1
|
Agnorelli C, Cinti A, Barillà G, Lomi F, Scoccia A, Benelli A, Neri F, Smeralda CL, Cuomo A, Santarnecchi E, Tatti E, Godfrey K, Tarantino F, Fagiolini A, Rossi S. Neurophysiological correlates of ketamine-induced dissociative state in bipolar disorder: insights from real-world clinical settings. Mol Psychiatry 2025:10.1038/s41380-025-02889-2. [PMID: 39809847 DOI: 10.1038/s41380-025-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine's effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers. A cohort of 30 BD (F = 12) inpatients with TRD undergoing ketamine treatment was included in the study. EEG recordings were performed during one of the ketamine infusions with doses ranging from 0.5 to 1 mg/kg, and subjective effects were evaluated using the Clinician-Administered Dissociative States Scale (CADSS). Both rhythmic and arrhythmic features were extrapolated from the EEG signal. Patients who exhibited a clinical response to ketamine treatment within one week were classified as early responders (ER), whereas those who responded later were categorized as late responders (LR). Ketamine reduced low-frequency spectral power density while increasing gamma oscillatory power. Additionally, ketamine flattened the slope of the power spectra, indicating altered scale-free dynamics. Ketamine also increased brain signal entropy, particularly in high-frequency bands. Notably, LR exhibited greater EEG changes compared to ER, suggesting endophenotypic differences in treatment sensitivity. These findings provide valuable insights into the neurophysiological effects of ketamine in BD depression, highlighting the utility of EEG biomarkers for assessing ketamine's therapeutic mechanisms in real-world clinical settings. Understanding the neural correlates of ketamine response may contribute to personalized treatment approaches and improved management of mood disorders.
Collapse
Affiliation(s)
- Claudio Agnorelli
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy.
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.
| | - Alessandra Cinti
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giovanni Barillà
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Francesco Lomi
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Adriano Scoccia
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alberto Benelli
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carmelo Luca Smeralda
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Neurology, Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, USA
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Francesca Tarantino
- Unit of Anesthesia and Neurological Intensive Care, Department of Neurological and Motor Sciences, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, Division of Psychiatry, School of Medicine, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Manohara N, Ferrari A, Greenblatt A, Berardino A, Peixoto C, Duarte F, Moyiaeri Z, Robba C, Nascimento F, Kreuzer M, Vacas S, Lobo FA. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician. J Clin Monit Comput 2024:10.1007/s10877-024-01250-2. [PMID: 39704777 DOI: 10.1007/s10877-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Perioperative anesthetic, surgical and critical careinterventions can affect brain physiology and overall brain health. The clinical utility of electroencephalogram (EEG) monitoring in anesthesia and intensive care settings is multifaceted, offering critical insights into the level of consciousness and depth of anesthesia, facilitating the titration of anesthetic doses, and enabling the detection of ischemic events and epileptic activity. Additionally, EEG monitoring can aid in predicting perioperative neurocognitive disorders, assessing the impact of systemic insults on cerebral function, and informing neuroprognostication. This review provides a comprehensive overview of the fundamental principles of electroencephalography, including the foundations of processed and quantitative electroencephalography. It further explores the characteristic EEG signatures associated wtih anesthetic drugs, the interpretation of the EEG data during anesthesia, and the broader clinical benefits and applications of EEG monitoring in both anesthetic practice and intensive care environments.
Collapse
Affiliation(s)
- Nitin Manohara
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Adam Greenblatt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Flávia Duarte
- Department of Anesthesiology, Hospital Garcia de Orta, Almada, Portugal
| | - Zahra Moyiaeri
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Fabio Nascimento
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco A Lobo
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Mitchell JS, Anijärv TE, Can AT, Dutton M, Hermens DF, Lagopoulos J. Resting-State Electroencephalogram Complexity Is Associated With Oral Ketamine Treatment Response: A Bayesian Analysis of Lempel-Ziv Complexity and Multiscale Entropy. Brain Behav 2024; 14:e70166. [PMID: 39607091 PMCID: PMC11603427 DOI: 10.1002/brb3.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Subanesthetic doses of ketamine are a promising novel treatment for suicidality; however, the evidence for predictive biomarkers is sparse. Recently, measures of complexity, including Lempel-Ziv complexity (LZC) and multiscale entropy (MSE), have been implicated in ketamine's therapeutic action. We evaluated electroencephalogram (EEG)-derived LZC and MSE differences between responders and nonresponders to oral ketamine treatment. METHODS A total of 31 participants received six single, weekly (titrated) doses of oral racemic ketamine (0.5-3 mg/kg) and underwent EEG scans at baseline (Week 0), post-treatment (Week 6), and follow-up (Week 10). Resting-state (eyes closed and open) recordings were processed in EEGLAB, and complexity metrics were extracted using the Neurokit2 package. Participants were designated responders or nonresponders by clinical response (Beck Suicide Scale [BSS] score reduction of ≥ 50% from baseline to the respective timepoint or score ≤ 6) and then compared in terms of complexity across resting-state conditions and time. RESULTS Employing a Bayesian mixed effects model, we found strong evidence that LZC was higher in the eyes-open compared to eyes-closed condition, as were MSE scales 1-3. At a global level, responders displayed elevated eyes-open baseline complexity compared to nonresponders, with these values decreasing from baseline to post-treatment (Week 6) in responders only. Exploratory analyses revealed that the elevated baseline eyes-open LZC in responders was spatially localized to the left frontal lobe (F1, AF3, FC1, and F3). CONCLUSION EEG-complexity metrics may be sensitive biomarkers for evaluating and predicting oral ketamine treatment response, with the left prefrontal cortex bein a possible treatment response region.
Collapse
Affiliation(s)
- Jules S. Mitchell
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Toomas E. Anijärv
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
- Department of Clinical Sciences Malmö, Faculty of MedicineClinical Memory Research Unit, Lund UniversityLundSweden
| | - Adem T. Can
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Megan Dutton
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Daniel F. Hermens
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Jim Lagopoulos
- Thompson Brain & Mind HealthcareBirtinyaQueenslandAustralia
| |
Collapse
|
4
|
Ferreira LO, Padilha da Silveira E, Paz CA, Otake Hamoy MK, Barbosa GB, Santos MF, Conceição RM, Amaral ALG, Resende KD, Favacho Lopes DC, Hamoy M. Decreasing brain activity caused by acute administration of ketamine and alcohol - A randomized, controlled, observer-blinded experimental study. Front Pharmacol 2024; 15:1456009. [PMID: 39478968 PMCID: PMC11521905 DOI: 10.3389/fphar.2024.1456009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Substance abuse is a major public health problem. In recent years, ketamine, which is a parenteral anesthetic, has been consumed increasingly as an illicit drug together with alcohol, although little is known of how this association alters brain activity. The present study investigated the influence of progressive doses of ketamine, associated with alcohol, on electrophysiological activity. Methods For this, 72 late-adolescent (8-10-week-old) male Wistar rats received either ketamine only, at low (10 mg/kg), intermediate (20 mg/kg) or high (30 mg/kg) doses via intraperitoneal injection, or alcohol (2 mL/100 g) via oral gavage followed by ketamine (at low, intermediate, and high doses). Electroencephalograms (EEG) and electromyographic recordings were obtained 5 min after the final application of the drug. Results When administered alone, ketamine resulted in an increase in delta, theta, beta, and gamma brainwaves, with a more pronounced effect being detected at the highest dose (30 mg/kg) in the case of the delta, beta, and gamma waves. The amplitude of the alpha brainwaves was reduced at all doses of ketamine, but less intensively at the highest dose. When administered alone, alcohol reduced all the brainwaves, with the reduction in the alpha waves being exacerbated by ketamine at all doses, and that of the theta and beta waves being boosted at the lowest dose. The intermediate dose of ketamine (20 mg/kg) reverted the alcohol-induced reduction in the theta and gamma waves, whereas the high dose increased delta, theta, beta, and gamma bandpower. Discussion Overall, then, while ketamine enhances the depressant effects of alcohol on the alpha brainwave at all doses, a low dose intensified this effect on the theta and beta 175 waves, whereas a high dose produces neuronal hyperexcitability in the theta and 176 gamma bandpower.
Collapse
Affiliation(s)
- Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Clarissa A. Paz
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Maria K. Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela B. Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo F. Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína M. Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anthony Lucas G. Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karina Dias Resende
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Herzog R, Barbey FM, Islam MN, Rueda-Delgado L, Nolan H, Prado P, Krylova M, Izyurov I, Javaheripour N, Danyeli LV, Sen ZD, Walter M, O'Donnell P, Buhl DL, Murphy B, Ibanez A. High-order brain interactions in ketamine during rest and task: a double-blinded cross-over design using portable EEG on male participants. Transl Psychiatry 2024; 14:310. [PMID: 39068157 PMCID: PMC11283531 DOI: 10.1038/s41398-024-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Ketamine is a dissociative anesthetic that induces a shift in global consciousness states and related brain dynamics. Portable low-density EEG systems could be used to monitor these effects. However, previous evidence is almost null and lacks adequate methods to address global dynamics with a small number of electrodes. This study delves into brain high-order interactions (HOI) to explore the effects of ketamine using portable EEG. In a double-blinded cross-over design, 30 male adults (mean age = 25.57, SD = 3.74) were administered racemic ketamine and compared against saline infusion as a control. Both task-driven (auditory oddball paradigm) and resting-state EEG were recorded. HOI were computed using advanced multivariate information theory tools, allowing us to quantify nonlinear statistical dependencies between all possible electrode combinations. Ketamine induced an increase in redundancy in brain dynamics (copies of the same information that can be retrieved from 3 or more electrodes), most significantly in the alpha frequency band. Redundancy was more evident during resting state, associated with a shift in conscious states towards more dissociative tendencies. Furthermore, in the task-driven context (auditory oddball), the impact of ketamine on redundancy was more significant for predictable (standard stimuli) compared to deviant ones. Finally, associations were observed between ketamine's HOI and experiences of derealization. Ketamine appears to increase redundancy and HOI across psychometric measures, suggesting these effects are correlated with alterations in consciousness towards dissociation. In comparisons with event-related potential (ERP) or standard functional connectivity metrics, HOI represent an innovative method to combine all signal spatial interactions obtained from low-density dry EEG in drug interventions, as it is the only approach that exploits all possible combinations between electrodes. This research emphasizes the potential of complexity measures coupled with portable EEG devices in monitoring shifts in consciousness, especially when paired with low-density configurations, paving the way for better understanding and monitoring of pharmacological-induced changes.
Collapse
Affiliation(s)
- Rubén Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
| | | | | | | | - Hugh Nolan
- Cumulus Neuroscience Ltd, Dublin, Ireland
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Igor Izyurov
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Jena, Germany
| | - Patricio O'Donnell
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, 02390, USA
| | - Derek L Buhl
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, 02390, USA
| | | | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Global Brain Health Institute, UCSF and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Danyeli LV, Sen ZD, Colic L, Opel N, Refisch A, Blekic N, Macharadze T, Kretzschmar M, Munk MJ, Gaser C, Speck O, Walter M, Li M. Cortical thickness of the posterior cingulate cortex is associated with the ketamine-induced altered sense of self: An ultra-high field MRI study. J Psychiatr Res 2024; 172:136-143. [PMID: 38382237 DOI: 10.1016/j.jpsychires.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Subanesthetic doses of ketamine induce an antidepressant effect within hours in individuals with treatment-resistant depression while it furthermore induces immediate but transient psychotomimetic effects. Among these psychotomimetic effects, an altered sense of self has specifically been associated with the antidepressant response to ketamine as well as psychedelics. However, there is plenty of variation in the extent of the drug-induced altered sense of self experience that might be explained by differences in basal morphological characteristics, such as cortical thickness. Regions that have been previously associated with a psychedelics-induced sense of self and with ketamine's mechanism of action, are the posterior cingulate cortex (PCC) and the pregenual anterior cingulate cortex (pgACC). In this randomized, placebo-controlled, double-blind cross-over magnetic resonance imaging study, thirty-five healthy male participants (mean age ± standard deviation (SD) = 25.1 ± 4.2 years) were scanned at 7 T. We investigated whether the cortical thickness of two DMN regions, the PCC and the pgACC, are associated with disembodiment and experience of unity scores, which were used to index the ketamine-induced altered sense of self. We observed a negative correlation between the PCC cortical thickness and the disembodiment scores (R = -0.54, p < 0.001). In contrast, no significant association was found between the pgACC cortical thickness and the ketamine-induced altered sense of self. In the context of the existing literature, our findings highlight the importance of the PCC as a structure involved in the mechanism of ketamine-induced altered sense of self that seems to be shared with different antidepressant agents with psychotomimetic effects operating on different classes of transmitter systems.
Collapse
Affiliation(s)
- Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Nikolai Blekic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tamar Macharadze
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Moritz Kretzschmar
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - MatthiasH J Munk
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Systems Neurophysiology, Department of Biology, Darmstadt University of Technology, Darmstadt, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
7
|
Sumner RL, McMillan RL, Forsyth A, Muthukumaraswamy SD, Shaw AD. Neurophysiological evidence that frontoparietal connectivity and GABA-A receptor changes underpin the antidepressant response to ketamine. Transl Psychiatry 2024; 14:116. [PMID: 38402231 PMCID: PMC10894245 DOI: 10.1038/s41398-024-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024] Open
Abstract
Revealing the acute cortical pharmacodynamics of an antidepressant dose of ketamine in humans with depression is key to determining the specific mechanism(s) of action for alleviating symptoms. While the downstream effects are characterised by increases in plasticity and reductions in depressive symptoms-it is the acute response in the brain that triggers this cascade of events. Computational modelling of cortical interlaminar and cortico-cortical connectivity and receptor dynamics provide the opportunity to interrogate this question using human electroencephalography (EEG) data recorded during a ketamine infusion. Here, resting-state EEG was recorded in a group of 30 patients with major depressive disorder (MDD) at baseline and during a 0.44 mg/kg ketamine dose comprising a bolus and infusion. Fronto-parietal connectivity was assessed using dynamic causal modelling to fit a thalamocortical model to hierarchically connected nodes in the medial prefrontal cortex and superior parietal lobule. We found a significant increase in parietal-to-frontal AMPA-mediated connectivity and a significant decrease in the frontal GABA time constant. Both parameter changes were correlated across participants with the antidepressant response to ketamine. Changes to the NMDA receptor time constant and inhibitory intraneuronal input into superficial pyramidal cells did not survive correction for multiple comparisons and were not correlated with the antidepressant response. These results provide evidence that the antidepressant effects of ketamine may be mediated by acute fronto-parietal connectivity and GABA receptor dynamics. Furthermore, it supports the large body of literature suggesting the acute mechanism underlying ketamine's antidepressant properties is related to GABA-A and AMPA receptors rather than NMDA receptor antagonism.
Collapse
Affiliation(s)
- Rachael L Sumner
- School of Pharmacy, University of Auckland, Auckland, New Zealand.
| | | | - Anna Forsyth
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
8
|
Ip CT, de Bardeci M, Kronenberg G, Pinborg LH, Seifritz E, Brunovsky M, Olbrich S. EEG-vigilance regulation is associated with and predicts ketamine response in major depressive disorder. Transl Psychiatry 2024; 14:64. [PMID: 38272875 PMCID: PMC10810879 DOI: 10.1038/s41398-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Ketamine offers promising new therapeutic options for difficult-to-treat depression. The efficacy of treatment response, including ketamine, has been intricately linked to EEG measures of vigilance. This research investigated the interplay between intravenous ketamine and alterations in brain arousal, quantified through EEG vigilance assessments in two distinct cohorts of depressed patients (original dataset: n = 24; testing dataset: n = 24). Clinical response was defined as a decrease from baseline of >33% on the Montgomery-Åsberg Depression Rating Scale (MADRS) 24 h after infusion. EEG recordings were obtained pre-, start-, end- and 24 h post- infusion, and the resting EEG was automatically scored using the Vigilance Algorithm Leipzig (VIGALL). Relative to placebo (sodium chloride 0.9%), ketamine increased the amount of low-vigilance stage B1 at end-infusion. This increase in B1 was positively related to serum concentrations of ketamine, but not to norketamine, and was independent of clinical response. In contrast, treatment responders showed a distinct EEG pattern characterized by a decrease in high-vigilance stage A1 and an increase in low-vigilance B2/3, regardless of whether placebo or ketamine had been given. Furthermore, pretreatment EEG differed between responders and non-responders with responders showing a higher percentage of stage A1 (53% vs. 21%). The logistic regression fitted on the percent of A1 stages was able to predict treatment outcomes in the testing dataset with an area under the ROC curve of 0.7. Ketamine affects EEG vigilance in a distinct pattern observed only in responders. Consequently, the percentage of pretreatment stage A1 shows significant potential as a predictive biomarker of treatment response.Clinical Trials Registration: https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-000952-17/CZ Registration number: EudraCT Number: 2013-000952-17.
Collapse
Affiliation(s)
- Cheng-Teng Ip
- Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mateo de Bardeci
- Hospital for Psychiatry, Psychotherapy and Psychosomatic; University Zurich, Zurich, Switzerland
| | - Golo Kronenberg
- Hospital for Psychiatry, Psychotherapy and Psychosomatic; University Zurich, Zurich, Switzerland
| | - Lars Hageman Pinborg
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Epilepsy Clinic, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Erich Seifritz
- Hospital for Psychiatry, Psychotherapy and Psychosomatic; University Zurich, Zurich, Switzerland
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany, Czech Republic
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Sebastian Olbrich
- Hospital for Psychiatry, Psychotherapy and Psychosomatic; University Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
10
|
Kronenberg G, Müller A, Seifritz E, Olbrich S. A distinct pattern of EEG and ECG changes associated with inhalational nitrous oxide's rapid antidepressant effects. Eur Arch Psychiatry Clin Neurosci 2023; 273:1395-1397. [PMID: 36305920 DOI: 10.1007/s00406-022-01502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Golo Kronenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Annette Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Sebastian Olbrich
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland.
| |
Collapse
|
11
|
Munch AS, Amat-Foraster M, Agerskov C, Bastlund JF, Herrik KF, Richter U. Sub-anesthetic doses of ketamine increase single cell entrainment in the rat auditory cortex during auditory steady-state response. J Psychopharmacol 2023; 37:822-835. [PMID: 37165655 DOI: 10.1177/02698811231164231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Understanding the effects of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine on brain function is of considerable interest due to the discovery of its fast-acting antidepressant properties. It is well known that gamma oscillations are increased when ketamine is administered to rodents and humans, and increases in the auditory steady-state response (ASSR) have also been observed. AIMS To elucidate the cellular substrate of the increase in network activity and synchrony observed by sub-anesthetic doses of ketamine, the aim was to investigate spike timing and regularity and determine how this is affected by the animal's motor state. METHODS Single unit activity and local field potentials from the auditory cortex of awake, freely moving rats were recorded with microelectrode arrays during an ASSR paradigm. RESULTS Ketamine administration yielded a significant increase in ASSR power and phase locking, both significantly modulated by motor activity. Before drug administration, putative fast-spiking interneurons (FSIs) were significantly more entrained to the stimulus than putative pyramidal neurons (PYRs). The degree of entrainment significantly increased at lower doses of ketamine (3 and 10 mg/kg for FSIs, 10 mg/kg for PYRs). At the highest dose (30 mg/kg), a strong increase in tonic firing of PYRs was observed. CONCLUSIONS These findings suggest an involvement of FSIs in the increased network synchrony and provide a possible cellular explanation for the well-documented effects of ketamine-induced increase in power and synchronicity during ASSR. The results support the importance to evaluate different motor states separately for more translational preclinical research.
Collapse
Affiliation(s)
- Anders Sonne Munch
- Brain Circuit and Function, Lundbeck & University of Copenhagen, Kobenhavn, Denmark
| | | | - Claus Agerskov
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| | | | | | - Ulrike Richter
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| |
Collapse
|
12
|
Ossandón JP, Stange L, Gudi-Mindermann H, Rimmele JM, Sourav S, Bottari D, Kekunnaya R, Röder B. The development of oscillatory and aperiodic resting state activity is linked to a sensitive period in humans. Neuroimage 2023; 275:120171. [PMID: 37196987 DOI: 10.1016/j.neuroimage.2023.120171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Congenital blindness leads to profound changes in electroencephalographic (EEG) resting state activity. A well-known consequence of congenital blindness in humans is the reduction of alpha activity which seems to go together with increased gamma activity during rest. These results have been interpreted as indicating a higher excitatory/inhibitory (E/I) ratio in visual cortex compared to normally sighted controls. Yet it is unknown whether the spectral profile of EEG during rest would recover if sight were restored. To test this question, the present study evaluated periodic and aperiodic components of the EEG resting state power spectrum. Previous research has linked the aperiodic components, which exhibit a power-law distribution and are operationalized as a linear fit of the spectrum in log-log space, to cortical E/I ratio. Moreover, by correcting for the aperiodic components from the power spectrum, a more valid estimate of the periodic activity is possible. Here we analyzed resting state EEG activity from two studies involving (1) 27 permanently congenitally blind adults (CB) and 27 age-matched normally sighted controls (MCB); (2) 38 individuals with reversed blindness due to bilateral, dense, congenital cataracts (CC) and 77 age-matched sighted controls (MCC). Based on a data driven approach, aperiodic components of the spectra were extracted for the low frequency (Lf-Slope 1.5 to 19.5 Hz) and high frequency (Hf-Slope 20 to 45 Hz) range. The Lf-Slope of the aperiodic component was significantly steeper (more negative slope), and the Hf-Slope of the aperiodic component was significantly flatter (less negative slope) in CB and CC participants compared to the typically sighted controls. Alpha power was significantly reduced, and gamma power was higher in the CB and the CC groups. These results suggest a sensitive period for the typical development of the spectral profile during rest and thus likely an irreversible change in the E/I ratio in visual cortex due to congenital blindness. We speculate that these changes are a consequence of impaired inhibitory circuits and imbalanced feedforward and feedback processing in early visual areas of individuals with a history of congenital blindness.
Collapse
Affiliation(s)
- José P Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.
| | - Liesa Stange
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Helene Gudi-Mindermann
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck NYU Center for Language, Music, and Emotion Frankfurt am Main, Germany, New York, NY, USA
| | - Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; IMT School for Advanced Studies Lucca, Italy
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
13
|
Ahtiainen A, Annala I, Rosenholm M, Kohtala S, Hyttinen J, Tanskanen JMA, Rantamäki T. Ketamine reduces electrophysiological network activity in cortical neuron cultures already at sub-micromolar concentrations - Impact on TrkB-ERK1/2 signaling. Neuropharmacology 2023; 229:109481. [PMID: 36868403 DOI: 10.1016/j.neuropharm.2023.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
The dissociative anesthetic ketamine regulates cortical activity in a dose-dependent manner. Subanesthetic-dose ketamine has paradoxical excitatory effects which is proposed to facilitate brain-derived neurotrophic factor (BDNF) (a ligand of tropomyosin receptor kinase B, TrkB) signaling, and activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Previous data suggests that ketamine, at sub-micromolar concentrations, induces glutamatergic activity, BDNF release, and activation of ERK1/2 also on primary cortical neurons. We combined western blot analysis with multiwell-microelectrode array (mw-MEA) measurements to examine ketamine's concentration-dependent effects on network-level electrophysiological responses and TrkB-ERK1/2 phosphorylation in rat cortical cultures at 14 days in vitro. Ketamine did not cause an increase in neuronal network activity at sub-micromolar concentrations, but instead a decrease in spiking that was evident already at 500 nM concentration. TrkB phosphorylation was unaffected by the low concentrations, although BDNF elicited prominent phosphorylation response. High concentration of ketamine (10 μM) strongly reduced spiking, bursting and burst duration, which was accompanied with decreased phosphorylation of ERK1/2 but not TrkB. Notably, robust increases in spiking and bursting activity could be produced with carbachol, while it did not affect phosphorylation of TrkB or ERK1/2. Diazepam abolished neuronal activity, which was accompanied by reduced ERK1/2 phosphorylation without change on TrkB. In conclusion, sub-micromolar ketamine concentrations did not cause an increase in neuronal network activity or TrkB-ERK1/2 phosphorylation in cortical neuron cultures that readily respond to exogenously applied BDNF. Instead, pharmacological inhibition of network activity can be readily observed with high concentration of ketamine and it is associated with reduced ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- A Ahtiainen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - I Annala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Biocenter 2, 00790, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland.
| | - M Rosenholm
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Biocenter 2, 00790, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - S Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Biocenter 2, 00790, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland; Department of Psychiatry, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st St, New York, NY, 10065, USA
| | - J Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - J M A Tanskanen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - T Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Biocenter 2, 00790, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 9, Helsinki, 00014, Finland
| |
Collapse
|
14
|
Kantor S, Lanigan M, Giggins L, Lione L, Magomedova L, de Lannoy I, Upton N, Duxon M. Ketamine supresses REM sleep and markedly increases EEG gamma oscillations in the Wistar Kyoto rat model of treatment-resistant depression. Behav Brain Res 2023; 449:114473. [PMID: 37146722 DOI: 10.1016/j.bbr.2023.114473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Wistar-Kyoto (WKY) rats exhibit depression-like characteristics and decreased sensitivity to monoamine-based antidepressants, making them a suitable model of treatment-resistant depression (TRD). Ketamine has emerged recently as a rapidly acting antidepressant with high efficacy in TRD. Our aim was to determine whether subanaesthetic doses of ketamine can correct sleep and electroencephalogram (EEG) alterations in WKY rats and whether any ketamine-induced changes differentially affect WKY rats compared to Sprague-Dawley (SD) rats. Thus, we surgically implanted 8SD and 8 WKY adult male rats with telemetry transmitters and recorded their EEG, electromyogram, and locomotor activity after vehicle or ketamine (3, 5 or 10mg/kg, s.c.) treatment. We also monitored the plasma concentration of ketamine and its metabolites, norketamine and hydroxynorketamine in satellite animals. We found that WKY rats, have an increased amount of rapid eye movement (REM) sleep, fragmented sleep-wake pattern, and increased EEG delta power during non-REM sleep compared to SD rats. Ketamine suppressed REM sleep and increased EEG gamma power during wakefulness in both strains, but the gamma increase was almost twice as large in WKY rats than in SD rats. Ketamine also increased beta oscillations, but only in WKY rats. These differences in sleep and EEG are unlikely to be caused by dissimilarities in ketamine metabolism as the plasma concentrations of ketamine and its metabolites were similar in both strains. Our data suggest an enhanced antidepressant-like response to ketamine in WKY rats, and further support the predictive validity of acute REM sleep suppression as a measure of antidepressant responsiveness.
Collapse
Affiliation(s)
- Sandor Kantor
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada.
| | - Michael Lanigan
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | - Lauren Giggins
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Lisa Lione
- University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | | | | | - Neil Upton
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Mark Duxon
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada
| |
Collapse
|
15
|
Gonzalez-Burgos I, Bainier M, Gross S, Schoenenberger P, Ochoa JA, Valencia M, Redondo RL. Glutamatergic and GABAergic Receptor Modulation Present Unique Electrophysiological Fingerprints in a Concentration-Dependent and Region-Specific Manner. eNeuro 2023; 10:ENEURO.0406-22.2023. [PMID: 36931729 PMCID: PMC10124153 DOI: 10.1523/eneuro.0406-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
Brain function depends on complex circuit interactions between excitatory and inhibitory neurons embedded in local and long-range networks. Systemic GABAA-receptor (GABAAR) or NMDA-receptor (NMDAR) modulation alters the excitatory-inhibitory balance (EIB), measurable with electroencephalography (EEG). However, EEG signatures are complex in localization and spectral composition. We developed and applied analytical tools to investigate the effects of two EIB modulators, MK801 (NMDAR antagonist) and diazepam (GABAAR modulator), on periodic and aperiodic EEG features in freely-moving male Sprague Dawley rats. We investigated how, across three brain regions, EEG features are correlated with EIB modulation. We found that the periodic component was composed of seven frequency bands that presented region-dependent and compound-dependent changes. The aperiodic component was also different between compounds and brain regions. Importantly, the parametrization into periodic and aperiodic components unveiled correlations between quantitative EEG and plasma concentrations of pharmacological compounds. MK-801 exposures were positively correlated with the slope of the aperiodic component. Concerning the periodic component, MK-801 exposures correlated negatively with the peak frequency of low-γ oscillations but positively with those of high-γ and high-frequency oscillations (HFOs). As for the power, θ and low-γ oscillations correlated negatively with MK-801, whereas mid-γ correlated positively. Diazepam correlated negatively with the knee of the aperiodic component, positively to β and negatively to low-γ oscillatory power, and positively to the modal frequency of θ, low-γ, mid-γ, and high-γ. In conclusion, correlations between exposures and pharmacodynamic effects can be better-understood thanks to the parametrization of EEG into periodic and aperiodic components. Such parametrization could be key in functional biomarker discovery.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - José A Ochoa
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Miguel Valencia
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
16
|
Horacek J, Janda R, Görnerova N, Jajcay L, Andrashko V. Several reasons why ketamine as a neuroplastic agent may have failed to prevent postoperative delirium: Implications for future protocols. Neurosci Lett 2023; 798:137095. [PMID: 36693556 DOI: 10.1016/j.neulet.2023.137095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/14/2021] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ketamine exerts anti-inflammatory, neuroprotective and neuroplastic activity, therefore it may counteract the neurotoxic processes underlying postoperative delirium. However, the majority of studies in this field failed. We identified several pharmacological reasons why these studies may have failed, together with suggestions of how to remediate them. Among them, the interaction with intravenous general anesthetics exerting the opposite effect on GABA interneurons than ketamine may be of principal importance. We suggest biomarkers which may elucidate the influence of this interaction on the different steps of neuroplastic pathways. We hypothesize that administering ketamine before or after general anesthesia could both prevent the interactions and strengthen the effect of ketamine by timing surgery within the climax of ketamine-induced neuroplastic changes or by stabilizing AMPA receptors. It is vital to deal with these questions because the protocols of ongoing studies are based again on the administration of ketamine during general anesthesia (the major identified pitfall).
Collapse
Affiliation(s)
- Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Robert Janda
- Intensive Care Unit, Karlovy Vary Regional Hospital, K. Vary, Czech Republic
| | - Natalie Görnerova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucia Jajcay
- National Institute of Mental Health, Klecany, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Veronika Andrashko
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Nakamura T, Dinh TH, Asai M, Matsumoto J, Nishimaru H, Setogawa T, Honda S, Yamada H, Mihara T, Nishijo H. Suppressive effects of ketamine on auditory steady-state responses in intact, awake macaques: A non-human primate model of schizophrenia. Brain Res Bull 2023; 193:84-94. [PMID: 36539101 DOI: 10.1016/j.brainresbull.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Auditory steady-state responses (ASSRs) are recurrent neural activities entrained to regular cyclic auditory stimulation. ASSRs are altered in individuals with schizophrenia, and may be related to hypofunction of the N-methyl-D-aspartate (NMDA) glutamate receptor. Noncompetitive NMDA receptor antagonists, including ketamine, have been used in ASSR studies of rodent models of schizophrenia. Although animal studies using non-human primates are required to complement rodent studies, the effects of ketamine on ASSRs are unknown in intact awake non-human primates. In this study, after administration of vehicle or ketamine, click trains at 20-83.3 Hz were presented to elicit ASSRs during recording of electroencephalograms in intact, awake macaque monkeys. The results indicated that ASSRs quantified by event-related spectral perturbation and inter-trial coherence were maximal at 83.3 Hz after vehicle administration, and that ketamine reduced ASSRs at 58.8 and 83.3 Hz, but not at 20 and 40 Hz. The present results demonstrated a reduction of ASSRs by the NMDA receptor antagonist at optimal frequencies with maximal responses in intact, awake macaques, comparable to ASSR reduction in patients with schizophrenia. These findings suggest that ASSR can be used as a neurophysiological biomarker of the disturbance of gamma-oscillatory neural circuits in this ketamine model of schizophrenia using intact, awake macaques. Thus, this model with ASSRs would be useful in the investigation of human brain pathophysiology as well as in preclinical translational research.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Department of Physiology, Vietnam Military Medical University, Hanoi 100000, Viet Nam
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
18
|
Mavragani A, Zomorrodi R, Kaster T, Voineskos D, Trevizol A, Blumberger D. Neural Correlates of the DEEPP (Anti-suicidal Response to Ketamine in Treatment-Resistant Bipolar Depression) Study: Protocol for a Pilot, Open-Label Clinical Trial. JMIR Res Protoc 2023; 12:e41013. [PMID: 36573651 PMCID: PMC9919457 DOI: 10.2196/41013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Suicide is among the top 10 leading causes of death worldwide. Of people who died by suicide, the majority are diagnosed with depression. It is estimated that 25%-60% of people with bipolar depression (BD) will attempt suicide at least once, and 10%-15% will die by suicide. Several treatments, such as lithium, clozapine, electroconvulsive therapy, and cognitive behavioral therapy, have been shown to be effective in treating suicidality. However, these treatments can be difficult to tolerate or may take months to take effect. Ketamine, a glutamate N-methyl-D-aspartate antagonist, has been shown to have rapid antisuicidal effect and antidepressant qualities, and is thus a promising intervention to target acute suicidality in patients with BD. However, the biological mechanism underlying its therapeutic action remains poorly understood. Enhancing our understanding of underlying mechanisms of action for ketamine's effectiveness in reducing suicidality is critical to establishing biological markers of treatment response and developing tailored, personalized interventions for patients with BD. OBJECTIVE This is an open-label clinical trial to test the safety and feasibility of repeated ketamine infusions to treat acute suicidality. The primary objective is to test the safety and feasibility of ketamine intervention. The secondary objective is to examine ketamine's potential neurophysiological mechanisms of action by assessing cortical excitation and inhibition to determine potential biomarkers of clinical response. Other objectives are to evaluate the effect of ketamine on acute suicidality and other clinical outcomes, such as depressive symptoms and quality of life, to inform a future larger trial. METHODS This open-label clinical trial aims to test the safety and feasibility of repeated ketamine infusions in patients with BD for suicidality and to assess ketamine's neurophysiological effects. A sterile form of racemic ketamine hydrochloride will be administered over a 40-minute intravenous infusion 2 times per week on nonconsecutive days for 4 weeks (8 sessions). We will recruit 30 adults (24-65 year olds) over 2 years from an academic psychiatric hospital in Toronto, Canada. RESULTS This study is currently ongoing and actively recruiting participants. So far, 5 participants have completed the trial, 1 is currently in active treatment, and 8 participants are on the waitlist to be screened. We anticipate initial results being available in the fall of 2023. This proposal was presented as a poster presentation at the Research to Reality Global Summit on Psychedelic-Assisted Therapies and Medicine, held in May 2022 in Toronto, Canada. CONCLUSIONS Developing effective interventions for acute suicidality in high-risk populations such as those with BD remains a major therapeutic challenge. Ketamine is a promising treatment due to its rapid antidepressant and antisuicidal effects, but its underlying neurophysiological mechanisms of action remain unknown. TRIAL REGISTRATION ClinicalTrials.gov NCT05177146; https://clinicaltrials.gov/ct2/show/NCT05177146. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/41013.
Collapse
Affiliation(s)
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tyler Kaster
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | |
Collapse
|
19
|
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology (Berl) 2023; 240:59-75. [PMID: 36401646 PMCID: PMC9816261 DOI: 10.1007/s00213-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100-170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40-100 Hz) and HFO. OBJECTIVES To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. METHODS We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. RESULTS Compared with placebo, frontal midline HFO magnitude was increased by ketamine (p = 0.00014) and 1000 mg DCS (p = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. CONCLUSIONS Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Collapse
|
20
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
21
|
Imperatori C, Massullo C, De Rossi E, Carbone GA, Theodorou A, Scopelliti M, Romano L, Del Gatto C, Allegrini G, Carrus G, Panno A. Exposure to nature is associated with decreased functional connectivity within the distress network: A resting state EEG study. Front Psychol 2023; 14:1171215. [PMID: 37151328 PMCID: PMC10158085 DOI: 10.3389/fpsyg.2023.1171215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Despite the well-established evidence supporting the restorative potential of nature exposure, the neurophysiological underpinnings of the restorative cognitive/emotional effect of nature are not yet fully understood. The main purpose of the current study was to investigate the association between exposure to nature and electroencephalography (EEG) functional connectivity in the distress network. Methods Fifty-three individuals (11 men and 42 women; mean age 21.38 ± 1.54 years) were randomly assigned to two groups: (i) a green group and (ii) a gray group. A slideshow consisting of images depicting natural and urban scenarios were, respectively, presented to the green and the gray group. Before and after the slideshow, 5 min resting state (RS) EEG recordings were performed. The exact low-resolution electromagnetic tomography (eLORETA) software was used to execute all EEG analyses. Results Compared to the gray group, the green group showed a significant increase in positive emotions (F 1; 50 = 9.50 p = 0.003) and in the subjective experience of being full of energy and alive (F 1; 50 = 4.72 p = 0.035). Furthermore, as compared to urban pictures, the exposure to natural images was associated with a decrease of delta functional connectivity in the distress network, specifically between the left insula and left subgenual anterior cingulate cortex (T = -3.70, p = 0.023). Discussion Our results would seem to be in accordance with previous neurophysiological studies suggesting that experiencing natural environments is associated with brain functional dynamics linked to emotional restorative processes.
Collapse
Affiliation(s)
- Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Chiara Massullo
- Experimental Psychology Laboratory, Department of Education, Roma Tre University, Rome, Italy
| | - Elena De Rossi
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
- Department of Psychology, University of Turin, Turin, Italy
- *Correspondence: Giuseppe Alessio Carbone,
| | - Annalisa Theodorou
- Experimental Psychology Laboratory, Department of Education, Roma Tre University, Rome, Italy
| | | | - Luciano Romano
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Claudia Del Gatto
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Giorgia Allegrini
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Giuseppe Carrus
- Experimental Psychology Laboratory, Department of Education, Roma Tre University, Rome, Italy
| | - Angelo Panno
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
- Angelo Panno,
| |
Collapse
|
22
|
Van de Steen F, Pinotsis D, Devos W, Colenbier N, Bassez I, Friston K, Marinazzo D. Dynamic causal modelling shows a prominent role of local inhibition in alpha power modulation in higher visual cortex. PLoS Comput Biol 2022; 18:e1009988. [PMID: 36574458 PMCID: PMC9829170 DOI: 10.1371/journal.pcbi.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/09/2023] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
During resting-state EEG recordings, alpha activity is more prominent over the posterior cortex in eyes-closed (EC) conditions compared to eyes-open (EO). In this study, we characterized the difference in spectra between EO and EC conditions using dynamic causal modelling. Specifically, we investigated the role of intrinsic and extrinsic connectivity-within the visual cortex-in generating EC-EO alpha power differences over posterior electrodes. The primary visual cortex (V1) and the bilateral middle temporal visual areas (V5) were equipped with bidirectional extrinsic connections using a canonical microcircuit. The states of four intrinsically coupled subpopulations-within each occipital source-were also modelled. Using Bayesian model selection, we tested whether modulations of the intrinsic connections in V1, V5 or extrinsic connections (or a combination thereof) provided the best evidence for the data. In addition, using parametric empirical Bayes (PEB), we estimated group averages under the winning model. Bayesian model selection showed that the winning model contained both extrinsic connectivity modulations, as well as intrinsic connectivity modulations in all sources. The PEB analysis revealed increased extrinsic connectivity during EC. Overall, we found a reduction in the inhibitory intrinsic connections during EC. The results suggest that the intrinsic modulations in V5 played the most important role in producing EC-EO alpha differences, suggesting an intrinsic disinhibition in higher order visual cortex, during EC resting state.
Collapse
Affiliation(s)
- Frederik Van de Steen
- Department of Data Analysis, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel, AIMS laboratory, Brussel, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- * E-mail:
| | - Dimitris Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City—University of London, London, United Kingdom
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wouter Devos
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | | | - Iege Bassez
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
23
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
24
|
Shadli SM, Delany RG, Glue P, McNaughton N. Right Frontal Theta: Is It a Response Biomarker for Ketamine’s Therapeutic Action in Anxiety Disorders? Front Neurosci 2022; 16:900105. [PMID: 35860301 PMCID: PMC9289609 DOI: 10.3389/fnins.2022.900105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are the most prevalent mental disorders in the world, creating huge economic burdens on health systems and impairing the quality of life for those affected. Recently, ketamine has emerged as an effective anxiolytic even in cases resistant to conventional treatments (TR); but its therapeutic mechanism is unknown. Previous data suggest that ketamine anxiety therapy is mediated by reduced right frontal electroencephalogram (EEG) theta power measured during relaxation. Here we test for a similar theta reduction between population-sample, presumed treatment-sensitive, (TS) anxiety patients and healthy controls. Patients with TS DSM-5 anxiety disorder and healthy controls provided EEG during 10 min of relaxation and completed anxiety-related questionnaires. Frontal delta, theta, alpha1, alpha2, beta, and gamma power, Higuchi’s fractal dimension (HFD) and frontal alpha asymmetry (FAA) values were extracted to match ketamine testing; and we predicted that the controls would have less theta power at F4, relative to the TS anxious patients, and no differences in HFD or FAA. We provide graphical comparisons of our frontal band power patient-control differences with previously published post-pre ketamine TR differences. As predicted, theta power at F4 was significantly lower in controls than patients and FAA was not significantly different. However, HFD was unexpectedly reduced at lateral sites. Gamma power did not increase between controls and patients suggesting that the increased gamma produced by ketamine relates to dissociation rather than therapy. Although preliminary, and indirect, our results suggest that the anxiolytic action of ketamine is mediated through reduced right frontal theta power.
Collapse
Affiliation(s)
- Shabah M. Shadli
- Department of Psychology, University of Otago, Dunedin, New Zealand
- *Correspondence: Shabah M. Shadli,
| | - Robert G. Delany
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Deng X, Fan X, Lv X, Sun K. SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination. Front Neuroinform 2022; 16:914823. [PMID: 35722169 PMCID: PMC9201718 DOI: 10.3389/fninf.2022.914823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Depression affects many people around the world today and is considered a global problem. Electroencephalogram (EEG) measurement is an appropriate way to understand the underlying mechanisms of major depressive disorder (MDD) to distinguish depression from normal control. With the development of deep learning methods, many researchers have adopted deep learning models to improve the classification accuracy of depression recognition. However, there are few studies on designing convolution filters for spatial and frequency domain feature learning in different brain regions. In this study, SparNet, a convolutional neural network composed of five parallel convolutional filters and the SENet, is proposed to learn EEG space-frequency domain characteristics and distinguish between depressive and normal control. The model is trained and tested by the cross-validation method of subject division. The results show that SparNet achieves a sensitivity of 95.07%, a specificity of 93.66%, and an accuracy of 94.37% in classification. Therefore, our results can conclude that the proposed SparNet model is effective in detecting depression using EEG signals. It also indicates that the combination of spatial information and frequency domain information is an effective way to identify patients with depression.
Collapse
Affiliation(s)
| | - Xufeng Fan
- Key Laboratory of Data Engineering and Visual Computing, College of Computer Science and Technology, Chongqing University of Posts and Telecommunication, Chongqing, China
| | | | | |
Collapse
|
26
|
Hawellek DJ, Garces P, Meghdadi AH, Waninger S, Smith A, Manchester M, Schobel SA, Hipp JF. Changes in brain activity with tominersen in early-manifest Huntington’s disease. Brain Commun 2022; 4:fcac149. [PMID: 35774187 PMCID: PMC9237739 DOI: 10.1093/braincomms/fcac149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
It is unknown whether alterations in EEG brain activity caused by Huntington’s disease may be responsive to huntingtin-lowering treatment. We analysed EEG recordings of 46 patients (mean age = 47.02 years; standard deviation = 10.19 years; 18 female) with early-manifest Stage 1 Huntington’s disease receiving the huntingtin-lowering antisense oligonucleotide tominersen for 4 months or receiving placebo as well as 39 healthy volunteers (mean age = 44.48 years; standard deviation = 12.94; 22 female) not receiving treatment. Patients on tominersen showed increased resting-state activity within a 4–8 Hz frequency range compared with patients receiving placebo (cluster-based permutation test, P < 0.05). The responsive frequency range overlapped with EEG activity that was strongly reduced in Huntington’s disease compared with healthy controls (cluster-based permutation test, P < 0.05). The underlying mechanisms of the observed treatment-related increase are unknown and may reflect neural plasticity as a consequence of the molecular pathways impacted by tominersen treatment.
Hawellek et al. report that patients with Huntington’s disease treated with the huntingtin-lowering antisense oligonucleotide tominersen exhibited increased EEG power in the theta/alpha frequency range. The underlying mechanisms of the observed changes are unknown and may reflect neural plasticity as a consequence of the molecular pathways impacted by tominersen treatment.
Collapse
Affiliation(s)
- D J Hawellek
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - P Garces
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - A H Meghdadi
- Advanced Brain Monitoring Inc. , Carlsbad, CA 92008 , USA
| | - S Waninger
- Advanced Brain Monitoring Inc. , Carlsbad, CA 92008 , USA
| | - A Smith
- Ionis Pharmaceuticals Inc. , Carlsbad, CA 92010 , USA
| | - M Manchester
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| | - S A Schobel
- F. Hoffmann-La Roche Ltd , Basel 4070 , Switzerland
| | - J F Hipp
- Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel 4070 , Switzerland
| |
Collapse
|
27
|
de la Salle S, Phillips JL, Blier P, Knott V. Electrophysiological correlates and predictors of the antidepressant response to repeated ketamine infusions in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110507. [PMID: 34971723 DOI: 10.1016/j.pnpbp.2021.110507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sub-anesthetic ketamine doses rapidly reduce depressive symptoms, although additional investigations of the underlying neural mechanisms and the prediction of response outcomes are needed. Electroencephalographic (EEG)-derived measures have shown promise in predicting antidepressant response to a variety of treatments, and are sensitive to ketamine administration. This study examined their utility in characterizing changes in depressive symptoms following single and repeated ketamine infusions. METHODS Recordings were obtained from patients with treatment-resistant major depressive disorder (MDD) (N = 24) enrolled in a multi-phase clinical ketamine trial. During the randomized, double-blind, crossover phase (Phase 1), patients received intravenous ketamine (0.5 mg/kg) and midazolam (30 μg/kg), at least 1 week apart. For each medication, three resting, eyes-closed recordings were obtained per session (pre-infusion, immediately post-infusion, 2 h post-infusion), and changes in power (delta, theta1/2/total, alpha1/2/total, beta, gamma), alpha asymmetry, theta cordance, and theta source-localized anterior cingulate cortex activity were quantified. The relationships between ketamine-induced changes with early (Phase 1) and sustained (Phases 2,3: open-label repeated infusions) decreases in depressive symptoms (Montgomery-Åsberg Depression Rating Score, MADRS) and suicidal ideation (MADRS item 10) were examined. RESULTS Both medications decreased alpha and theta immediately post-infusion, however, only midazolam increased delta (post-infusion), and only ketamine increased gamma (immediately post- and 2 h post-infusion). Regional- and frequency-specific ketamine-induced EEG changes were related to and predictive of decreases in depressive symptoms (theta, gamma) and suicidal ideation (alpha). Early and sustained treatment responders differed at baseline in surface-level and source-localized theta. CONCLUSIONS Ketamine exerts frequency-specific changes on EEG-derived measures, which are related to depressive symptom decreases in treatment-resistant MDD and provide information regarding early and sustained individual response to ketamine. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: Action of Ketamine in Treatment-Resistant Depression, NCT01945047.
Collapse
Affiliation(s)
- Sara de la Salle
- University of Ottawa Institute of Mental Health Research at the Royal, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N6N5, Canada.
| | - Jennifer L Phillips
- University of Ottawa Institute of Mental Health Research at the Royal, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Department of Psychiatry, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research at the Royal, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Department of Psychiatry, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research at the Royal, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
28
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
29
|
Li D, Vlisides PE, Mashour GA. Dynamic reconfiguration of frequency-specific cortical coactivation patterns during psychedelic and anesthetized states induced by ketamine. Neuroimage 2022; 249:118891. [PMID: 35007718 PMCID: PMC8903080 DOI: 10.1016/j.neuroimage.2022.118891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. However, the modulation of brain activity repertoire across varying states of consciousness has not yet been studied in a systematic and unified framework. As a unique drug that has both psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity to examine brain reconfiguration dynamics along a continuum of consciousness. Here we investigated the dynamic organization of cortical activity during wakefulness and during altered states of consciousness induced by different doses of ketamine. Through k-means clustering analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we identified a set of recurring states that represent frequency-specific spatial coactivation patterns. We quantified the effect of ketamine on individual brain states in terms of fractional occupancy and transition probabilities and found that ketamine anesthesia tends to shift the configuration toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain state organization, with the repertoire richness evolving from a reduced level to one comparable to that of normal wakefulness before recovery of consciousness. These results provide a novel description of ketamine's modulation of the dynamic configuration of cortical activity and advance understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, and spectral structures of underlying whole-brain dynamics.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science; Department of Anesthesiology.
| | | | - George A Mashour
- Center for Consciousness Science; Department of Anesthesiology; Neuroscience Graduate Program; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
30
|
Bowman C, Richter U, Jones CR, Agerskov C, Herrik KF. Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat. Front Psychiatry 2022; 13:737295. [PMID: 35153870 PMCID: PMC8830299 DOI: 10.3389/fpsyt.2022.737295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has emerged as a breakthrough therapy for major depressive disorder. Using local field potential recordings in freely moving rats, we studied resting state EEG profiles induced by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic; or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant effects of ketamine. As human electroencephalography (EEG) is predominantly recorded in a passive state, head-mounted accelerometers were used with rats to determine active and passive states at a high temporal resolution to offer the highest translatability. In general, pharmacological effects for the three drugs were more pronounced in (or restricted to) the passive state. Specifically, during inactive periods clozapine induced increases in delta (0.1-4 Hz), gamma (30-60 Hz) and higher frequencies (>100 Hz). Importantly, it reversed the ketamine-induced reduction in low beta power (10-20 Hz) and potentiated ketamine-induced increases in gamma and high frequency oscillations (130-160 Hz). Naltrexone inhibited frequencies above 50 Hz and significantly reduced the ketamine-induced increase in high frequency oscillations. However, some frequency band changes, such as clozapine-induced decreases in delta power, were only seen in locomoting rats. These results emphasise the potential in differentiating between activity states to capture drug effects and translate to human resting state EEG. Furthermore, the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone may have implications for the understanding of psychotomimetic as well as rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Christien Bowman
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Bio Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ulrike Richter
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | - Christopher R Jones
- Department of Pharmacokinetic and Pharmacodynamic Modeling and Simulation, Lundbeck, Copenhagen, Denmark
| | - Claus Agerskov
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | | |
Collapse
|
31
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
32
|
Chamadia S, Gitlin J, Mekonnen J, Ethridge BR, Ibala R, Colon KM, Qu J, Akeju O. Ketamine induces EEG oscillations that may aid anesthetic state but not dissociation monitoring. Clin Neurophysiol 2021; 132:3010-3018. [PMID: 34715426 DOI: 10.1016/j.clinph.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Ketamine is an anesthetic drug associated with dissociation. Decreased electroencephalogram alpha (8-13 Hz) and low-beta (13-20 Hz) oscillation power have been associated with ketamine-induced dissociation. We aimed to characterize surface electroencephalogram signatures that may serve as biomarkers for dissociation. METHODS We analyzed data from a single-site, open-label, high-density surface electroencephalogram study of ketamine anesthesia (2 mg/kg, n = 15). We assessed dissociation longitudinally using the Clinician Administered Dissociation States Scale (CADSS) and administered midazolam to attenuate dissociation and enable causal inference. We analyzed electroencephalogram power and global coherence with multitaper spectral methods. Mixed effects models were used to assess whether power and global coherence signatures of ketamine could be developed into dissociation-specific biomarkers. RESULTS Compared to baseline, ketamine unresponsiveness was associated with increased frontal power between 0.5 to 9.3 Hz, 12.2 to 16.6 Hz, and 24.4 to 50 Hz. As subjects transitioned into a responsive but dissociated state (mean CADSS ± SD, 22.1 ± 17), there was a decrease in power between 0.5 to 10.3 Hz and 11.7 to 50 Hz. Midazolam reduced dissociation scores (14.3 ± 11.6), decreased power between 4.4 to 11.7 Hz and increased power between 14.2 to 50 Hz. Our mixed-effects model demonstrated a quadratic relationship between time and CADSS scores. When models (frontal power, occipital power, global coherence) were reanalyzed with midazolam and electroencephalogram features as covariates, only midazolam was retained. CONCLUSIONS Ketamine is associated with structured electroencephalogram power and global coherence signatures that may enable principled anesthetic state but not dissociation monitoring. SIGNIFICANCE A neurophysiological biomarker for dissociation may lead to a better understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shubham Chamadia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob Gitlin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Mekonnen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Breanna R Ethridge
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Reine Ibala
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Katia M Colon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
33
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
34
|
Arora M, Knott VJ, Labelle A, Fisher DJ. Alterations of Resting EEG in Hallucinating and Nonhallucinating Schizophrenia Patients. Clin EEG Neurosci 2021; 52:159-167. [PMID: 33074718 DOI: 10.1177/1550059420965385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Auditory hallucinations (AHs) are a common symptom of schizophrenia and contribute significantly to disease burden. Research on schizophrenia and AHs is limited and fails to adequately address the effect of AHs on resting EEG in patients with schizophrenia. This study assessed changes in frequency bands (delta, theta, alpha, beta) of resting EEG taken from hallucinating patients (n = 12), nonhallucinating patients (n = 11), and healthy controls (n = 12). Delta and theta activity were unaffected by AHs but differed between patients with schizophrenia and healthy controls. Alpha activity was affected by AHs: nonhallucinators had more alpha activity than hallucinators and healthy controls. Additionally, beta activity was inversely related to trait measures of AHs. These findings contribute to the literature of resting eyes closed EEG recordings of schizophrenia and AHs, and indicate the role of delta, theta, alpha, and beta as markers for schizophrenia and auditory hallucinations.
Collapse
Affiliation(s)
- Madhav Arora
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
| | - Verner J Knott
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Alain Labelle
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Derek J Fisher
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
A randomized cross-over trial to define neurophysiological correlates of AV-101 N-methyl-D-aspartate receptor blockade in healthy veterans. Neuropsychopharmacology 2021; 46:820-827. [PMID: 33318635 PMCID: PMC8027791 DOI: 10.1038/s41386-020-00917-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/03/2022]
Abstract
The kynurenine pathway (KP) is a strategic metabolic system that combines regulation of neuronal excitability via glutamate receptor function and neuroinflammation via other KP metabolites. This pathway has great promise in treatment of depression and suicidality. The KP modulator AV-101 (4-chlorokynurenine, 4-Cl-KYN), an oral prodrug of 7-chlorokynurenic acid (7-Cl-KYNA), an N-methyl-D-aspartate receptor (NMDAR) glycine site antagonist, and of 4-chloro-3-hydroxyanthranilic acid (4-Cl-3-HAA), a suppressor of NMDAR agonist quinolinic acid (QUIN), is a promising potential antidepressant that targets glutamate functioning via the KP. However, a recent placebo-controlled clinical trial of AV-101 in depression found negative results. This raises the question of whether AV-101 can penetrate the brain and engage the NMDAR and KP effectively. To address this problem, ten healthy US military veterans (mean age = 32.6 years ± 6.11; 1 female) completed a phase-1 randomized, double-blind, placebo-controlled, crossover study to examine dose-related effects of AV-101 (720 and 1440 mg) on NMDAR engagement measured by γ-frequency band auditory steady-state response (40 Hz ASSR) and resting EEG. Linear mixed models revealed that 1440 mg AV-101, but not 720 mg, increased 40 Hz ASSR and 40 Hz ASSR γ-inter-trial phase coherence relative to placebo. AV-101 also increased 4-Cl-KYN, 7-Cl-KYNA, 4-Cl-3-HAA, 3-HAA, and KYNA in a dose-dependent manner, without affecting KYN and QUIN. AV-101 was safe and well tolerated. These results corroborate brain target engagement of 1440 mg AV-101 in humans, consistent with blockade of interneuronal NMDAR blockade. Future studies should test higher doses of AV-101 in depression. Suicidal behavior, which has been associated with high QUIN and low KYNA, is also a potential target for AV-101.
Collapse
|
36
|
Bianciardi B, Uhlhaas PJ. Do NMDA-R antagonists re-create patterns of spontaneous gamma-band activity in schizophrenia? A systematic review and perspective. Neurosci Biobehav Rev 2021; 124:308-323. [PMID: 33581223 DOI: 10.1016/j.neubiorev.2021.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
NMDA-R hypofunctioninig is a core pathophysiological mechanism in schizophrenia. However, it is unclear whether the physiological changes observed following NMDA-R antagonist administration are consistent with gamma-band alterations in schizophrenia. This systematic review examined the effects of NMDA-R antagonists on the amplitude of spontaneous gamma-band activity and functional connectivity obtained from preclinical (n = 24) and human (n = 9) studies and compared these data to resting-state EEG/MEG-measurements in schizophrenia patients (n = 27). Overall, the majority of preclinical and human studies observed increased gamma-band power following acute administration of NMDA-R antagonists. However, the direction of gamma-band power alterations in schizophrenia were inconsistent, which involved upregulation (n = 10), decreases (n = 7), and no changes (n = 8) in spectral power. Five out of 6 preclinical studies observed increased connectivity, while in healthy controls receiving Ketamine and in schizophrenia patients the direction of connectivity results was also inconsistent. Accordingly, the effects of NMDA-R hypofunctioning on gamma-band oscillations are different than pathophysiological signatures observed in schizophrenia. The implications of these findings for current E/I balance models of schizophrenia are discussed.
Collapse
Affiliation(s)
- Bianca Bianciardi
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
37
|
Kadriu B, Greenwald M, Henter ID, Gilbert JR, Kraus C, Park LT, Zarate CA. Ketamine and Serotonergic Psychedelics: Common Mechanisms Underlying the Effects of Rapid-Acting Antidepressants. Int J Neuropsychopharmacol 2021; 24:8-21. [PMID: 33252694 PMCID: PMC7816692 DOI: 10.1093/ijnp/pyaa087] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The glutamatergic modulator ketamine has created a blueprint for studying novel pharmaceuticals in the field. Recent studies suggest that "classic" serotonergic psychedelics (SPs) may also have antidepressant efficacy. Both ketamine and SPs appear to produce rapid, sustained antidepressant effects after a transient psychoactive period. METHODS This review summarizes areas of overlap between SP and ketamine research and considers the possibility of a common, downstream mechanism of action. The therapeutic relevance of the psychoactive state, overlapping cellular and molecular effects, and overlapping electrophysiological and neuroimaging observations are all reviewed. RESULTS Taken together, the evidence suggests a potentially shared mechanism wherein both ketamine and SPs may engender rapid neuroplastic effects in a glutamatergic activity-dependent manner. It is postulated that, though distinct, both ketamine and SPs appear to produce acute alterations in cortical network activity that may initially produce psychoactive effects and later produce milder, sustained changes in network efficiency associated with therapeutic response. However, despite some commonalities between the psychoactive component of these pharmacologically distinct therapies-such as engagement of the downstream glutamatergic pathway-the connection between psychoactive impact and antidepressant efficacy remains unclear and requires more rigorous research. CONCLUSIONS Rapid-acting antidepressants currently under investigation may share some downstream pharmacological effects, suggesting that their antidepressant effects may come about via related mechanisms. Given the prototypic nature of ketamine research and recent progress in this area, this platform could be used to investigate entirely new classes of antidepressants with rapid and robust actions.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Maximillian Greenwald
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jessica R Gilbert
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence T Park
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Grent-'t-Jong T, Melloni L, Uhlhaas PJ. Dissociation and Brain Rhythms: Pitfalls and Promises. Front Psychiatry 2021; 12:790372. [PMID: 34938216 PMCID: PMC8686110 DOI: 10.3389/fpsyt.2021.790372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, Vesuna et al. proposed a novel circuit mechanism underlying dissociative states using optogenetics and pharmacology in mice in combination with intracranial recordings and electrical stimulation in an epilepsy patient. Specifically, the authors identified a posteromedial cortical delta-rhythm that underlies states of dissociation. In the following, we would like to critically review these findings in the context of the human literature on dissociation as well as highlight the challenges in translational neuroscience to link complex behavioral phenotypes in psychiatric syndromes to circumscribed circuit mechanisms.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Melloni
- Department of Neurology, New York University School of Medicine, New York, NY, United States.,Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, Germany
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Curic S, Andreou C, Nolte G, Steinmann S, Thiebes S, Polomac N, Haaf M, Rauh J, Leicht G, Mulert C. Ketamine Alters Functional Gamma and Theta Resting-State Connectivity in Healthy Humans: Implications for Schizophrenia Treatment Targeting the Glutamate System. Front Psychiatry 2021; 12:671007. [PMID: 34177660 PMCID: PMC8222814 DOI: 10.3389/fpsyt.2021.671007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Disturbed functional connectivity is assumed to cause neurocognitive deficits in patients suffering from schizophrenia. A Glutamate N-methyl-D-aspartate receptor (NMDAR) dysfunction has been suggested as a possible mechanism underlying altered connectivity in schizophrenia, especially in the gamma- and theta-frequency range. The present study aimed to investigate the effects of the NMDAR-antagonist ketamine on resting-state power, functional connectivity, and schizophrenia-like psychopathological changes in healthy volunteers. In a placebo-controlled crossover design, 25 healthy subjects were recorded using resting-state 64-channel-electroencephalography (EEG) (eyes closed). The imaginary coherence-based Multivariate Interaction Measure (MIM) was used to measure gamma and theta connectivity across 80 cortical regions. The network-based statistic was applied to identify involved networks under ketamine. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) and the 5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC). Ketamine caused an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01). Significant increases in resting-state gamma and theta power were observed under ketamine compared to placebo (p < 0.05). The source-space analysis revealed two distinct networks with an increased mean functional gamma- or theta-band connectivity during the ketamine session. The gamma-network consisted of midline regions, the cuneus, the precuneus, and the bilateral posterior cingulate cortices, while the theta-band network involved the Heschl gyrus, midline regions, the insula, and the middle cingulate cortex. The current source density (CSD) within the gamma-band correlated negatively with the PANSS negative symptom score, and the activity within the gamma-band network correlated negatively with the subjective changed meaning of percepts subscale of the 5D-ASC. These results are in line with resting-state patterns seen in people who have schizophrenia and argue for a crucial role of the glutamate system in mediating dysfunctional gamma- and theta-band-connectivity in schizophrenia. Resting-state networks could serve as biomarkers for the response to glutamatergic drugs or drug development efforts within the glutamate system.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Centre for Psychiatry and Psychotherapy, Justus Liebig University, Giessen, Germany
| |
Collapse
|
40
|
de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Carroll B, Knott V. Resting-state functional EEG connectivity in salience and default mode networks and their relationship to dissociative symptoms during NMDA receptor antagonism. Pharmacol Biochem Behav 2020; 201:173092. [PMID: 33385439 DOI: 10.1016/j.pbb.2020.173092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
N-methyl-d-aspartate receptor (NMDAR) antagonists administered to healthy humans results in schizophrenia-like symptoms, which are thought in part to be related to glutamatergically altered electrophysiological connectivity in large-scale intrinsic functional brain networks. Here, we examine resting-state source electroencephalographic (EEG) connectivity within and between the default mode (DMN: for self-related cognitive activity) and salience networks (SN: for detection of salient stimuli in internal and external environments) in 21 healthy volunteers administered a subanesthetic dose of the dissociative anesthetic and NMDAR antagonist, ketamine. In addition to provoking symptoms of dissociation, which are thought to originate from an altered sense of self that is common to schizophrenia, ketamine induces frequency-dependent increases and decreases in connectivity within and between DMN and SN. These altered interactive network couplings together with emergent dissociative symptoms tentatively support an NMDAR-hypofunction hypothesis of disturbed electrophysiologic connectivity in schizophrenia.
Collapse
Affiliation(s)
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Vadim Ilivitsky
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Brooke Carroll
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Farnes N, Juel BE, Nilsen AS, Romundstad LG, Storm JF. Increased signal diversity/complexity of spontaneous EEG, but not evoked EEG responses, in ketamine-induced psychedelic state in humans. PLoS One 2020; 15:e0242056. [PMID: 33226992 PMCID: PMC7682856 DOI: 10.1371/journal.pone.0242056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
How and to what extent electrical brain activity reflects pharmacologically altered states and contents of consciousness, is not well understood. Therefore, we investigated whether measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective experience. High-density 62-channel EEG was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and during administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from EEG responses to TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE). Although no significant difference was found in TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all measures of spontaneous EEG signal diversity (LZc, ACE, SCE) showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine. The results suggest that PCI and spontaneous signal diversity may reflect distinct, complementary aspects of changes in brain properties related to altered states of consciousness: the brain’s capacity for information integration, assessed by PCI, might be indicative of the brain’s ability to sustain consciousness, while spontaneous complexity, as measured by EEG signal diversity, may be indicative of the complexity of conscious content. Thus, sub-anaesthetic ketamine may increase the complexity of the conscious content and the brain activity underlying it, while the level or general capacity for consciousness remains largely unaffected.
Collapse
Affiliation(s)
- Nadine Farnes
- Brain Signaling Group, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Bjørn E Juel
- Brain Signaling Group, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - André S Nilsen
- Brain Signaling Group, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Luis G Romundstad
- Department of Anaesthesia, and Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Johan F Storm
- Brain Signaling Group, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Doss MK, May DG, Johnson MW, Clifton JM, Hedrick SL, Prisinzano TE, Griffiths RR, Barrett FS. The Acute Effects of the Atypical Dissociative Hallucinogen Salvinorin A on Functional Connectivity in the Human Brain. Sci Rep 2020; 10:16392. [PMID: 33009457 PMCID: PMC7532139 DOI: 10.1038/s41598-020-73216-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Salvinorin A (SA) is a κ-opioid receptor agonist and atypical dissociative hallucinogen found in Salvia divinorum. Despite the resurgence of hallucinogen studies, the effects of κ-opioid agonists on human brain function are not well-understood. This placebo-controlled, within-subject study used functional magnetic resonance imaging for the first time to explore the effects of inhaled SA on strength, variability, and entropy of functional connectivity (static, dynamic, and entropic functional connectivity, respectively, or sFC, dFC, and eFC). SA tended to decrease within-network sFC but increase between-network sFC, with the most prominent effect being attenuation of the default mode network (DMN) during the first half of a 20-min scan (i.e., during peak effects). SA reduced brainwide dFC but increased brainwide eFC, though only the former effect survived multiple comparison corrections. Finally, using connectome-based classification, most models trained on dFC network interactions could accurately classify the first half of SA scans. In contrast, few models trained on within- or between-network sFC and eFC performed above chance. Notably, models trained on within-DMN sFC and eFC performed better than models trained on other network interactions. This pattern of SA effects on human brain function is strikingly similar to that of other hallucinogens, necessitating studies of direct comparisons.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA.
| | - Darrick G May
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
| | - John M Clifton
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
| | - Sidnee L Hedrick
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
43
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
44
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
45
|
Manduca JD, Thériault RK, Williams OOF, Rasmussen DJ, Perreault ML. Transient Dose-dependent Effects of Ketamine on Neural Oscillatory Activity in Wistar-Kyoto Rats. Neuroscience 2020; 441:161-175. [PMID: 32417341 DOI: 10.1016/j.neuroscience.2020.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Ketamine is a promising therapeutic for treatment-resistant depression (TRD) but is associated with an array of short-term psychomimetic side-effects. These disparate drug effects may be elicited through the modulation of neural circuit activity. The purpose of this study was to therefore delineate dose- and time-dependent changes in ketamine-induced neural oscillatory patterns in regions of the brain implicated in depression. Wistar-Kyoto rats were used as a model system to study these aspects of TRD neuropathology whereas Wistar rats were used as a control strain. Animals received a low (10 mg/kg) or high (30 mg/kg) dose of ketamine and temporal changes in neural oscillatory activity recorded from the prefrontal cortex (PFC), cingulate cortex (Cg), and nucleus accumbens (NAc) for ninety minutes. Effects of each dose of ketamine on immobility in the forced swim test were also evaluated. High dose ketamine induced a transient increase in theta power in the PFC and Cg, as well as a dose-dependent increase in gamma power in these regions 10-min, but not 90-min, post-administration. In contrast, only low dose ketamine normalized innate deficits in fast gamma coherence between the NAc-Cg and PFC-Cg, an effect that persisted at 90-min post-injection. These low dose ketamine-induced oscillatory alterations were accompanied by a reduction in immobility time in the forced swim test. These results show that ketamine induces time-dependent effects on neural oscillations at specific frequencies. These drug-induced changes may differentially contribute to the psychomimetic and therapeutic effects of the drug.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Duncan J Rasmussen
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada.
| |
Collapse
|
46
|
McMillan R, Sumner R, Forsyth A, Campbell D, Malpas G, Maxwell E, Deng C, Hay J, Ponton R, Sundram F, Muthukumaraswamy S. Simultaneous EEG/fMRI recorded during ketamine infusion in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109838. [PMID: 31843628 DOI: 10.1016/j.pnpbp.2019.109838] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
A single subanaesthetic dose of ketamine rapidly alleviates the symptoms of major depressive disorder (MDD). However, few studies have investigated the acute effects of ketamine on the BOLD pharmacological magnetic resonance imaging (phMRI) response and EEG spectra. In a randomised, double-blind, active placebo-controlled crossover trial, resting-state simultaneous EEG/fMRI was collected during infusion of ketamine or active placebo (remifentanil) in 30 participants with MDD. Montgomery-Asberg depression rating scale scores showed a significant antidepressant effect of ketamine compared to placebo (69% response rate). phMRI analyses showed BOLD signal increases in the anterior cingulate and medial prefrontal cortices and sensitivity of the decrease in subgenual anterior cingulate cortex (sgACC) BOLD signal to noise correction. EEG spectral analysis showed increased theta, high beta, low and high gamma power, and decreased delta, alpha, and low beta power with differing time-courses. Low beta and high gamma power time courses explained significant variance in the BOLD signal. Interestingly, the variance explained by high gamma power was significantly associated with non-response to ketamine, but significant associations were not found for other neurophysiological markers when noise correction was implemented. The results suggest that the decrease in sgACC BOLD signal is potentially noise and unrelated to ketamine's antidepressant effect, highlighting the importance of noise correction and multiple temporal regressors for phMRI analyses. The lack of effects significantly associated with antidepressant response suggests the phMRI methodology employed was unable to detect such effects, the effect sizes are relatively small, or that other processes, e.g. neural plasticity, underlie ketamine's antidepressant effect.
Collapse
Affiliation(s)
| | | | - Anna Forsyth
- School of Pharmacy, University of Auckland, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, New Zealand
| | - Carolyn Deng
- Department of Anaesthesiology, Auckland District Health Board, New Zealand
| | - John Hay
- Department of Anaesthesiology, Auckland District Health Board, New Zealand
| | - Rhys Ponton
- School of Pharmacy, University of Auckland, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, University of Auckland, New Zealand
| | | |
Collapse
|
47
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
48
|
Raith H, Schuelert N, Duveau V, Roucard C, Plano A, Dorner-Ciossek C, Ferger B. Differential effects of traxoprodil and S-ketamine on quantitative EEG and auditory event-related potentials as translational biomarkers in preclinical trials in rats and mice. Neuropharmacology 2020; 171:108072. [PMID: 32243874 DOI: 10.1016/j.neuropharm.2020.108072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats. Recorded EEG data were analyzed using fast Fourier transformation to determine power spectra and vigilance states. Additionally, body temperature and locomotor activity were assessed via telemetry. For recordings of auditory event-related potentials (AERP) male C57Bl/6J mice were chronically implanted with deep electrodes using a tethered system. Power spectral analysis revealed a significant increase in gamma power following ketamine treatment, whereas traxoprodil (6&18 mg/kg) induced an overall decrease primarily within alpha and beta bands. Additionally, ketamine disrupted sleep and enhanced time spent in wake vigilance states, whereas traxoprodil did not alter sleep-wake architecture. AERP and mismatch negativity (MMN) revealed that ketamine (10 mg/kg) selectively disrupts auditory deviance detection, whereas traxoprodil (6 mg/kg) did not alter MMN at clinically relevant doses. In contrast to ketamine treatment, traxoprodil did not produce hyperactivity and hypothermia. In conclusion, ketamine and traxoprodil showed very different effects on diverse EEG readouts differentiating selective GluN2B antagonism from non-selective pan-NMDA-R antagonists like ketamine. These readouts are thus perfectly suited to support drug discovery efforts on NMDA-R and understanding the different functions of NMDA-R subtypes.
Collapse
Affiliation(s)
- Henrike Raith
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Niklas Schuelert
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Venceslas Duveau
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Corinne Roucard
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Andrea Plano
- Plano Consulting, Georg-Schinbain-Str. 70, 88400, Biberach an der Riß, Germany.
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Boris Ferger
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| |
Collapse
|
49
|
Rogasch NC, Zipser C, Darmani G, Mutanen TP, Biabani M, Zrenner C, Desideri D, Belardinelli P, Müller-Dahlhaus F, Ziemann U. The effects of NMDA receptor blockade on TMS-evoked EEG potentials from prefrontal and parietal cortex. Sci Rep 2020; 10:3168. [PMID: 32081901 PMCID: PMC7035341 DOI: 10.1038/s41598-020-59911-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Measuring the brain’s response to transcranial magnetic stimulation (TMS) with electroencephalography (EEG) offers unique insights into the cortical circuits activated following stimulation, particularly in non-motor regions where less is known about TMS physiology. However, the mechanisms underlying TMS-evoked EEG potentials (TEPs) remain largely unknown. We assessed TEP sensitivity to changes in excitatory neurotransmission mediated by n-methyl-d-aspartate (NMDA) receptors following stimulation of non-motor regions. In fourteen male volunteers, resting EEG and TEPs from prefrontal (PFC) and parietal (PAR) cortex were measured before and after administration of either dextromethorphan (NMDA receptor antagonist) or placebo across two sessions in a double-blinded pseudo-randomised crossover design. At baseline, there were amplitude differences between PFC and PAR TEPs across a wide time range (15–250 ms), however the signals were correlated after ~80 ms, suggesting early peaks reflect site-specific activity, whereas late peaks reflect activity patterns less dependent on the stimulated sites. Early TEP peaks were not reliably altered following dextromethorphan compared to placebo, although findings were less clear for later peaks, and low frequency resting oscillations were reduced in power. Our findings suggest that early TEP peaks (<80 ms) from PFC and PAR reflect stimulation site specific activity that is largely insensitive to changes in NMDA receptor-mediated neurotransmission.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Brain, Mind and Society Research Hub, School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia. .,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Carl Zipser
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ghazaleh Darmani
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tuomas P Mutanen
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Mana Biabani
- Brain, Mind and Society Research Hub, School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Christoph Zrenner
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Debora Desideri
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Gilbert JR, Zarate CA. Electrophysiological biomarkers of antidepressant response to ketamine in treatment-resistant depression: Gamma power and long-term potentiation. Pharmacol Biochem Behav 2020; 189:172856. [PMID: 31958471 DOI: 10.1016/j.pbb.2020.172856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Over the last two decades, the discovery of ketamine's antidepressant properties has galvanized research into the neurobiology of treatment-resistant depression. Nevertheless, the mechanism of action underlying antidepressant response to ketamine remains unclear. This study reviews electrophysiological studies of ketamine's effects in individuals with depression as well as healthy controls, with a focus on two putative markers of synaptic potentiation: gamma oscillations and long-term potentiation. The review focuses on: 1) measures of gamma oscillations and power and their relationship to both acute, psychotomimetic drug effects as well as delayed antidepressant response in mood disorders; 2) changes in long-term potentiation as a promising measure of synaptic potentiation following ketamine administration; and 3) recent efforts to model antidepressant response to ketamine using novel computational modeling techniques, in particular the application of dynamic causal modeling to electrophysiological data. The latter promises to better characterize the mechanisms underlying ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|