1
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons. Neurochem Res 2024; 50:27. [PMID: 39567459 DOI: 10.1007/s11064-024-04283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Protein translation is essential for some forms of synaptic plasticity. Here we used fluorescent noncanonical amino acid tagging (FUNCAT) to examine whether dopamine modulates protein translation in cultured nucleus accumbens (NAc) medium spiny neurons (MSN). These neurons were co-cultured with cortical neurons to restore excitatory synapses. We measured translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 h). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers. Supporting this, immunocytochemistry and proximity ligation assays revealed D1R/NMDAR heteromers on NAc cells both in vitro and in vivo, confirming previous results. Furthermore, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390 + APV. These results suggest that: (1) excitatory transmission stimulates translation in NAc MSNs, (2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and (3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R Zimbelman
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: UCLA Center for Cannabis and Cannabinoids, Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, 90025, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Michael T Stefanik
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA.
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
2
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2024; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Kim NH, Lee YA. The Effects of Nanoplastics on the Dopamine System of Cerebrocortical Neurons. Int J Toxicol 2024:10915818241293993. [PMID: 39486087 DOI: 10.1177/10915818241293993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Nanoplastics (NPx) can enter living organisms, including humans, through ecosystems, inhalation, and dermal contact and can be found from the intestine to the brain. However, it is unclear whether NPx accumulates and affects the dopamine system. In this study, we investigated the effects of NPx on the dopamine system in cultured murine cerebral cortex neurons. Cultured cerebrocortical neurons were treated with 100 nm NPx at the following concentrations for 24 h: 1.896 × 105, 3.791 × 106, 7.583 × 107, 1.571 × 109, 3.033 × 1010, and 3.033 × 1011 particles/mL. Dopamine-associated proteins were analyzed using immunofluorescence staining. NPx treatment induced its accumulation in neurons in a dose-dependent manner and increased the levels of dopamine receptors D1 and D2 and their co-expression. However, NPx treatment did not affect the levels of other dopamine receptors, dopamine transporters, tyrosine hydroxylase, and microtubule-associated protein 2, or synaptophysin in neuronal structures. This study demonstrated that NPx is a potential modulator of the dopamine system via its receptors rather than its synthesis and reuptake in neurons and may be associated with dopamine-based psychiatric disorders.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
da Silva MCM, de Souza Ferreira LP, Giustina AD. Could immunotherapy be a hope for addiction treatment? Clinics (Sao Paulo) 2024; 79:100347. [PMID: 38583393 PMCID: PMC11002847 DOI: 10.1016/j.clinsp.2024.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
| | - Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Amanda Della Giustina
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Ma XN, Yao CH, Yang YJ, Li X, Zhou MY, Yang J, Zhang S, Yu BY, Dai WL, Liu JH. Blockade of spinal dopamine D1/D2 receptor heteromers by levo-Corydalmine suppressed calcium signaling cascade in spinal neurons to alleviate bone cancer pain in rats. J Cancer 2024; 15:1041-1052. [PMID: 38230224 PMCID: PMC10788731 DOI: 10.7150/jca.91129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.
Collapse
Affiliation(s)
- Xiao-Nan Ma
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yu-Jie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meng-Yuan Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
6
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz D, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of Erk2 in the nucleus accumbens regulates responses to rewarding and aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560689. [PMID: 37873069 PMCID: PMC10592906 DOI: 10.1101/2023.10.03.560689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.
Collapse
|
7
|
Di Raddo ME, Milenkovic M, Sivasubramanian M, Hasbi A, Bergman J, Withey S, Madras BK, George SR. Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100107. [PMID: 38020805 PMCID: PMC10663137 DOI: 10.1016/j.crneur.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.
Collapse
Affiliation(s)
- Marie-Eve Di Raddo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | | | - Ahmed Hasbi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Jack Bergman
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Sarah Withey
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Bertha K. Madras
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Susan R. George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
- Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| |
Collapse
|
8
|
Franco R, Navarro G. Neuroprotection afforded by targeting G protein-coupled receptors in heteromers and by heteromer-selective drugs. Front Pharmacol 2023; 14:1222158. [PMID: 37521478 PMCID: PMC10373065 DOI: 10.3389/fphar.2023.1222158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the target of hundreds of approved drugs. Although these drugs were designed to target individual receptors, it is becoming increasingly apparent that GPCRs interact with each other to form heteromers. Approved drug targets are often part of a GPCR heteromer, and therefore new drugs can be developed with heteromers in mind. This review presents several strategies to selectively target GPCRs in heteromeric contexts, namely, taking advantage of i) heteromer-mediated biased agonism/signalling, ii) discovery of drugs with higher affinity for the receptor if it is part of a heteromer (heteromer selective drugs), iii) allosteric compounds directed against the interacting transmembrane domains and, eventually, iv) antagonists that block both GPCRs in a heteromer. Heteromers provide unique allosteric sites that should help designing a new type of drug that by definition would be a heteromer selective drug. The review also provides examples of rhodopsin-like class A receptors in heteromers that could be targeted to neuroprotect and/or delay the progression of diseases such as Parkinson's and Alzheimer's. GPCRs in heteromers (GriH) with the potential to address dyskinesias, a common complication of dopaminergic replacement therapy in parkinsonian patients, are also described.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
González-Portilla M, Mellado S, Montagud-Romero S, Rodríguez de Fonseca F, Pascual M, Rodríguez-Arias M. Oleoylethanolamide attenuates cocaine-primed reinstatement and alters dopaminergic gene expression in the striatum. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:8. [PMID: 37226219 DOI: 10.1186/s12993-023-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
The lipid oleoylethanolamide (OEA) has been shown to affect reward-related behavior. However, there is limited experimental evidence about the specific neurotransmission systems OEA may be affecting to exert this modulatory effect. The aim of this study was to evaluate the effects of OEA on the rewarding properties of cocaine and relapse-related gene expression in the striatum and hippocampus. For this purpose, we evaluated male OF1 mice on a cocaine-induced CPP procedure (10 mg/kg) and after the corresponding extinction sessions, we tested drug-induced reinstatement. The effects of OEA (10 mg/kg, i.p.) were evaluated at three different timepoints: (1) Before each cocaine conditioning session (OEA-C), (2) Before extinction sessions (OEA-EXT) and (3) Before the reinstatement test (OEA-REINST). Furthermore, gene expression changes in dopamine receptor D1 gene, dopamine receptor D2 gene, opioid receptor µ, cannabinoid receptor 1, in the striatum and hippocampus were analyzed by qRT-PCR. The results obtained in the study showed that OEA administration did not affect cocaine CPP acquisition. However, mice receiving different OEA treatment schedules (OEA-C, OEA-EXT and OEA-REINST) failed to display drug-induced reinstatement. Interestingly, the administration of OEA blocked the increase of dopamine receptor gene D1 in the striatum and hippocampus caused by cocaine exposure. In addition, OEA-treated mice exhibited reduced striatal dopamine receptor gene D2 and cannabinoid receptor 1. Together, these findings suggest that OEA may be a promising pharmacological agent in the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga- IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD), Rd210009/0005/0003, Valencia, Madrid, Spain
| | - María Pascual
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD), Rd210009/0005/0003, Valencia, Madrid, Spain.
| |
Collapse
|
10
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA receptor co-regulation of protein translation in cultured nucleus accumbens neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535293. [PMID: 37034633 PMCID: PMC10081306 DOI: 10.1101/2023.04.02.535293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Protein translation is essential for some forms of synaptic plasticity. We used nucleus accumbens (NAc) medium spiny neurons (MSN), co-cultured with cortical neurons to restore excitatory synapses, to examine whether dopamine modulates protein translation in NAc MSN. FUNCAT was used to measure translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 hr). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers, which have been described in other cell types. Supporting this, immunocytochemistry and proximity ligation assays revealed D1/NMDAR heteromers on NAc cells both in vitro and in vivo. Further, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390+APV. These results suggest that: 1) excitatory synaptic transmission stimulates translation in NAc MSNs, 2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and 3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R. Zimbelman
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Conor H. Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- Present address: Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Marina E. Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
- Present address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Michael T. Stefanik
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
| |
Collapse
|
11
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
12
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
13
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
14
|
Kim H, Nam MH, Jeong S, Lee H, Oh SJ, Kim J, Choi N, Seong J. Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog Neurobiol 2022; 213:102266. [DOI: 10.1016/j.pneurobio.2022.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
|
15
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
16
|
Galectin-3 Contributes to the Inhibitory Effect of lα,25-(OH) 2D 3 on Osteoclastogenesis. Int J Mol Sci 2021; 22:ijms222413334. [PMID: 34948130 PMCID: PMC8708238 DOI: 10.3390/ijms222413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The active form of vitamin D, 1α,25-(OH)2D3, not only promotes intestinal calcium absorption, but also regulates the formation of osteoclasts (OCs) and their capacity for bone mineral dissolution. Gal-3 is a newly discovered bone metabolic regulator involved in the proliferation, differentiation, and apoptosis of various cells. However, the role of galectin-3 (gal-3) in OC formation and the regulatory effects of 1α,25-(OH)2D3 have yet to be explored. To confirm whether gal-3 contributes to the regulatory effects of 1α,25-(OH)2D3 on osteoclastogenesis, osteoclast precursors (OCPs) were induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). TRAP staining and bone resorption analyses were used to verify the formation and activation of OCs. qPCR, Western blotting, co-immunoprecipitation, and immunofluorescence assays were used to detect gene and protein expression. The regulatory effects of gal-3 in OC formation after treatment with 1α,25-(OH)2D3 were evaluated using gal-3 siRNA. The results showed that 1α,25-(OH)2D3 significantly increased gal-3 expression and inhibited OC formation and bone resorption. Expression levels of OC-related genes and proteins, matrix metalloproteinase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), and cathepsin K (Ctsk) were also inhibited by 1α,25-(OH)2D3. Gal-3 knockdown attenuated the inhibitory effects of 1α,25-(OH)2D3 on OC formation, activation, and gene and protein expression. In addition, gal-3 was co-localized with the vitamin D receptor (VDR). These data suggest that gal-3 contributes to the osteoclastogenesis inhibitory effect of lα,25-(OH)2D3, which is involved in bone and calcium homeostasis.
Collapse
|
17
|
Roughley S, Marcus A, Killcross S. Dopamine D1 and D2 Receptors Are Important for Learning About Neutral-Valence Relationships in Sensory Preconditioning. Front Behav Neurosci 2021; 15:740992. [PMID: 34526883 PMCID: PMC8435570 DOI: 10.3389/fnbeh.2021.740992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Dopamine neurotransmission has been ascribed multiple functions with respect to both motivational and associative processes in reward-based learning, though these have proven difficult to tease apart. In order to better describe the role of dopamine in associative learning, this series of experiments examined the potential of dopamine D1- and D2-receptor antagonism (or combined antagonism) to influence the ability of rats to learn neutral valence stimulus-stimulus associations. Using a sensory preconditioning task, rats were first exposed to pairings of two neutral stimuli (S2-S1). Subsequently, S1 was paired with a mild foot-shock and resulting fear to both S1 (directly conditioned) and S2 (preconditioned) was examined. Initial experiments demonstrated the validity of the procedure in that measures of sensory preconditioning were shown to be contingent on pairings of the two sensory stimuli. Subsequent experiments indicated that systemic administration of dopamine D1- or D2-receptor antagonists attenuated learning when administered prior to S2-S1 pairings. However, the administration of a more generic D1R/D2R antagonist was without effect. These effects remained constant regardless of the affective valence of the conditioning environment and did not differ between male and female rats. The results are discussed in the context of recent suggestions that dopaminergic systems encode more than a simple reward prediction error, and provide potential avenues for future investigation.
Collapse
Affiliation(s)
| | - Abigail Marcus
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Sex Differences in Dopamine Receptors and Relevance to Neuropsychiatric Disorders. Brain Sci 2021; 11:brainsci11091199. [PMID: 34573220 PMCID: PMC8469878 DOI: 10.3390/brainsci11091199] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Dopamine is an important neurotransmitter that plays a key role in neuropsychiatric illness. Sex differences in dopaminergic signaling have been acknowledged for decades and have been linked to sex-specific heterogeneity in both dopamine-related behaviours as well as in various neuropsychiatric disorders. However, the overall number of studies that have evaluated sex differences in dopamine signaling, both in health and in these disorders, is low. This review will bring together what is known regarding sex differences in innate dopamine receptor expression and function, as well as highlight the known sex-specific roles of dopamine in addiction, depression, anxiety, schizophrenia, and attention deficit hyperactivity disorder. Due to differences in prognosis, diagnosis, and symptomatology between male and female subjects in disorders that involve dopamine signaling, or in responses that utilize pharmacological interventions that target dopamine receptors, understanding the fundamental sex differences in dopamine receptors is of vital importance for the personalization of therapeutic treatment strategies.
Collapse
|
19
|
Casanovas M, Jiménez-Rosés M, Cordomí A, Lillo A, Vega-Quiroga I, Izquierdo J, Medrano M, Gysling K, Pardo L, Navarro G, Franco R. Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addict Biol 2021; 26:e13017. [PMID: 33559278 DOI: 10.1111/adb.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.
Collapse
Affiliation(s)
- Mireia Casanovas
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jiménez-Rosés
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joan Izquierdo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Deciphering Spinal Endogenous Dopaminergic Mechanisms That Modulate Micturition Reflexes in Rats with Spinal Cord Injury. eNeuro 2021; 8:ENEURO.0157-21.2021. [PMID: 34244339 PMCID: PMC8328273 DOI: 10.1523/eneuro.0157-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Spinal neuronal mechanisms regulate recovered involuntary micturition after spinal cord injury (SCI). It was recently discovered that dopamine (DA) is synthesized in the rat injured spinal cord and is involved in lower urinary tract (LUT) activity. To fully understand the role of spinal DAergic machinery in micturition, we examined urodynamic responses in female rats during pharmacological modulation of the DA pathway. Three to four weeks after complete thoracic SCI, the DA precursor L-DOPA administered intravenously during bladder cystometrogram (CMG) and external urethral sphincter (EUS) electromyography (EMG) reduced bladder overactivity and increased the duration of EUS bursting, leading to remarkably improved voiding efficiency. Apomorphine (APO), a non-selective DA receptor (DR) agonist, or quinpirole, a selective DR2 agonist, induced similar responses, whereas a specific DR2 antagonist remoxipride alone had only minimal effects. Meanwhile, administration of SCH 23390, a DR1 antagonist, reduced voiding efficiency by increasing tonic EUS activity and shortening the EUS bursting period. Unexpectedly, SKF 38393, a selective DR1 agonist, increased EUS tonic activity, implying a complicated role of DR1 in LUT function. In metabolic cage assays, subcutaneous administration of quinpirole decreased spontaneous voiding frequency and increased voiding volume; L-DOPA and APO were inactive possibly because of slow entry into the CNS. Collectively, tonically active DR1 in SCI rats inhibit urine storage and enhance voiding by differentially modulating EUS tonic and bursting patterns, respectively, while pharmacologic activation of DR2, which are normally silent, improves voiding by enhancing EUS bursting. Thus, enhancing DA signaling achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats.
Collapse
|
21
|
Liu PP, Chao CC, Liao RM. Task-Dependent Effects of SKF83959 on Operant Behaviors Associated With Distinct Changes of CaMKII Signaling in Striatal Subareas. Int J Neuropsychopharmacol 2021; 24:721-733. [PMID: 34049400 PMCID: PMC8453300 DOI: 10.1093/ijnp/pyab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SKF83959, an atypical dopamine (DA) D1 receptor agonist, has been used to test the functions of DA-related receptor complexes in vitro, but little is known about its impact on conditioned behavior. The present study examined the effects of SKF83959 on operant behaviors and assayed the neurochemical mechanisms involved. METHODS Male rats were trained and maintained on either a fixed-interval 30-second (FI30) schedule or a differential reinforcement of low-rate response 10-second (DRL10) schedule of reinforcement. After drug treatment tests, western blotting assayed the protein expressions of the calcium-/calmodulin-dependent protein kinase II (CaMKII) and the transcription factor cyclic AMP response element binding protein (CREB) in tissues collected from 4 selected DA-related areas. RESULTS SKF83959 disrupted the performance of FI30 and DRL10 behaviors in a dose-dependent manner by reducing the total number of responses in varying magnitudes. Moreover, the distinct profiles of the behavior altered by the drug were manifested by analyzing qualitative and quantitative measures on both tasks. Western-blot results showed that phospho-CaMKII levels decreased in the nucleus accumbens and the dorsal striatum of the drug-treated FI30 and DRL10 subjects, respectively, compared with their vehicle controls. The phospho-CREB levels decreased in the nucleus accumbens and the hippocampus of drug-treated FI30 subjects but increased in the nucleus accumbens of drug-treated DRL10 subjects. CONCLUSIONS Our results provide important insight into the neuropsychopharmacology of SKF83959, indicating that the drug-altered operant behavior is task dependent and related to regional-dependent changes of CaMKII-CREB signaling in the mesocorticolimbic DA systems.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Chih-Chang Chao, PhD, Institute of Neuroscience ()
| | - Ruey-Ming Liao
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Ruey-Ming Liao, PhD, Department of Psychology, National Cheng-Chi University, 64, Sec. 2, Zhinan Road, Taipei City 116011, Taiwan ()
| |
Collapse
|
22
|
The Role of Social Stress in the Development of Inhibitory Control Deficit: A Systematic Review in Preclinical Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094953. [PMID: 34066570 PMCID: PMC8124175 DOI: 10.3390/ijerph18094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Inhibitory control deficit and impulsivity and compulsivity behaviours are present in different psychopathological disorders such as addiction, obsessive-compulsive disorders and schizophrenia, among others. Social relationships in humans and animals are governed by social organization rules, which modulate inhibitory control and coping strategies against stress. Social stress is associated with compulsive alcohol and drug use, pointing towards a determining factor in an increased vulnerability to inhibitory control deficit. The goal of the present review is to assess the implication of social stress and dominance on the vulnerability to develop impulsive and/or compulsive spectrum disorders, with the aid of the information provided by animal models. A systematic search strategy was carried out on the PubMed and Web of Science databases, and the most relevant information was structured in the text and tables. A total of 34 studies were recruited in the qualitative synthesis. The results show the role of social stress and dominance in increased drug and alcohol use, aggressive and impulsive behaviour. Moreover, the revised studies support the role of Dopaminergic (DA) activity and the alterations in the dopaminergic D1/D2 receptors as key factors in the development of inhibitory control deficit by social stress.
Collapse
|
23
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
24
|
Keegan BM, Dreitzler AL, Sexton T, Beveridge TJR, Smith HR, Miller MD, Blough BE, Porrino LJ, Childers SR, Howlett AC. Chronic phenmetrazine treatment promotes D 2 dopaminergic and α2-adrenergic receptor desensitization and alters phosphorylation of signaling proteins and local cerebral glucose metabolism in the rat brain. Brain Res 2021; 1761:147387. [PMID: 33631209 PMCID: PMC8552242 DOI: 10.1016/j.brainres.2021.147387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Phenmetrazine (PHEN) is a putative treatment for cocaine and psychostimulant recidivism; however, neurochemical changes underlying its activity have not been fully elucidated. We sought to characterize brain homeostatic adaptations to chronic PHEN, specifically on functional brain activity (local cerebral glucose utilization), G-Protein Coupled Receptor-stimulated G-protein activation, and phosphorylation of ERK1/2Thr202/Tyr204, GSK3βTyr216, and DARPP-32Thr34. Male Sprague-Dawley rats were implanted with sub-cutaneous minipumps delivering either saline (vehicle), acute (2-day) or chronic (14-day) low dose (25 mg/kg/day) or high dose (50 mg/kg/day) PHEN. Acute administration of high dose PHEN increased local cerebral glucose utilization measured by 2-[14C]-deoxyglucose uptake in basal ganglia and motor-related regions of the rat brain. However, chronically treated animals developed tolerance to these effects. To identify the neurochemical changes associated with PHEN's activity, we performed [35S]GTPγS binding assays on unfixed and immunohistochemistry on fixed coronal brain sections. Chronic PHEN treatment dose-dependently attenuated D2 dopamine and α2-adrenergic, but not 5-HT1A, receptor-mediated G-protein activation. Two distinct patterns of effects on pERK1/2 and pDARPP-32 were observed: 1) chronic low dose PHEN decreased pERK1/2, and also significantly increased pDARPP-32 levels in some regions; 2) acute and chronic PHEN increased pERK1/2, but chronic high dose PHEN treatment tended to decrease pDARPP-32. Chronic low dose, but not high dose, PHEN significantly reduced pGSK3β levels in several regions. Our study provides definitive evidence that extended length PHEN dosage schedules elicit distinct modes of neuronal acclimatization in cellular signaling. These pharmacodynamic modifications should be considered in drug development for chronic use.
Collapse
Affiliation(s)
- Bradley M Keegan
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Annie L Dreitzler
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Tammy Sexton
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Hilary R Smith
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Mack D Miller
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Linda J Porrino
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Steven R Childers
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
25
|
Althobaiti YS. Quetiapine-Induced Place Preference in Mice: Possible Dopaminergic Pathway. Pharmaceuticals (Basel) 2021; 14:156. [PMID: 33672850 PMCID: PMC7917861 DOI: 10.3390/ph14020156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Quetiapine, an atypical antipsychotic, is effective in the management of schizophrenia, depression, and anxiety. Although quetiapine overdosage and misuse have been reported, its abuse potential has not been investigated in animals. In this study, the abuse potential of quetiapine was assessed based on the conditioned place preference (CPP) paradigm of drug addiction in a mouse model. First, mice received intraperitoneal injections of quetiapine (40, 80, or 120 mg/kg) every other day during the conditioning phase. In the second experiment, mice were pretreated with 0.03 mg/kg SKF-35866, a D1 receptor antagonist, before receiving saline or quetiapine (120 mg/kg) during the conditioning phase. No significant changes in time spent in the quetiapine-paired chamber were observed compared with time spent in the saline-paired chamber in mice treated with 40 or 80 mg/kg. In contrast, the preference to the quetiapine-paired chamber was significantly increased in mice treated with 120 mg/kg quetiapine, and this effect was blocked by SKF-35866 pretreatment. These results demonstrated, for the first time, the abuse potential of quetiapine in an animal model of drug addiction. Interestingly, this CPP-inducing effect was likely mediated by activating D1 receptors.
Collapse
Affiliation(s)
- Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- College of Pharmacy, Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
- Ministry of Interior, General Directorate of Narcotics Control, General Administration for Precursors and Laboratories, Riyadh 11543, Saudi Arabia
| |
Collapse
|
26
|
Franco R, Reyes-Resina I, Navarro G. Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines 2021; 9:109. [PMID: 33499192 PMCID: PMC7911410 DOI: 10.3390/biomedicines9020109] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Dopamine is derived from an amino acid, phenylalanine, which must be obtained through the diet. Dopamine, known primarily to be a neurotransmitter involved in almost any higher executive action, acts through five types of G-protein-coupled receptors. Dopamine has been studied extensively for its neuronal handling, synaptic actions, and in relation to Parkinson's disease. However, dopamine receptors can be found extra-synaptically and, in addition, they are not only expressed in neurons, but in many types of mammalian cells, inside and outside the central nervous system (CNS). Recent studies show a dopamine link between the gut and the CNS; the mechanisms are unknown, but they probably require cells to act as mediators and the involvement of the immune system. In fact, dopamine receptors are expressed in almost any cell of the immune system where dopamine regulates various processes, such as antigen presentation, T-cell activation, and inflammation. This likely immune cell-mediated linkage opens up a new perspective for the use of dopamine-related drugs, i.e., agonist-antagonist-allosteric modulators of dopamine receptors, in a variety of diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
| | - Gemma Navarro
- Neurodegenerative Diseases, CiberNed. Network Research Center, Spanish National Health Institute Carlos III, Valderrebollo 5, 28031 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Qiao X, Zhu Y, Dang W, Wang R, Sun M, Chen Y, Shi Y, Zhang L. Dual-specificity phosphatase 15 (DUSP15) in the nucleus accumbens is a novel negative regulator of morphine-associated contextual memory. Addict Biol 2021; 26:e12884. [PMID: 32043707 DOI: 10.1111/adb.12884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Drug relapse among addicts often occurs due to the learned association between drug-paired cues and the rewarding effects of these drugs, such as morphine. Contextual memory associated with morphine has a central role in maintenance and relapse. We showed that morphine-conditioned place preference (CPP) activates extracellular-regulated protein kinase (ERK) in the nucleus accumbens (NAc). The main enzymes that mediate ERK dephosphorylation are members of the dual-specificity phosphatase (DUSP) superfamily. It is unclear which members regulate the morphine CPP-induced activation of ERK. After screening, DUSP15 was found to be decreased during both morphine CPP expression and the reinstatement period. Intra-NAc infusions of AAV-DUSP15 (overexpression) not only prevented the expression of morphine-induced CPP but also facilitated extinction, inhibited reinstatement, and abolished ERK activation. However, after repeated morphine exposure and withdrawal in mice, there was no change in the expression of p-ERK and DUSP15, and the overexpression of DUSP15 in the NAc did not improve the impaired spatial memory or anxiety-like behaviour induced by morphine. Together, these findings indicate that DUSP15 not only prevents the expression of drug-paired contextual memory but also promotes the extinction of existing addiction memories, thus providing a novel therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Wei Dang
- The Sixth Ward, Xi'an Mental Health Center China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yuanyuan Chen
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Yuhui Shi
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences Zhengzhou University China
| |
Collapse
|
28
|
Maternal Separation Model of Postpartum Depression: Potential Role for Nucleus Accumbens Dopamine D1-D2 Receptor Heteromer. Neurochem Res 2020; 45:2978-2990. [PMID: 33057844 DOI: 10.1007/s11064-020-03145-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
Postpartum depression is a mood disorder with a distinct neurobiological and behavioural profile occurring during and after the postpartum period. Dopamine pathways in the limbic regions of the brain such as the nucleus accumbens (NAc) have been shown to be involved in the etiology of depressive disorders. Selective activation of the dopamine D1-D2 receptor heteromer has been demonsrated to cause depressive- and anxiogenic-like behaviours in rats. The maternal separation model involving three hour daily maternal separation (MS) from pups on PPD 2-15 on anxiety-, depression- and anhedonia-like behaviors in the dams was investigated, together with plasma corticosterone, oxytocin and D1-D2 heteromer expression in the NAc core and shell in non-MS and MS dams. Depression, anxiety and anhedonia-like behaviours were measured using the forced swim test, elevated plus maze and sucrose preference test, respectively. In comparison to non-MS controls, MS dams displayed slightly higher depressive and anxiety-like behaviours with no difference in anhedonia-like behaviours. The MS dams displayed significantly increased care of pups after their retrieval with higher bouts of nursing, lower latency to nurse, lower bouts of out nest behaviour and decreased self-care. There was no significant alteration in D1-D2 heteromer expression in NAc core and shell between mothers of either group (MS, non-MS) or between postpartum rats and nonpregnant female rats, remaining higher than in male rats. This data provides evidence for the maternal separation model in producing a postpartum depression-like profile, but with maternal resilience able to modify behaviours to counteract any potential deleterious consequences to the pups.
Collapse
|
29
|
Kumar SP, Babu PP. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol Neurobiol 2020; 57:5069-5083. [PMID: 32833186 DOI: 10.1007/s12035-020-02076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
One-fourth survivors of cerebral malaria (CM) retain long-term cognitive and behavioral deficits. Structural abnormalities in striatum are reported in 80% of children with CM. Dopamine receptors (D1 and D2) are widely expressed in striatal medium spiny neurons (MSNs) that regulate critical physiological functions related to behavior and cognition. Dysregulation of dopamine receptors alters the expression of downstream proteins such as dopamine- and cAMP-regulated phosphoprotein (DARPP), Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), and p25/cyclin-dependent kinase 5 (cdk5). However, the role of dopamine receptor signaling dysfunction on the outcome of striatal neuron degeneration is unknown underlying the pathophysiology of CM. Using experimental CM (ECM), the present study attempted to understand the role of aberrant dopamine receptor signaling and its possible relation in causing MSNs morphological impairment. The effect of antimalarial drug artemether (ARM) rescue therapy was also assessed after ECM on the outcome of dopamine receptors downstream signaling. ECM was induced in C57BL/6 mice (male and female) infecting with Plasmodium berghei ANKA (PbA) parasite that reiterates the clinical setting of CM. We demonstrated that ECM caused a significant increase in the expression of D1, D2 receptors, phosphorylated DARPP, p25, cdk5, CaMKIIα, and D1-D2 heteromers. A substantial increase in neuronal damage observed in the dorsolateral striatum region of ECM brains (particularly in MSNs) as revealed by increased Fluoro-Jade C staining, reduced dendritic spine density, and impaired dendritic arborization with varicosities. While the ARM rescue therapy significantly altered the effects of ECM induced dopamine receptor signaling dysfunction and neurodegeneration. Overall, our data suggest that dysregulation of dopamine receptor signaling plays an important role in the degeneration of MSNs, and the ARM rescue therapy might provide better insights to develop effective therapeutic strategies for CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
30
|
Concomitant D1 and D2 dopamine receptor agonist infusion in prelimbic cortex is required to foster extinction of amphetamine-induced conditioned place preference. Behav Brain Res 2020; 392:112716. [PMID: 32479855 DOI: 10.1016/j.bbr.2020.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022]
Abstract
Dopamine (DA) in medial prefrontal cortex is crucial in extinction of aversive or appetitive experiences. Although attention has been mostly focused on the infralimbic area of prefrontal cortex, a role of the prelimbic (PL) area has been envisaged pointing to DA transmission in the extinction of drug conditioned behavior. Evidence shows that DA exerts its action also via both D1 and D2 receptor subtypes. Here we investigated the effects of D1 and D2 receptor agonist microinfusion in the PL cortex of C57BL/6J mice on expression and extinction of amphetamine-induced conditioned place preference (CPP), in order to ascertain the effects of selective vs concomitant receptor subtypes stimulation. SKF38393 and Quinpirole were used at doses not impairing expression of amphetamine-induced CPP on the day of infusion. Acute infusion of each agonist alone did not affect extinction in subsequent days in comparison with Vehicle-treated mice, while concomitant infusion of both agonists produced a clear-cut advance of extinction of preference for the compartment previously paired with amphetamine. These results show that concomitant stimulation of D1 and D2 receptors in PL is required to foster extinction suggesting a synergic action between receptors or a heteromeric receptor involvement.
Collapse
|
31
|
Thériault RK, Manduca JD, Blight CR, Khokhar JY, Akhtar TA, Perreault ML. Acute mitragynine administration suppresses cortical oscillatory power and systems theta coherence in rats. J Psychopharmacol 2020; 34:759-770. [PMID: 32248751 DOI: 10.1177/0269881120914223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitragynine is the major alkaloid of Mitragyna speciosa (kratom) with potential as a therapeutic in pain management and in depression. There has been debate over the potential side effects of the drug including addiction risk and cognitive decline. AIMS To evaluate the effects of mitragynine on neurophysiological systems function in the prefrontal cortex (PFC), cingulate cortex (Cg), orbitofrontal cortex, nucleus accumbens (NAc), hippocampus (HIP), thalamus (THAL), basolateral amygdala (BLA) and ventral tegmental area of rats. METHODS Local field potential recordings were taken from animals at baseline and for 45 min following mitragynine administration (10 mg/kg, intraperitoneally). Drug-induced changes in spectral power and coherence between regions at specific frequencies were evaluated. Mitragynine-induced changes in c-fos expression were also analyzed. RESULTS Mitragynine increased delta power and reduced theta power in all three cortical regions that were accompanied by increased c-fos expression. A transient suppression of gamma power in PFC and Cg was also evident. There were no effects of mitragynine on spectral power in any of the other regions. Mitragynine induced a widespread reduction in theta coherence (7-9 Hz) that involved disruptions in cortical and NAc connectivity with the BLA, HIP and THAL. CONCLUSIONS These findings show that mitragynine induces frequency-specific changes in cortical neural oscillatory activity that could potentially impact cognitive functioning. However, the absence of drug effects within regions of the mesolimbic pathway may suggest either a lack of addiction potential, or an underlying mechanism of addiction that is distinct from other opioid analgesic agents.
Collapse
Affiliation(s)
| | - Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Colin R Blight
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada RKT, JYK and MLP are part of the Collaborative Neuroscience Program
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
32
|
Sun K, Mu Q, Chang H, Zhang C, Wang Y, Rong S, Liu S, Zuo D, He Z, Wan D, Yang H, Wang F, Sun T. Postretrieval Microinjection of Baclofen Into the Agranular Insular Cortex Inhibits Morphine-Induced CPP by Disrupting Reconsolidation. Front Pharmacol 2020; 11:743. [PMID: 32508658 PMCID: PMC7248341 DOI: 10.3389/fphar.2020.00743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Environmental cues associated with drug abuse are powerful mediators of drug craving and relapse in substance-abuse disorders. Consequently, attenuating the strength of cue-drug memories could reduce the number of factors that cause drug craving and relapse. Interestingly, impairing cue-drug memory reconsolidation is a generally accepted strategy aimed at reducing the intensity of cues that trigger drug-seeking and drug-taking behaviors. In addition, the agranular insular cortex (AI) is an important component of the neural circuits underlying drug-related memory reconsolidation. GABAB receptors (GABABRs) are potential targets for the treatment of addiction, and baclofen (BLF) is the only prototypical GABAB agonist available for application in clinical addiction treatment. Furthermore, ΔFosB is considered a biomarker for the evaluation of potential therapeutic interventions for addiction. Here, we used the morphine-induced conditioned place preference (CPP) paradigm to investigate whether postretrieval microinjections of BLF into the AI could affect reconsolidation of drug-reward memory, reinstatement of CPP, and the level of ΔFosB in mice. Our results showed that BLF infused into the AI immediately following morphine CPP memory retrieval, but not 6 h postretrieval or following nonretrieval, could eliminate the expression of a morphine CPP memory. This effect persisted in a morphine-priming–induced reinstatement test, suggesting that BLF in the AI was capable of preventing the reconsolidation of the morphine CPP memory. Our results also showed that the elimination of morphine CPP memory was associated with reduced morphine-associated ΔFosB expression in the longer term. Taken together, the results of our research provide evidence to support that GABABRs in the AI have an important role in drug-cue memory reconsolidation and further our understanding of the role of the AI in drug-related learning and memory.
Collapse
Affiliation(s)
- Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, China
| | - Qingchun Mu
- Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, China
| | - Haigang Chang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yehua Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shikuo Rong
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shenhai Liu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Di Zuo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ding Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Critical Care Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
33
|
Morganstern I, Gulati G, Leibowitz SF. Role of melanin-concentrating hormone in drug use disorders. Brain Res 2020; 1741:146872. [PMID: 32360868 DOI: 10.1016/j.brainres.2020.146872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide primarily transcribed in the lateral hypothalamus (LH), with vast projections to many areas throughout the central nervous system that play an important role in motivated behaviors and drug use. Anatomical, pharmacological and genetic studies implicate MCH in mediating the intake and reinforcement of commonly abused substances, acting by influencing several systems including the mesolimbic dopaminergic system, glutamatergic as well as GABAergic signaling and being modulated by inflammatory neuroimmune pathways. Further support for the role of MCH in controlling behavior related to drug use will be discussed as it relates to cerebral ventricular volume transmission and intracellular molecules including cocaine- and amphetamine-regulated transcript peptide, dopamine- and cAMP-regulated phosphoprotein 32 kDa. The primary goal of this review is to introduce and summarize current literature surrounding the role of MCH in mediating the intake and reinforcement of commonly abused drugs, such as alcohol, cocaine, amphetamine, nicotine and opiates.
Collapse
Affiliation(s)
| | - Gazal Gulati
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
34
|
Crans RAJ, Wouters E, Valle-León M, Taura J, Massari CM, Fernández-Dueñas V, Stove CP, Ciruela F. Striatal Dopamine D 2-Muscarinic Acetylcholine M 1 Receptor-Receptor Interaction in a Model of Movement Disorders. Front Pharmacol 2020; 11:194. [PMID: 32231561 PMCID: PMC7083216 DOI: 10.3389/fphar.2020.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor control deficits, which is associated with the loss of striatal dopaminergic neurons from the substantia nigra. In parallel to dopaminergic denervation, there is an increase of acetylcholine within the striatum, resulting in a striatal dopaminergic–cholinergic neurotransmission imbalance. Currently, available PD pharmacotherapy (e.g., prodopaminergic drugs) does not reinstate the altered dopaminergic–cholinergic balance. In addition, it can eventually elicit cholinergic-related adverse effects. Here, we investigated the interplay between dopaminergic and cholinergic systems by assessing the physical and functional interaction of dopamine D2 and muscarinic acetylcholine M1 receptors (D2R and M1R, respectively), both expressed at striatopallidal medium spiny neurons. First, we provided evidence for the existence of D2R–M1R complexes via biochemical (i.e., co-immunoprecipitation) and biophysical (i.e., BRET1 and NanoBiT®) assays, performed in transiently transfected HEK293T cells. Subsequently, a D2R–M1R co-distribution in the mouse striatum was observed through double-immunofluorescence staining and AlphaLISA® immunoassay. Finally, we evaluated the functional interplay between both receptors via behavioral studies, by implementing the classical acute reserpine pharmacological animal model of experimental parkinsonism. Reserpinized mice were administered with a D2R-selective agonist (sumanirole) and/or an M1R-selective antagonist (VU0255035), and alterations in PD-related behavioral tasks (i.e., locomotor activity) were evaluated. Importantly, VU0255035 (10 mg/kg) potentiated the antiparkinsonian-like effects (i.e., increased locomotor activity and decreased catalepsy) of an ineffective sumanirole dose (3 mg/kg). Altogether, our data suggest the existence of putative striatal D2R/M1R heteromers, which might be a relevant target to manage PD motor impairments with fewer adverse effects.
Collapse
Affiliation(s)
- René A J Crans
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium.,Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Marta Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Caio M Massari
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Programa de Poìs-graduação em Bioquiìmica, Centro de Ciencias Bioloìgicas, Universidade Federal de Santa Catarina, Florianoìpolis, Brazil
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
36
|
Hasbi A, Nguyen T, Rahal H, Manduca JD, Miksys S, Tyndale RF, Madras BK, Perreault ML, George SR. Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biol Sex Differ 2020; 11:8. [PMID: 32087746 PMCID: PMC7035642 DOI: 10.1186/s13293-020-00285-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Depression and anxiety are more common among females than males and represent a leading cause of disease-related disability in women. Since the dopamine D1-D2 heteromer is involved in depression- and anxiety-like behavior, the possibility that the receptor complex may have a role in mediating sex differences in such behaviors and related biochemical signaling was explored. In non-human primate caudate nucleus and in rat striatum, females expressed higher density of D1-D2 heteromer complexes and a greater number of D1-D2 expressing neurons compared to males. In rat, the sex difference in D1-D2 expression levels occurred even though D1 receptor expression was lower in female than in male with no difference in D2 receptor expression. In behavioral tests, female rats showed faster latency to depressive-like behavior and a greater susceptibility to the pro-depressive and anxiogenic-like effects of D1-D2 heteromer activation by low doses of SKF 83959, all of which were ameliorated by the selective heteromer disrupting peptide, TAT-D1. The sex difference observed in the anxiety test correlated with differences in low-frequency delta and theta oscillations in the nucleus accumbens. Analysis of signaling pathways revealed that the sex difference in D1-D2 heteromer expression led to differences in basal and heteromer-stimulated activities of two important signaling pathways, BDNF/TrkB and Akt/GSK3/β-catenin. These results suggest that the higher D1-D2 heteromer expression in female may significantly increase predisposition to depressive-like and anxiety-like behavior in female animals.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Haneen Rahal
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Joshua D Manduca
- Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Sharon Miksys
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,McLean Hospital, Belmont, USA
| | | | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Hasbi A, Madras BK, Bergman J, Kohut S, Lin Z, Withey SL, George SR. Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. iScience 2020; 23:100794. [PMID: 31972514 PMCID: PMC6971351 DOI: 10.1016/j.isci.2019.100794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ9-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum. Importantly, chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum. The majority of these neurons displayed a phenotype co-expressing the characteristic markers of both striatonigral and striatopallidal neurons. Furthermore, THC increased D1-D2-linked calcium signaling markers (pCaMKIIα, pThr75-DARPP-32, BDNF/pTrkB) and inhibited cyclic AMP signaling (pThr34-DARPP-32, pERK1/2, pS845-GluA1, pGSK3). Cannabidiol attenuated most but not all of these THC-induced neuroadaptations. Targeted pathway analyses linked these changes to neurological and psychological disorders. These data underline the importance of the D1-D2 receptor heteromer in cannabis use-related disorders, with THC-induced changes likely responsible for the reported adverse effects observed in heavy long-term users.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Stephen Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Sarah L Withey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
A2AR Transmembrane 2 Peptide Administration Disrupts the A2AR-A2AR Homoreceptor but Not the A2AR-D2R Heteroreceptor Complex: Lack of Actions on Rodent Cocaine Self-Administration. Int J Mol Sci 2019; 20:ijms20236100. [PMID: 31816953 PMCID: PMC6928905 DOI: 10.3390/ijms20236100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
It was previously demonstrated that rat adenosine A2AR transmembrane V peptide administration into the nucleus accumbens enhances cocaine self-administration through disruption of the A2AR-dopamine (D2R) heteroreceptor complex of this region. Unlike human A2AR transmembrane 4 (TM4) and 5 (TM5), A2AR TM2 did not interfere with the formation of the A2AR-D2R heteroreceptor complex in cellular models using BRET1 assay. A2AR TM2 was proposed to be part of the of the receptor interface of the A2AR homomer instead and was therefore tested in the current article for effects on rat cocaine self-administration using rat A2AR synthetic TM2 peptide bilaterally injected into the nucleus accumbens. The injected A2AR TM2 peptide failed to significantly counteract the inhibitory action of the A2AR agonist CGS 21680 (0.1 mg/Kg) on cocaine self-administration. In line with these results, the microinjected A2AR TM2 peptide did not reduce the number of proximity ligation assay blobs identifying A2AR-D2R heteroreceptor complexes in the nucleus accumbens. In contrast, the A2AR TM2 peptide significantly reduced the number of A2AR-A2AR homoreceptor complexes in the nucleus accumbens. As to effects on the receptor–receptor interactions in the A2AR-D2R heteroreceptor complexes, the A2AR TM2 peptide did not alter the significant increase in the D2R Ki, high values produced by the A2AR agonist CGS 21680 ex vivo in the ventral striatum. The results indicate that the accumbal A2AR-A2AR homomeric complexes are not involved in mediating the A2AR agonist-induced inhibition of cocaine self-administration.
Collapse
|
40
|
Dopamine D 1 and D 2 Receptors Differentially Regulate Rac1 and Cdc42 Signaling in the Nucleus Accumbens to Modulate Behavioral and Structural Plasticity After Repeated Methamphetamine Treatment. Biol Psychiatry 2019; 86:820-835. [PMID: 31060803 DOI: 10.1016/j.biopsych.2019.03.966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Methamphetamine (METH) is a highly addictive psychostimulant that strongly activates dopamine receptor signaling in the nucleus accumbens (NAc). However, how dopamine D1 and D2 receptors (D1Rs and D2Rs, respectively) as well as downstream signaling pathways, such as those involving Rac1 and Cdc42, modulate METH-induced behavioral and structural plasticity is largely unknown. METHODS Using NAc conditional D1R and D2R deletion mice, Rac1 and Cdc42 mutant viruses, and a series of behavioral and morphological methods, we assessed the effects of D1Rs and D2Rs on Rac1 and Cdc42 in modulating METH-induced behavioral and structural plasticity in the NAc. RESULTS D1Rs and D2Rs in the NAc consistently regulated METH-induced conditioned place preference, locomotor activation, and dendritic and spine remodeling of medium spiny neurons but differentially regulated METH withdrawal-induced spatial learning and memory impairment and anxiety. Interestingly, Rac1 and Cdc42 signaling were oppositely modulated by METH, and suppression of Rac1 signaling and activation of Cdc42 signaling were crucial to METH-induced conditioned place preference and structural plasticity but not to locomotor activation. D1Rs activated Rac1 and Cdc42 signaling, while D2Rs inhibited Rac1 signaling but activated Cdc42 signaling to mediate METH-induced conditioned place preference and structural plasticity but not locomotor activation. In addition, NAc D1R deletion aggravated METH withdrawal-induced spatial learning and memory impairment by suppressing Rac1 signaling but not Cdc42 signaling, while NAc D2R deletion aggravated METH withdrawal-induced anxiety without affecting Rac1 or Cdc42 signaling. CONCLUSIONS D1Rs and D2Rs differentially regulate Rac1 and Cdc42 signaling to modulate METH-induced behavioral plasticity and the structural remodeling of medium spiny neurons in the NAc.
Collapse
|
41
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
43
|
Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019; 413:252-263. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Drug relapse after periods of abstinence is a common feature of substance abuse. Moreover, anxiety and other mood disorders are often co-morbid with substance abuse. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate drug-seeking and anxiety-related behavior in rodent models. However, it is unclear if overlapping VTA cholinergic mechanisms mediate drug relapse and anxiety-related behaviors associated with drug abstinence. We examined the effects of VTA cholinergic receptor blockade on cue-induced cocaine seeking and anxiety during cocaine abstinence. Male Sprague-Dawley rats were trained to self-administer intravenous cocaine (~0.5 mg/kg/infusion, FR1 schedule) for 10 days, followed by 14 days of forced abstinence. VTA infusion of the non-selective nicotinic acetylcholine receptor antagonist mecamylamine (0, 10, and 30 μg/side) or the non-selective muscarinic receptor antagonist scopolamine (0, 2.4 and 24 μg /side) significantly decreased cue-induced cocaine seeking. In cocaine naïve rats, VTA mecamylamine or scopolamine also led to dose-dependent increases in open arm time in the elevated plus maze (EPM). In contrast, rats that received I.V. cocaine, compared to received I.V. saline rats, displayed an anxiogenic response on day 14 of abstinence as reflected by decreased open arm time in the EPM. Furthermore, low doses of VTA mecamylamine (10 μg /side) or scopolamine (2.4 μg /side), that did not alter EPM behavior in cocaine naive rats, were sufficient to reverse the anxiogenic effects of cocaine abstinence. Together, these data point to an overlapping role of VTA cholinergic mechanisms to regulate relapse and mood disorder-related responses during cocaine abstinence.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lillian Bitner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sofia N Walton
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
44
|
Modulation and functions of dopamine receptor heteromers in drugs of abuse-induced adaptations. Neuropharmacology 2019; 152:42-50. [DOI: 10.1016/j.neuropharm.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
|
45
|
Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav Brain Res 2019; 365:1-6. [DOI: 10.1016/j.bbr.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
46
|
Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019; 20:ijms20102457. [PMID: 31109007 PMCID: PMC6566402 DOI: 10.3390/ijms20102457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy.
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy.
| | - Giulia Frumento
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Letizia Campanini
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden.
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
- Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
47
|
Scheggi S, De Montis MG, Gambarana C. DARPP-32 in the orchestration of responses to positive natural stimuli. J Neurochem 2018; 147:439-453. [PMID: 30043390 DOI: 10.1111/jnc.14558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023]
Abstract
Dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa, DARPP-32) is an integrator of multiple neuronal signals and plays a crucial role particularly in mediating the dopaminergic component of the systems involved in the evaluation of stimuli and the ensuing elaboration of complex behavioral responses (e.g., responses to reinforcers and stressors). Dopamine neurons can fire tonically or phasically in distinct timescales and in specific brain regions to code different behaviorally relevant information. Dopamine signaling is mediated mainly through the regulation of adenylyl cyclase activity, stimulated by D1-like or inhibited by D2-like receptors, respectively, that modulates cAMP-dependent protein kinase (PKA) function. The activity of DARPP-32 is finely regulated by its phosphorylation at multiple sites. Phosphorylation at the threonine (Thr) 34 residue by PKA converts DARPP-32 into an inhibitor of protein phosphatase 1, while the phosphorylation at the Thr75 residue turns it into an inhibitor of PKA. Thus, DARPP-32 is critically implicated in regulating striatal output in response to the convergent pathways that influence signaling of the cAMP/PKA pathway. This review summarizes some of the landmark and recent studies of DARPP-32-mediated signaling in the attempt to clarify the role played by DARPP-32 in the response to rewarding natural stimuli. Particularly, the review deals with data derived from rodents studies and discusses the involvement of the cAMP/PKA/DARPP-32 pathway in: 1) appetitive food-sustained motivated behaviors, 2) motivated behaviors sustained by social reward, 3) sexual behavior, and 4) responses to environmental enrichment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
48
|
Addy NA, Nunes EJ, Hughley SM, Small KM, Baracz SJ, Haight JL, Rajadhyaksha AM. The L-type calcium channel blocker, isradipine, attenuates cue-induced cocaine-seeking by enhancing dopaminergic activity in the ventral tegmental area to nucleus accumbens pathway. Neuropsychopharmacology 2018; 43:2361-2372. [PMID: 29773910 PMCID: PMC6180103 DOI: 10.1038/s41386-018-0080-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022]
Abstract
Previous preclinical and clinical investigations have focused on the L-type calcium channel (LTCC) as a potential therapeutic target for substance abuse. While some clinical studies have examined the ability of LTCC blockers to alter cocaine's subjective effects, very few LTCC studies have examined cocaine relapse. Here, we examined whether ventral tegmental area (VTA)-specific or systemic administration of the LTCC inhibitor, isradipine, altered cocaine-seeking behavior in a rat model. Male Sprague-Dawley rats first received 10 days of cocaine self-administration training (2 h sessions), where active lever depression resulted in delivery of a ∼0.5 mg/kg cocaine infusion paired with a tone + light cue. Rats then underwent 10 days of forced abstinence, without access to cocaine or cocaine cues. Rats were then returned to the opertant chamber for the cue-induced cocaine-seeking test, where active lever depression in the original training context resulted in tone + light cue presentation. We found VTA specific or systemic isradipine administration robustly attenuated cocaine-seeking, without altering cocaine-taking nor natural reward seeking. Dopamine (DA) signaling in the nucleus accumbens (NAc) core is necessary and sufficient for cue-induced drug-seeking. Surprisingly in our study, isradipine enhanced tonic and phasic DA signaling in cocaine abstinent rats, with no change in sucrose abstinent nor naïve rats. Strikingly, isradipine's behavioral effects were dependent upon NAc core DA receptor activation. Together, our findings reveal a novel mechanism by which the FDA-approved drug, isradipine, could act to decrease cocaine relapse.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06511, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA.
| | - Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sarah J Baracz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Joshua L Haight
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Anjali M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
49
|
Vonder Haar C, Ferland JMN, Kaur S, Riparip LK, Rosi S, Winstanley CA. Cocaine self-administration is increased after frontal traumatic brain injury and associated with neuroinflammation. Eur J Neurosci 2018; 50:2134-2145. [PMID: 30118561 DOI: 10.1111/ejn.14123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) has been linked to the development of numerous psychiatric diseases, including substance use disorder. However, it can be difficult to ascertain from clinical data whether the TBI is cause or consequence of increased addiction vulnerability. Surprisingly few studies have taken advantage of animal models to investigate the causal nature of this relationship. In terms of a plausible neurobiological mechanism through which TBI could magnify the risk of substance dependence, numerous studies indicate that TBI can cause widespread disruption to monoaminergic signaling in striatal regions, and also increases neuroinflammation. In the current study, male Long-Evans rats received either a mild or severe TBI centered over the frontal cortex via controlled cortical impact, and were subsequently trained to self-administer cocaine over 10 6-hour sessions. At the end of the study, markers of striatal dopaminergic function, and levels of inflammatory cytokine levels in the frontal lobes, were assessed via western blot and multiplex ELISA, respectively. There was significantly higher cocaine intake in a subset of animals with either mild or severe TBI. However, many animals within both TBI groups failed to acquire self-administration. Principal components analysis suggested that both dopaminergic and neuroinflammatory proteins were associated with overall cocaine intake, yet only an inflammatory component was associated with acquisition of self-administration, suggesting neuroinflammation may make a more substantial contribution to the likelihood of drug-taking. Should neuroinflammation play a causal role in mediating TBI-induced addiction risk, anti-inflammatory therapy may reduce the likelihood of substance abuse in TBI populations.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, PO Box 6040, 53 Campus Drive, Morgantown, WV, 26505, USA.,Laboratory of Molecular and Behavioural Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jacqueline-Marie N Ferland
- Laboratory of Molecular and Behavioural Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sukhbir Kaur
- Laboratory of Molecular and Behavioural Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lara-Kirstie Riparip
- Brain and Spinal Injury Center, Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Brain and Spinal Injury Center, Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Catharine A Winstanley
- Laboratory of Molecular and Behavioural Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
50
|
Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev 2018; 106:73-90. [PMID: 30278192 DOI: 10.1016/j.neubiorev.2018.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome. Physical association between two different GPCRs is linked to functional interactions which generates a novel entity, called heteromer, with specific ligand binding and signaling properties. Heteromerization is increasingly recognized to take place in the mesocorticolimbic pathway and to contribute to various aspects related to substance use disorder. This review focuses on heteromers identified in brain areas relevant to drug addiction. We report changes at the molecular and cellular levels that establish specific functional impact and highlight behavioral outcome in preclinical models. Finally, we briefly discuss selective targeting of native heteromers as an innovative therapeutic option.
Collapse
Affiliation(s)
- Lyes Derouiche
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|