EFA concentrations are critical to normal membrane structure and function, and thus are important to consider in disease processes. Novel insights into the relationship between CF genotype and EFA phenotype will be discussed, in addition to sex differences in EFA concentrations in people with CF. Collectively, investigating the specific effects of genotype and sex on fatty acid metabolism may provide support for the management of people with CF via personalised genotype- and sex-specific nutritional therapies.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Nathan Rout-Pitt
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - David W. Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Deanne H. Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: ; Tel.: +61-7-3735-3601
| |
Collapse
|
22
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
23
|
Figueira MF, Ribeiro CMP, Button B. Mucus-targeting therapies of defective mucus clearance for cystic fibrosis: A short review. Curr Opin Pharmacol 2022; 65:102248. [PMID: 35689870 PMCID: PMC9891491 DOI: 10.1016/j.coph.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
In the lungs, defective CFTR associated with cystic fibrosis (CF) represents the nidus for abnormal mucus clearance in the airways and consequently a progressive lung disease. Defective CFTR-mediated Cl- secretion results in altered mucus properties, including concentration, viscoelasticity, and the ratio of the two mucins, MUC5B and MUC5AC. In the past decades, therapies targeting the CF mucus defect, directly or indirectly, have been developed; nevertheless, better treatments to prevent the disease progression are still needed. This review summarizes the existing knowledge on the defective mucus in CF disease and highlights it as a barrier to the development of future inhaled genetic therapies. The use of new mucus-targeting treatments is also discussed, focusing on their potential role to halt the progress of CF lung disease.
Collapse
Affiliation(s)
- Miriam Frankenthal Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Brian Button
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| |
Collapse
|
24
|
Roda J, Pinto-Silva C, Silva IA, Maia C, Almeida S, Ferreira R, Oliveira G. New drugs in cystic fibrosis: what has changed in the last decade? Ther Adv Chronic Dis 2022; 13:20406223221098136. [PMID: 35620188 PMCID: PMC9128052 DOI: 10.1177/20406223221098136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF), a life-limiting chronic disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, affects more than 90,000 people worldwide. Until recently, the only available treatments were directed to symptom control, but they failed to change the course of the disease. New drugs developed in the last decade have the potential to change the expression, function, and stability of CFTR protein, targeting the basic molecular defect. The authors seek to provide an update on the new drugs, with a special focus on the most promising clinical trials that have been carried out to date. These newly approved drugs that target specific CFTR mutations are mainly divided into two main groups of CFTR modulators: potentiators and correctors. New therapies have opened the door for potentially disease-modifying, personalized treatments for patients with CF.
Collapse
Affiliation(s)
- Juliana Roda
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitario de Coimbra EPE Hospital Pediátrico de Coimbra, Avenida Afonso Romão 3000-602 Coimbra, Portugal
| | - Catarina Pinto-Silva
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Iris A.I. Silva
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Maia
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Susana Almeida
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Ricardo Ferreira
- Pediatric Gastroenterology and Nutrition Unit, Centro Hospitalar e Universitário de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Guiomar Oliveira
- Centro de Desenvolvimento da Criança e Centro de Investigação e Formação Clínica, Centro Hospitalar e Universitario de Coimbra EPE, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Gariballa N, Kizhakkedath P, Akawi N, John A, Ali BR. Endoglin Wild Type and Variants Associated With Hereditary Hemorrhagic Telangiectasia Type 1 Undergo Distinct Cellular Degradation Pathways. Front Mol Biosci 2022; 9:828199. [PMID: 35281255 PMCID: PMC8916587 DOI: 10.3389/fmolb.2022.828199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoglin, also known as cluster of differentiation 105 (CD105), is an auxiliary receptor in the TGFβ signaling pathway. It is predominantly expressed in endothelial cells as a component of the heterotetrameric receptor dimers comprising type I, type II receptors and the binding ligands. Mutations in the gene encoding Endoglin (ENG) have been associated with hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant inherited disease that is generally characterized by vascular malformation. Secretory and many endomembrane proteins synthesized in the Endoplasmic reticulum (ER) are subjected to stringent quality control mechanisms to ensure that only properly folded and assembled proteins are trafficked forward through the secretory pathway to their sites of action. We have previously demonstrated that some Endoglin variants causing HHT1 are trapped in the ER and fail to traffic to their normal localization in plasma membrane, which suggested the possible involvement of ER associated protein degradation (ERAD) in their molecular pathology. In this study, we have investigated, for the first time, the degradation routes of Endoglin wild type and two mutant variants, P165L and V105D, and previously shown to be retained in the ER. Stably transfected HEK293 cells were treated with proteasomal and lysosomal inhibitors in order to elucidate the exact molecular mechanisms underlying the loss of function phenotype associated with these variants. Our results have shown that wild type Endoglin has a relatively short half-life of less than 2 hours and degrades through both the lysosomal and proteasomal pathways, whereas the two mutant disease-causing variants show high stability and predominantly degrades through the proteasomal pathway. Furthermore, we have demonstrated that Endoglin variants P165L and V105D are significantly accumulated in HEK293 cells deficient in HRD1 E3 ubiquitin ligase; a major ERAD component. These results implicate the ERAD mechanism in the pathology of HHT1 caused by the two variants. It is expected that these results will pave the way for more in-depth research studies that could provide new windows for future therapeutic interventions.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
26
|
Shishido H, Yoon JS, Skach WR. A small molecule high throughput screening platform to profile conformational properties of nascent, ribosome-bound proteins. Sci Rep 2022; 12:2509. [PMID: 35169219 PMCID: PMC8847357 DOI: 10.1038/s41598-022-06456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA.,Generate Biomedicines, Inc., 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
27
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in CFTR, the cystic fibrosis transmembrane conductance regulator gene. People with CF experience a wide variety of medical conditions that affect the pulmonary, endocrine, gastrointestinal, pancreatic, biliary, and reproductive systems. Traditionally, CF carriers, with one defective copy of CFTR, were not thought to be at risk for CF-associated diseases. However, an emerging body of literature suggests that heterozygotes are at increased risk for many of the same conditions as homozygotes. For example, heterozygotes appear to be at increased risk for chronic pancreatitis, atypical mycobacterial infections, and bronchiectasis. In the United States alone, there are almost 10 million CF carriers. Universal newborn screening and prenatal genetic screening will identify more. Thus, there is a critical need to develop more precise estimates of health risks attributable to the CF carrier state across the lifespan.
Collapse
Affiliation(s)
- Philip M Polgreen
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
28
|
Schneider-Futschik EK, Lobert VH, Wilson JW. Editorial: Functional Characterization and Pharmaceutical Targets in Common and Rare CFTR Dysfunctions. Front Physiol 2022; 12:830285. [PMID: 35140634 PMCID: PMC8819176 DOI: 10.3389/fphys.2021.830285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elena K. Schneider-Futschik
- Cystic Fibrosis Pharmacology Laboratory, Department of Biochemistry & Pharmacology, Melbourne University, Melbourne, VIC, Australia
- *Correspondence: Elena K. Schneider-Futschik
| | - Viola H. Lobert
- Department of Nursing, Health and Laboratory Science, Østfold University College, Fredrikstad, Norway
- Department of Mechanical, Electronic and Chemical Engineering, OsloMet, Oslo, Norway
| | - John W. Wilson
- Department of Medicine, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Cystic Fibrosis Service, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Lee AJ, Huffmyer JL, Thiele EL, Zeitlin PL, Chatterjee D. The Changing Face of Cystic Fibrosis: An Update for Anesthesiologists. Anesth Analg 2022; 134:1245-1259. [PMID: 35020677 DOI: 10.1213/ane.0000000000005856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease in North America. While CF is more common among Whites, it is increasingly being recognized in other races and ethnicities. Although there is no cure, life expectancy has steadily improved, with the median survival exceeding 46 years in the United States. There are now more adults than children with CF in the United States. CF is caused by mutations in a gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein, expressed in many epithelial cells. More than 2100 CFTR mutations have been linked to CF, and newer CFTR modulator drugs are being used to improve the production, intracellular processing, and function of the defective CFTR protein. CF is a multisystem disease that affects primarily the lungs, pancreas, hepatobiliary system, and reproductive organs. Anesthesiologists routinely encounter CF patients for various surgical and medical procedures, depending on the age group. This review article focuses on the changing epidemiology of CF, advances in the classification of CFTR mutations, the latest innovations in CFTR modulator therapies, the impact of the coronavirus disease pandemic, and perioperative considerations that anesthesiologists must know while caring for patients with CF.
Collapse
Affiliation(s)
- Amy J Lee
- From the Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie L Huffmyer
- Department of Anesthesiology, University of Virginia Health, Charlottesville, Virginia
| | - Eryn L Thiele
- Department of Anesthesiology, University of Virginia Health, Charlottesville, Virginia
| | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Debnath Chatterjee
- From the Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
30
|
McKay IR, Ooi CY. The Exocrine Pancreas in Cystic Fibrosis in the Era of CFTR Modulation: A Mini Review. Front Pediatr 2022; 10:914790. [PMID: 35832587 PMCID: PMC9271761 DOI: 10.3389/fped.2022.914790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a common disorder of autosomal recessive inheritance, that once conferred a life expectancy of only a few months. Over recent years, significant advances have been made to CF therapeutic approaches, changing the face of the disease, and facilitating the partial restoration of pancreatic function. This mini review summarizes the current landscape of exocrine pancreatic management in CF and explores areas for future direction and development.
Collapse
Affiliation(s)
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Randwick Clinical Campus, University of New South Wales (UNSW) Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,Department of Gastroenterology, Sydney Children's Hospital Randwick, Randwick, NSW, Australia
| |
Collapse
|
31
|
Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells 2022; 11:cells11010136. [PMID: 35011698 PMCID: PMC8750248 DOI: 10.3390/cells11010136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.
Collapse
|
32
|
Snow SM, Matkowskyj KA, Maresh M, Clipson L, Vo TN, Johnson KA, Deming DA, Newton MA, Grady WM, Pickhardt PJ, Halberg RB. Validation of genetic classifiers derived from mouse and human tumors to identify molecular subtypes of colorectal cancer. Hum Pathol 2022; 119:1-14. [PMID: 34655611 PMCID: PMC9936405 DOI: 10.1016/j.humpath.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death in the United States. Standard treatment for advanced-stage CRC for decades has included 5-fluorouracil-based chemotherapy. More recently, targeted therapies for metastatic CRC are being used based on the individual cancer's molecular profile. In the past few years, several different molecular subtype schemes for human CRC have been developed. The molecular subtypes can be distinguished by gene expression signatures and have the potential to be used to guide treatment decisions. However, many subtyping classification methods were developed using mRNA expression levels of hundreds to thousands of genes, making them impractical for clinical use. In this study, we assessed whether an immunohistochemical approach could be used for molecular subtyping of CRCs. We validated two previously published, independent sets of immunohistochemistry classifiers and modified the published methods to improve the accuracy of the scoring methods. In addition, we evaluated whether protein and genetic signatures identified originally in the mouse were linked to clinical outcomes of patients with CRC. We found that low DDAH1 or low GAL3ST2 protein levels in human CRCs correlate with poor patient outcomes. The results of this study have the potential to impact methods for determining the prognosis and therapy selection for patients with CRC.
Collapse
Affiliation(s)
- Santina M. Snow
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA, 53705
| | - Kristina A. Matkowskyj
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA, 53705,Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA, 53705,William S. Middleton VA Medical Center, Madison, Wisconsin, USA, 53705
| | - Morgan Maresh
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA, 53705
| | - Linda Clipson
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA, 53705
| | - Tien N. Vo
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA, 53706,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA, 53792,Present address: StataCorp LLC, College Station, Texas 77845
| | | | - Dustin A. Deming
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA, 53705,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA, 53705,Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA, 53705
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA, 53706,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA, 53792
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 98109,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 98109,Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Perry J. Pickhardt
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA, 53705
| | - Richard B. Halberg
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA, 53705,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA, 53705, Corresponding author Richard B. Halberg, Ph.D., Departments of Medicine and Oncology, University of Wisconsin, Madison, Wisconsin, USA Phone: 608-263-8433
| |
Collapse
|
33
|
Garcia LDCE, Petry LM, Germani PAVDS, Xavier LF, de Barros PB, Meneses ADS, Prestes LM, Bittencourt LB, Pieta MP, Friedrich F, Pinto LA. Translational Research in Cystic Fibrosis: From Bench to Beside. Front Pediatr 2022; 10:881470. [PMID: 35652053 PMCID: PMC9149599 DOI: 10.3389/fped.2022.881470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis is the most common life-limiting recessive genetic disorder in Caucasian populations, characterized by the involvement of exocrine glands, causing multisystemic comorbidities. Since the first descriptions of pancreatic and pulmonary involvement in children, technological development and basic science research have allowed great advances in the diagnosis and treatment of cystic fibrosis. The great search for treatments that acted at the genetic level, despite not having found a cure for this disease, culminated in the creation of CFTR modulators, highly effective medications for certain groups of patients. However, there are still many obstacles behind the treatment of the disease to be discussed, given the wide variety of mutations and phenotypes involved and the difficulty of access that permeate these new therapies around the world.
Collapse
Affiliation(s)
- Laura de Castro E Garcia
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Montiel Petry
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Augusto Van Der Sand Germani
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Fernandes Xavier
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Barros de Barros
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda da Silva Meneses
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Menestrino Prestes
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luana Braga Bittencourt
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Puerari Pieta
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Frederico Friedrich
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Araújo Pinto
- Centro Infant, Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
34
|
Sabbadini R, Pesce E, Parodi A, Mustorgi E, Bruzzone S, Pedemonte N, Casale M, Millo E, Cichero E. Probing Allosteric Hsp70 Inhibitors by Molecular Modelling Studies to Expedite the Development of Novel Combined F508del CFTR Modulators. Pharmaceuticals (Basel) 2021; 14:ph14121296. [PMID: 34959696 PMCID: PMC8709398 DOI: 10.3390/ph14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF) is caused by different mutations related to the cystic fibrosis transmembrane regulator protein (CFTR), with F508del being the most common. Pioneering the development of CFTR modulators, thanks to the development of effective correctors or potentiators, more recent studies deeply encouraged the administration of triple combination therapeutics. However, combinations of molecules interacting with other proteins involved in functionality of the CFTR channel recently arose as a promising approach to address a large rescue of F508del-CFTR. In this context, the design of compounds properly targeting the molecular chaperone Hsp70, such as the allosteric inhibitor MKT-077, proved to be effective for the development of indirect CFTR modulators, endowed with ability to amplify the accumulation of the rescued protein. Herein we performed structure-based studies of a number of allosteric HSP70 inhibitors, considering the recent X-ray crystallographic structure of the human enzyme. This allowed us to point out the main interaction supporting the binding mode of MKT-077, as well as of the related analogues. In particular, cation-π and π-π stacking with the conserve residue Tyr175 deeply stabilized inhibitor binding at the HSP70 cavity. Molecular docking studies had been followed by QSAR analysis and then by virtual screening of aminoaryl thiazoles (I-IIIa) as putative HSP70 inhibitors. Their effectiveness as CFTR modulators has been verified by biological assays, in combination with VX-809, whose positive results confirmed the reliability of the whole applied computational method. Along with this, the "in-silico" prediction of absorption, distribution, metabolism, and excretion (ADME) properties highlighted, once more, that AATs may represent a chemical class to be further investigated for the rational design of novel combination of compounds for CF treatment.
Collapse
Affiliation(s)
- Roberto Sabbadini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Eleonora Mustorgi
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Monica Casale
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| |
Collapse
|
35
|
Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9. Int J Mol Sci 2021; 22:ijms222313064. [PMID: 34884866 PMCID: PMC8658147 DOI: 10.3390/ijms222313064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
SLC26A9, a constitutively active Cl- transporter, has gained interest over the past years as a relevant disease modifier in several respiratory disorders including Cystic Fibrosis (CF), asthma, and non-CF bronchiectasis. SLC26A9 contributes to epithelial Cl- secretion, thus preventing mucus obstruction under inflammatory conditions. Additionally, SLC26A9 was identified as a CF gene modifier, and its polymorphisms were shown to correlate with the response to drugs modulating CFTR, the defective protein in CF. Here, we aimed to investigate the relationship between SLC26A9 and CFTR, and its role in CF pathogenesis. Our data show that SLC26A9 expression contributes to enhanced CFTR expression and function. While knocking-down SLC26A9 in human bronchial cells leads to lower wt- and F508del-CFTR expression, function, and response to CFTR correctors, the opposite occurs upon its overexpression, highlighting SLC26A9 relevance for CF. Accordingly, F508del-CFTR rescue by the most efficient correctors available is further enhanced by increasing SLC26A9 expression. Interestingly, SLC26A9 overexpression does not increase the PM expression of non-F508del CFTR traffic mutants, namely those unresponsive to corrector drugs. Altogether, our data indicate that SLC26A9 stabilizes CFTR at the ER level and that the efficacy of CFTR modulator drugs may be further enhanced by increasing its expression.
Collapse
|
36
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
37
|
Abdallah K, De Boeck K, Dooms M, Simoens S. A Comparative Analysis of Pricing and Reimbursement of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Europe. Front Pharmacol 2021; 12:746710. [PMID: 34858177 PMCID: PMC8630624 DOI: 10.3389/fphar.2021.746710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, Kalydeco® (ivacaftor), Orkambi® (lumacaftor/ivacaftor) and Symkevi® (tezacaftor/ivacaftor), have substantially improved patients' lives yet significantly burden healthcare budgets. This analysis aims to compare pricing and reimbursement of aforementioned cystic fibrosis medicines, across European countries. Methods: Clinical trial registries, national databases, health technology assessment reports and grey literature of Austria, Belgium, Denmark, France, Germany, Ireland, Poland, Spain, Sweden, Switzerland, Netherlands, the United Kingdom were consulted. Publicly available prices, reimbursement statuses, economic evaluations, budget impact analyses and managed entry agreements of CFTR modulators were examined. Results: In Belgium, lowest list prices were observed for Kalydeco® (ivacaftor) and Symkevi® (tezacaftor/ivacaftor) at €417 per defined daily dose (DDD) and €372 per average daily dose (ADD), respectively. Whereas, Switzerland had the lowest price for Orkambi® (lumacaftor/ivacaftor) listed at €309 per DDD. Spain had the highest prices for Kalydeco® (ivacaftor) and Symkevi® (tezacaftor/ivacaftor) at €850 per DDD and €761 per ADD, whereas Orkambi® (lumacaftor/ivacaftor) was most expensive in Poland at €983 per DDD. However, list prices were subject to confidential discounts and likely varied from actual costs. In all countries, these treatments were deemed not to be cost-effective. The annual budget impact of the CFTR modulators varied between countries and depended on factors such as local product prices, size of target population, scope of costs and discounting. However, all modulators were fully reimbursed in ten of the evaluated countries except for Sweden and Poland that, respectively, granted reimbursement to one and none of the therapies. Managed entry agreements were confidential but commonly adopted to address financial uncertainties. Conclusion: Discrepancies concerning prices, reimbursement and access were detected for Kalydeco® (ivacaftor), Orkambi® (lumacaftor/ivacaftor) and Symkevi® (tezacaftor/ivacaftor) across European countries.
Collapse
Affiliation(s)
- Khadidja Abdallah
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kris De Boeck
- Department of Pediatrics, KU Leuven, Leuven, Belgium
| | - Marc Dooms
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Steven Simoens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
SFPQ rescues F508del-CFTR expression and function in cystic fibrosis bronchial epithelial cells. Sci Rep 2021; 11:16645. [PMID: 34404863 PMCID: PMC8371023 DOI: 10.1038/s41598-021-96141-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.
Collapse
|
39
|
Differential Effects of Oleuropein and Hydroxytyrosol on Aggregation and Stability of CFTR NBD1-ΔF508 Domain. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by loss of function mutations in the Cystic Fibrosis transmembrane conductance regulator (CFTR). The folding and assembly of CFTR is inefficient. Deletion of F508 in the first nucleotide binding domain (NBD1-ΔF508) further disrupts protein stability leading to endoplasmic reticulum retention and proteasomal degradation. Stabilization and prevention of NBD1-ΔF508 aggregation is critical to rescuing the folding and function of the entire CFTR channel. We report that the phenolic compounds Oleuropein and Hydroxytryosol reduce aggregation of NBD1-ΔF508. The NBD1-ΔF508 aggregate size was smaller in the presence of Hydroxytryosol as determined by dynamic light scattering. Neither phenolic compound increased the thermal stability of NBD1-ΔF508 as measured by differential scanning fluorimetry. Interestingly, Hydroxytyrosol inhibited the stabilizing effect of the indole compound BIA, a known stabilizer, on NBD1-ΔF508. Molecular docking studies predicted that Oleuropein preferred to bind in the F1-type core ATP-binding subdomain in NBD1. In contrast, Hydroxytyrosol preferred to bind in the α4/α5/α6 helical bundle of the ABCα subdomain of NBD1 next to the putative binding site for BIA. This result suggests that Hydroxytyrosol interferes with BIA binding, thus providing an explanation for the antagonistic effect on NBD1 stability upon incubation with both compounds. To our knowledge, these studies are the first to explore the effects of these two phenolic compounds on the aggregation and stability of NBD1-ΔF508 domain of CFTR.
Collapse
|
40
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
41
|
Zaher A, ElSaygh J, Elsori D, ElSaygh H, Sanni A. A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus 2021; 13:e16144. [PMID: 34268058 PMCID: PMC8266292 DOI: 10.7759/cureus.16144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal genetic disease that causes serious lung damage. With time, researchers have a more complete understanding of the molecular-biological defects that underlie CF. This knowledge is leading to alternative approaches regarding the treatment of this condition. Trikafta is the third FDA-approved drug that targets the F508del mutation of the CFTR gene. The drug is a combination of three individual drugs which are elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA). This trio increases the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) protein and reduces the mortality and morbidity rates in CF patients. The effectiveness of Trikafta, seen in clinical trials, outperforms currently available therapies in terms of lung function, quality of life, sweat chloride reduction, and pulmonary exacerbation reduction. The safety and efficacy of CFTR modulators in children with CF have also been studied. Continued evaluation of patient data is needed to confirm its long-term safety and efficacy. In this study, we will focus on reviewing data from clinical trials regarding the benefits of CFTR modulator therapy. We address the impact of Trikafta on lung function, pulmonary exacerbations, and quality of life. Adverse events of the different CFTR modulators are discussed.
Collapse
Affiliation(s)
- Anas Zaher
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Jude ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Dalal Elsori
- Pediatrics, Rhode Island Hospital, Brown University, Rhode Island, USA
| | - Hassan ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | | |
Collapse
|
42
|
Pharmacokinetics and pharmacodynamics of antibiotics in cystic fibrosis: a narrative review. Int J Antimicrob Agents 2021; 58:106381. [PMID: 34157401 DOI: 10.1016/j.ijantimicag.2021.106381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis affects several organs, predisposing patients to severe bacterial respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus. Cystic fibrosis is also associated with a wide spectrum of pathological changes that can significantly affect the absorption, distribution, metabolism, and/or elimination of several drugs, including antibacterial agents. Therefore, awareness of the pharmacokinetic derangements in patients with cystic fibrosis is mandatory for the optimisation of antibiotic therapy. This review discusses the basic principles of pharmacokinetics and the pathophysiology of the pharmacokinetics changes associated with cystic fibrosis; it also provides an update of available data for the most widely used antibiotics. Evidence accumulated in the last few years has clearly shown that a significant number of cystic fibrosis patients treated with conventional dosing schemes have sub-therapeutic antibiotic concentrations, increasing their risk of therapeutic failure and/or the emergence of resistant pathogens. Some proposals to optimise antibiotic therapies in this clinical setting based on therapeutic drug monitoring are also discussed.
Collapse
|
43
|
Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L. The Bactericidal Tandem Drug, AB569: How to Eradicate Antibiotic-Resistant Biofilm Pseudomonas aeruginosa in Multiple Disease Settings Including Cystic Fibrosis, Burns/Wounds and Urinary Tract Infections. Front Microbiol 2021; 12:639362. [PMID: 34220733 PMCID: PMC8245851 DOI: 10.3389/fmicb.2021.639362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The life-threatening pandemic concerning multi-drug resistant (MDR) bacteria is an evolving problem involving increased hospitalizations, billions of dollars in medical costs and a remarkably high number of deaths. Bacterial pathogens have demonstrated the capacity for spontaneous or acquired antibiotic resistance and there is virtually no pool of organisms that have not evolved such potentially clinically catastrophic properties. Although many diseases are linked to such organisms, three include cystic fibrosis (CF), burn/blast wounds and urinary tract infections (UTIs), respectively. Thus, there is a critical need to develop novel, effective antimicrobials for the prevention and treatment of such problematic infections. One of the most formidable, naturally MDR bacterial pathogens is Pseudomonas aeruginosa (PA) that is particularly susceptible to nitric oxide (NO), a component of our innate immune response. This susceptibility sets the translational stage for the use of NO-based therapeutics during the aforementioned human infections. First, we discuss how such NO therapeutics may be able to target problematic infections in each of the aforementioned infectious scenarios. Second, we describe a recent discovery based on years of foundational information, a novel drug known as AB569. AB569 is capable of forming a "time release" of NO from S-nitrosothiols (RSNO). AB569, a bactericidal tandem consisting of acidified NaNO2 (A-NO2 -) and Na2-EDTA, is capable of killing all pathogens that are associated with the aforementioned disorders. Third, we described each disease state in brief, the known or predicted effects of AB569 on the viability of PA, its potential toxicity and highly remote possibility for resistance to develop. Finally, we conclude that AB569 can be a viable alternative or addition to conventional antibiotic regimens to treat such highly problematic MDR bacterial infections for civilian and military populations, as well as the economical burden that such organisms pose.
Collapse
Affiliation(s)
- Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Health Sciences, Denver, CO, United States
| | - Nalinikanth Kotagiri
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Harshita Kumari
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Latha Satish
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
44
|
Della Sala A, Prono G, Hirsch E, Ghigo A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity Regulation. Front Physiol 2021; 12:690247. [PMID: 34211404 PMCID: PMC8240754 DOI: 10.3389/fphys.2021.690247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride transport and overall tissue homeostasis. CFTR constitutes a unique member of the ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory (R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common lethal autosomal genetic disease in the Caucasian population. In recent years, major efforts have led to the development of CFTR modulators, small molecules targeting the underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. Recent evidence has highlighted that this class of drugs could also impact on the phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is to summarize the current knowledge on the regulation of the CFTR by PKA-mediated phosphorylation and to provide insights into the different factors that modulate this essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators and PKA interact to rescue dysfunctional channels.
Collapse
Affiliation(s)
- Angela Della Sala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| |
Collapse
|
45
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
46
|
Eschenhagen P, Schwarz C. [Many patients with cystic fibrosis have a better quality of life now]. MMW Fortschr Med 2021; 163:74-81. [PMID: 33950452 DOI: 10.1007/s15006-021-9804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Aquino ES, Vergara AA, Filho LVRFS. Inadequate Functioning of Nebulizer System Compressors Used by Individuals With Cystic Fibrosis. Respir Care 2021; 66:829-836. [PMID: 33688089 PMCID: PMC9994110 DOI: 10.4187/respcare.07702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The treatment of cystic fibrosis involves the use of drugs delivered by nebulizer systems, and adequate functioning of the compressors and nebulizers is essential. We hypothesized that compressors of nebulizer systems used by individuals with cystic fibrosis would not work properly. Therefore, we aimed to assess the performance of the compressors from nebulizer systems used by individuals with cystic fibrosis. METHODS This is a cross-sectional study to assess the performance of compressors from nebulizer systems used by subjects with cystic fibrosis registered at the Cystic Fibrosis Patient Association in Minas Gerais, Brazil. Compressors (Proneb Ultra II) brought by the individuals were tested with new nebulizer parts (Pari LC plus) to assess the variables of nebulization efficiency, including residual volume, solution output, and aerosol output rate. Compression performance was assessed by measuring the operating pressure using a PARI PG101 manometer. RESULTS The performance of 146 compressors was analyzed. Fifty-seven (39%) of the compressors were ineffective, with operating pressure values well below the manufacturer's technical reference and the compressor time used for a median time of 36 (15 days to 156 months). The systems with low pressure values demonstrated significantly worse results for nebulization efficiency variables, and a significant correlation was found between residual volume (r = -0.5, P < .001), solution output (r = +0.5, P < .001), and aerosol output rate (r = +0.5, P < .001), and operating pressure values. CONCLUSIONS A significant number of compressors generate low operating pressure values. These systems showed a compromised efficiency of nebulization, indicating that the pressure generated by the compressor is a critical aspect of treatment efficiency.
Collapse
Affiliation(s)
- Evanirso S Aquino
- Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil.
- João Paulo II Pediatric Hospital, Fundação Hospital of the State of Minas Gerais, Belo Horizonte, Brazil
- Pontifical Catholic University of Minas Gerais, Betim Campus, Belo Horizonte, Brazil
| | - Alberto A Vergara
- João Paulo II Pediatric Hospital, Fundação Hospital of the State of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Vicente R F Silva Filho
- Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
- Instituto da Criança, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
48
|
Vendrusculo FM, Donadio MVF, Pinto LA. Cystic fibrosis in Brazil: achievements in survival. J Bras Pneumol 2021; 47:e20210140. [PMID: 33950101 PMCID: PMC8332831 DOI: 10.36416/1806-3756/e20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Fernanda Maria Vendrusculo
- . Centro Infant, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | | | - Leonardo Araújo Pinto
- . Centro Infant, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| |
Collapse
|
49
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
50
|
Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:600711. [PMID: 33659247 PMCID: PMC7917181 DOI: 10.3389/fcell.2021.600711] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as a potential therapy for several diseases. These plasma membrane-derived fragments are released constitutively by virtually all cell types-including mesenchymal stromal cells (MSCs)-under stimulation or following cell-to-cell interaction, which leads to activation or inhibition of distinct signaling pathways. Based on their size, intracellular origin, and secretion pathway, EVs have been grouped into three main populations: exosomes, microvesicles (or microparticles), and apoptotic bodies. Several molecules can be found inside MSC-derived EVs, including proteins, lipids, mRNA, microRNAs, DNAs, as well as organelles that can be transferred to damaged recipient cells, thus contributing to the reparative process and promoting relevant anti-inflammatory/resolutive actions. Indeed, the paracrine/endocrine actions induced by MSC-derived EVs have demonstrated therapeutic potential to mitigate or even reverse tissue damage, thus raising interest in the regenerative medicine field, particularly for lung diseases. In this review, we summarize the main features of EVs and the current understanding of the mechanisms of action of MSC-derived EVs in several lung diseases, such as chronic obstructive pulmonary disease (COPD), pulmonary infections [including coronavirus disease 2019 (COVID-19)], asthma, acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), among others. Finally, we list a number of limitations associated with this therapeutic strategy that must be overcome in order to translate effective EV-based therapies into clinical practice.
Collapse
Affiliation(s)
- Soraia C. Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Daniel J. Weiss
- Department of Medicine, College of Medicine, University of Vermont Larner, Burlington, VT, United States
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|