1
|
D'Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals (Basel) 2024; 17:1185. [PMID: 39338347 PMCID: PMC11434829 DOI: 10.3390/ph17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people, with over 2000 mutations in the CFTR gene. Although highly effective modulators have been developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the inflammatory response is widely recognized, less is known about their impact on immunomodulation and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid processing, worsening the chronic airway inflammation, and compromising the immune responses to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are being investigated as a promising approach to balance the inflammatory response while mitigating disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open innovative avenues for designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Simona D'Orazio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Franks SJ, Gowler PRW, Dunster JL, Turnbull J, Gohir SA, Kelly A, Valdes AM, King JR, Barrett DA, Chapman V, Preston S. Modelling the role of enzymatic pathways in the metabolism of docosahexaenoic acid by monocytes and its association with osteoarthritic pain. Math Biosci 2024; 374:109228. [PMID: 38851528 DOI: 10.1016/j.mbs.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chronic pain is a major cause of disability and suffering in osteoarthritis (OA) patients. Endogenous specialised pro-resolving molecules (SPMs) curtail pro-inflammatory responses. One of the SPM intermediate oxylipins, 17-hydroxydocasahexaenoic acid (17-HDHA, a metabolite of docosahexaenoic acid (DHA)), is significantly associated with OA pain. The aim of this multidisciplinary work is to develop a mathematical model to describe the contributions of enzymatic pathways (and the genes that encode them) to the metabolism of DHA by monocytes and to the levels of the down-stream metabolites, 17-HDHA and 14-hydroxydocasahexaenoic acid (14-HDHA), motivated by novel clinical data from a study involving 30 participants with OA. The data include measurements of oxylipin levels, mRNA levels, measures of OA severity and self-reported pain scores. We propose a system of ordinary differential equations to characterise associations between the different datasets, in order to determine the homeostatic concentrations of DHA, 17-HDHA and 14-HDHA, dependent upon the gene expression of the associated metabolic enzymes. Using parameter-fitting methods, local sensitivity and uncertainty analysis, the model is shown to fit well qualitatively to experimental data. The model suggests that up-regulation of some ALOX genes may lead to the down-regulation of 17-HDHA and that dosing with 17-HDHA increases the production of resolvins, which helps to down-regulate the inflammatory response. More generally, we explore the challenges and limitations of modelling real data, in particular individual variability, and also discuss the value of gathering additional experimental data motivated by the modelling insights.
Collapse
Affiliation(s)
- S J Franks
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - P R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - J L Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, UK
| | - J Turnbull
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - S A Gohir
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A Kelly
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A M Valdes
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - J R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - D A Barrett
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - V Chapman
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - S Preston
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
3
|
Tiwari P, Verma S, Washimkar KR, Nilakanth Mugale M. Immune cells crosstalk Pathways, and metabolic alterations in Idiopathic pulmonary fibrosis. Int Immunopharmacol 2024; 135:112269. [PMID: 38781610 DOI: 10.1016/j.intimp.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) presents a challenging progression characterized by lung tissue scarring and abnormal extracellular matrix deposition. This review examines the influence of immune responses, emphasizing their complex role in initiating and perpetuating fibrosis. It highlights how metabolic pathways modulate immune cell function during IPF. Immune cell modulation holds promise in managing pulmonary fibrosis (PF). Inhibiting neutrophil recruitment and monitoring mast cell levels offer insights into PF progression. Low-dose IL-2 therapy and regulation of fibroblast recruitment present potential therapeutic avenues, while the role of innate lymphoid cells (ILC2s) in allergic lung inflammation sheds light on disease mechanisms. The review focuses on metabolic reprogramming's role in shaping immune cell function during IPF progression. While some immune cells use glycolysis for pro-inflammatory responses, others favor fatty acid oxidation for regulatory functions. Targeting specialized pro-resolving lipid mediators (SPMs) presents significant potential for managing fibrotic disorders. Additionally, it highlights the pivotal role of amino acid metabolism in synthesizing serine and glycine as crucial regulators of collagen production and exploring the interconnectedness of lipid metabolism, mitochondrial dysfunction, and adipokines in driving fibrotic processes. Moreover, the review discusses the impact of metabolic disorders such as obesity and diabetes on lung fibrosis. Advocating for a holistic approach, it emphasizes the importance of considering this interplay between immune cell function and metabolic pathways in developing effective and personalized treatments for IPF.
Collapse
Affiliation(s)
- Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
4
|
Hiram R, Xiong F, Naud P, Xiao J, Sosnowski DK, Le Quilliec E, Saljic A, Abu-Taha IH, Kamler M, LeBlanc CA, Al-U’Datt DGF, Sirois MG, Hebert TE, Tanguay JF, Tardif JC, Dobrev D, Nattel S. An inflammation resolution-promoting intervention prevents atrial fibrillation caused by left ventricular dysfunction. Cardiovasc Res 2024; 120:345-359. [PMID: 38091977 PMCID: PMC10981525 DOI: 10.1093/cvr/cvad175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024] Open
Abstract
AIMS Recent studies suggest that bioactive mediators called resolvins promote an active resolution of inflammation. Inflammatory signalling is involved in the development of the substrate for atrial fibrillation (AF). The aim of this study is to evaluate the effects of resolvin-D1 on atrial arrhythmogenic remodelling resulting from left ventricular (LV) dysfunction induced by myocardial infarction (MI) in rats. METHODS AND RESULTS MI was produced by left anterior descending coronary artery ligation. Intervention groups received daily intraperitoneal resolvin-D1, beginning before MI surgery (early-RvD1) or Day 7 post-MI (late-RvD1) and continued until Day 21 post-MI. AF vulnerability was evaluated by performing an electrophysiological study. Atrial conduction was analysed by using optical mapping. Fibrosis was quantified by Masson's trichrome staining and gene expression by quantitative polymerase chain reaction and RNA sequencing. Investigators were blinded to group identity. Early-RvD1 significantly reduced MI size (17 ± 6%, vs. 39 ± 6% in vehicle-MI) and preserved LV ejection fraction; these were unaffected by late-RvD1. Transoesophageal pacing induced atrial tachyarrhythmia in 2/18 (11%) sham-operated rats, vs. 18/18 (100%) MI-only rats, in 5/18 (28%, P < 0.001 vs. MI) early-RvD1 MI rats, and in 7/12 (58%, P < 0.01) late-RvD1 MI rats. Atrial conduction velocity significantly decreased post-MI, an effect suppressed by RvD1 treatment. Both early-RvD1 and late-RvD1 limited MI-induced atrial fibrosis and prevented MI-induced increases in the atrial expression of inflammation-related and fibrosis-related biomarkers and pathways. CONCLUSIONS RvD1 suppressed MI-related atrial arrhythmogenic remodelling. Early-RvD1 had MI sparing and atrial remodelling suppressant effects, whereas late-RvD1 attenuated atrial remodelling and AF promotion without ventricular protection, revealing atrial-protective actions unrelated to ventricular function changes. These results point to inflammation resolution-promoting compounds as novel cardio-protective interventions with a particular interest in attenuating AF substrate development.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Feng Xiong
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montreal, Canada H3G 1Y6
| | - Patrice Naud
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Jiening Xiao
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Deanna K Sosnowski
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montreal, Canada H3G 1Y6
| | - Ewen Le Quilliec
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, Essen, Germany D-45122
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Norregade 10 P.O. Box 2177, Copenhagen, Denmark
| | - Issam H Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, Essen, Germany D-45122
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Hufelanstr 55, Essen, Germany 45122
| | - Charles-Alexandre LeBlanc
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Doa’a G F Al-U’Datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid, Jordan 22110
| | - Martin G Sirois
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Terence E Hebert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montreal, Canada H3G 1Y6
| | - Jean-François Tanguay
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Jean-Claude Tardif
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montreal, Canada H3G 1Y6
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, Essen, Germany D-45122
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid, Jordan 22110
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, 5000 Belanger Street, Montreal, Quebec, CanadaH1T 1C8
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montreal, Canada H3G 1Y6
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, Essen, Germany D-45122
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Norregade 10 P.O. Box 2177, Copenhagen, Denmark
- IHU Liryc and Fondation Bordeaux Université, 166 cours de l'Argonne, Bordeaux, France 33000
| |
Collapse
|
5
|
Ayats-Vidal R, Bosque-García M, Cordobilla B, Asensio-De la Cruz O, García-González M, Loureda-Pérez S, Fernández-López E, Robert-Barriocanal E, Valiente-Planas A, Domingo JC. Impact of 1-Year Supplementation with High-Rich Docosahexaenoic Acid (DHA) on Clinical Variables and Inflammatory Biomarkers in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. Nutrients 2024; 16:970. [PMID: 38613004 PMCID: PMC11013158 DOI: 10.3390/nu16070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A randomized, double-blind, and placebo-controlled study was conducted to assess the effect of dietary supplementation with high-rich docosahexaenoic acid (DHA) (Tridocosahexanoin-AOX® 70%) at 50 mg/kg/day in pediatric patients with cystic fibrosis (CF) as compared with placebo. The duration of supplementation was 12 months. A total of 22 patients were included, with 11 in the DHA group and 11 in the placebo group. The mean age was 11.7 years. The outcome variables were pulmonary function, exacerbations, sputum cellularity, inflammatory biomarkers in sputum and peripheral blood, and anthropometric variables. In the DHA group, there was a significant increase in FVC (p = 0.004) and FVE1 expressed in liters (p = 0.044) as compared with placebo, and a lower median number of exacerbations (1 vs. 2). Differences in sputum cellularity (predominantly neutrophilic), neutrophilic elastase, and sputum and serum concentrations of resolvin D1 (RvD1), interleukin (IL)-8 (IL-8), and tumor necrosis factor alpha (TNF-α) between the study groups were not found. Significant increases in weight and height were also observed among DHA-supplemented patients. The administration of the study product was safe and well tolerated. In summary, the use of a highly concentrated DHA supplement for 1 year as compared with placebo improved pulmonary function and reduced exacerbations in pediatric CF.
Collapse
Affiliation(s)
- Roser Ayats-Vidal
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Montserrat Bosque-García
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain;
| | - Oscar Asensio-De la Cruz
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Miguel García-González
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Susana Loureda-Pérez
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (M.B.-G.); (O.A.-D.l.C.); (M.G.-G.); (S.L.-P.)
| | - Elena Fernández-López
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Eva Robert-Barriocanal
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Andrea Valiente-Planas
- Physical Medicine and Rehabilitation Service, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain; (E.F.-L.); (E.R.-B.); (A.V.-P.)
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain;
| |
Collapse
|
6
|
Pitchai A, Buhman K, Shannahan JH. Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation. Inhal Toxicol 2024; 36:57-74. [PMID: 38422051 PMCID: PMC11022128 DOI: 10.1080/08958378.2024.2318389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.
Collapse
Affiliation(s)
- Arjun Pitchai
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Kimberly Buhman
- Department of Nutrition, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
9
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
10
|
Schmidt H, Höpfer LM, Wohlgemuth L, Knapp CL, Mohamed AOK, Stukan L, Münnich F, Hüsken D, Koller AS, Stratmann AEP, Müller P, Braun CK, Fabricius D, Bode SFN, Huber-Lang M, Messerer DAC. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front Immunol 2023; 14:1180282. [PMID: 37457734 PMCID: PMC10347380 DOI: 10.3389/fimmu.2023.1180282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs and is associated with acute and chronic inflammation. In 2020, Elexacaftor-Tezacaftor-Ivacaftor (ETI) was approved to enhance and restore the remaining CFTR functionality. This study investigates cellular innate immunity, with a focus on neutrophil activation and phenotype, comparing healthy volunteers with patients with CF before (T1, n = 13) and after six months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride (T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04) vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6), p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function (radical oxygen species generation, chemotactic and phagocytic activity) remained largely unaffected by ETI treatment. Likewise, monocyte phenotype and markers of platelet activation were similar at T1 and T2. In summary, the present study confirmed a positive impact on patients with CF after ETI treatment. However, neither beneficial nor harmful effects of ETI treatment on cellular innate immunity could be detected, possibly due to the study population consisting of patients with well-controlled CF.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Larissa Melina Höpfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christiane Leonie Knapp
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Laura Stukan
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frederik Münnich
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Dominik Hüsken
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | | | - Paul Müller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian Karl Braun
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
13
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Greenwald MA, Wolfgang MC. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr Opin Pharmacol 2022; 65:102262. [DOI: 10.1016/j.coph.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
|
15
|
Vasishta S, Ganesh K, Umakanth S, Joshi MB. Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from metabolomics. Metabolomics 2022; 18:45. [PMID: 35763080 PMCID: PMC9239976 DOI: 10.1007/s11306-022-01905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes (T2D) associated health disparities among different ethnicities have long been known. Ethnic variations also exist in T2D related comorbidities including insulin resistance, vascular complications and drug response. Genetic heterogeneity, dietary patterns, nutrient metabolism and gut microbiome composition attribute to ethnic disparities in both manifestation and progression of T2D. These factors differentially regulate the rate of metabolism and metabolic health. Metabolomics studies have indicated significant differences in carbohydrate, lipid and amino acid metabolism among ethnicities. Interestingly, genetic variations regulating lipid and amino acid metabolism might also contribute to inter-ethnic differences in T2D. Comprehensive and comparative metabolomics analysis between ethnicities might help to design personalized dietary regimen and newer therapeutic strategies. In the present review, we explore population based metabolomics data to identify inter-ethnic differences in metabolites and discuss how (a) genetic variations, (b) dietary patterns and (c) microbiome composition may attribute for such differences in T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India.
- Manipal School of Life Sciences, Planetarium Complex Manipal Academy of Higher Education Manipal, 576104, Manipal, India.
| |
Collapse
|
16
|
Shum M, London CM, Briottet M, Sy KA, Baillif V, Philippe R, Zare A, Ghorbani-Dalini S, Remus N, Tarze A, Escabasse V, Epaud R, Dubourdeau M, Urbach V. CF Patients’ Airway Epithelium and Sex Contribute to Biosynthesis Defects of Pro-Resolving Lipids. Front Immunol 2022; 13:915261. [PMID: 35784330 PMCID: PMC9244846 DOI: 10.3389/fimmu.2022.915261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Specialized pro-resolving lipid mediators (SPMs) as lipoxins (LX), resolvins (Rv), protectins (PD) and maresins (MaR) promote the resolution of inflammation. We and others previously reported reduced levels of LXA4 in bronchoalveolar lavages from cystic fibrosis (CF) patients. Here, we investigated the role of CF airway epithelium in SPMs biosynthesis, and we evaluated its sex specificity. Human nasal epithelial cells (hNEC) were obtained from women and men with or without CF. Lipids were quantified by mass spectrometry in the culture medium of hNEC grown at air-liquid interface and the expression level and localization of the main enzymes of SPMs biosynthesis were assessed. The 5-HETE, LXA4, LXB4, RvD2, RvD5, PD1 and RvE3 levels were significantly lower in samples derived from CF patients compared with non-CF subjects. Within CF samples, the 12-HETE, 15-HETE, RvD3, RvD4, 17-HODHE and PD1 were significantly lower in samples derived from females. While the mean expression levels of 15-LO, 5-LO and 12-LO do not significantly differ either between CF and non-CF or between female and male samples, the SPMs content correlates with the level of expression of several enzymes involved in SPMs metabolism. In addition, the 5-LO localization significantly differed from cytoplasmic in non-CF to nucleic (or nuclear envelope) in CF hNEC. Our studies provided evidence for lower abilities of airway epithelial cells derived from CF patients and more markedly, females to produce SPMs. These data are consistent with a contribution of CF airway epithelium in the abnormal resolution of inflammation and with worse pulmonary outcomes in women.
Collapse
Affiliation(s)
- Mickael Shum
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Charlie M. London
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Maelle Briottet
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Khadeeja Adam Sy
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | | | - Reginald Philippe
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Abdolhossein Zare
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Sadegh Ghorbani-Dalini
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Natacha Remus
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Agathe Tarze
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Virginie Escabasse
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Ralph Epaud
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | | | - Valerie Urbach
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Valerie Urbach,
| |
Collapse
|
17
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
18
|
Younes R, LeBlanc CA, Hiram R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules 2022; 12:biom12050720. [PMID: 35625647 PMCID: PMC9138906 DOI: 10.3390/biom12050720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can lead to chronic inflammatory disorders due to aggravation of structural damages, development of a fibrous area, and loss of function. Various human conditions show a typical unresolved inflammatory profile. Inflammatory diseases include cancer, neurodegenerative disease, asthma, right heart disease, atherosclerosis, myocardial infarction, or atrial fibrillation. New evidence has started to emerge on the role, including pro-resolution involvement of chemical mediators in the acute phase of inflammation. Although flourishing knowledge is available about the role of specialized pro-resolving mediators in neurodegenerative diseases, atherosclerosis, obesity, or hepatic fibrosis, little is known about their efficacy to combat inflammation-associated arrhythmogenic cardiac disorders. It has been shown that resolvins, including RvD1, RvE1, or Mar1, are bioactive mediators of resolution. Resolvins can stop neutrophil activation and infiltration, stimulate monocytes polarization into anti-inflammatory-M2-macrophages, and activate macrophage phagocytosis of inflammation-debris and neutrophils to promote efferocytosis and clearance. This review aims to discuss the paradigm of failed-resolution mechanisms (FRM) potentially promoting arrhythmogenicity in right heart disease-induced inflammatory status.
Collapse
Affiliation(s)
- Rim Younes
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charles-Alexandre LeBlanc
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Roddy Hiram
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 5015)
| |
Collapse
|
19
|
Carnovale V, Castaldo A, Di Minno A, Gelzo M, Iacotucci P, Illiano A, Pinto G, Castaldo G, Amoresano A. Oxylipin profile in saliva from patients with cystic fibrosis reveals a balance between pro-resolving and pro-inflammatory molecules. Sci Rep 2022; 12:5838. [PMID: 35393448 PMCID: PMC8991203 DOI: 10.1038/s41598-022-09618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Oxylipins are signaling molecules originated by fatty acids that modulate vascular and bronchial tone, bronchial secretion, cytokine production and immune cell activity. The unbalanced production of pro-inflammatory and pro-resolving (i.e., anti-inflammatory) oxylipins has a relevant role in the pathogenesis of pulmonary inflammation like in cystic fibrosis (CF). We analyzed by LC-MRM/MS 65 oxylipins and 4 fatty acids in resting saliva from 69 patients with CF and 50 healthy subjects (controls). The salivary levels of 48/65 oxylipins were significantly different between CF patients and controls. Among these, EpETE, DHET, 6ketoPGE1 and HDHA were significantly higher in saliva from CF patients than in controls. All these molecules display anti-inflammatory effects, i.e., releasing of bronchial and vascular tone, modulation of cytokine release. While 20-hydroxyPGF2A, PGB2, EpDPE, 9 K-12-ELA, bicyclo-PGE2, oleic acid, LTC4, linoleic acid, 15oxoEDE, 20 hydroxyPGE2 and DHK-PGD2/PGE2 (mostly associated to pro-inflammatory effects) resulted significantly lower in CF patients than in controls. Our data suggest that the salivary oxylipins profile in CF patients is addressed toward a global anti-inflammatory effect. Although these findings need be confirmed on larger populations in prospective studies, they will contribute to better understand the pathogenesis of CF chronic inflammation and to drive targeted therapies based on the modulation of oxylipins synthesis and degradation.
Collapse
Affiliation(s)
- Vincenzo Carnovale
- Centro Di Riferimento Regionale Fibrosi Cistica, Naples, Italy.,Dipartimento Di Scienze Mediche Traslazionali, Università Di Napoli Federico II, Naples, Italy
| | - Alice Castaldo
- Centro Di Riferimento Regionale Fibrosi Cistica, Naples, Italy.,Dipartimento Di Scienze Mediche Traslazionali, Università Di Napoli Federico II, Naples, Italy
| | - Alessandro Di Minno
- Dipartimento Di Farmacia, Università Di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy.,Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Di Napoli Federico II, Naples, Italy
| | - Paola Iacotucci
- Centro Di Riferimento Regionale Fibrosi Cistica, Naples, Italy.,Dipartimento Di Scienze Mediche Traslazionali, Università Di Napoli Federico II, Naples, Italy
| | - Anna Illiano
- Dipartimento Di Scienze Chimiche, Università Di Napoli Federico II, Naples, Italy.,Consorzio Interuniversitario "Istituto Nazionale Nazionale Biostrutture E Biosistemi (INBB)", Rome, Italy
| | - Gabriella Pinto
- Dipartimento Di Scienze Chimiche, Università Di Napoli Federico II, Naples, Italy.,Consorzio Interuniversitario "Istituto Nazionale Nazionale Biostrutture E Biosistemi (INBB)", Rome, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy. .,Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Di Napoli Federico II, Naples, Italy.
| | - Angela Amoresano
- Dipartimento Di Scienze Chimiche, Università Di Napoli Federico II, Naples, Italy.,Consorzio Interuniversitario "Istituto Nazionale Nazionale Biostrutture E Biosistemi (INBB)", Rome, Italy
| |
Collapse
|
20
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Loiacono R, Loggi E, de Biase D, Zippi M, Lari F, Zancanaro M. The function of specialized pro-resolving endogenous lipid mediators, vitamins, and other micronutrients in the control of the inflammatory processes: Possible role in patients with SARS-CoV-2 related infection. Prostaglandins Other Lipid Mediat 2022; 159:106619. [PMID: 35032665 PMCID: PMC8752446 DOI: 10.1016/j.prostaglandins.2022.106619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Inflammation is an essential protective response against harmful stimuli, such as invading pathogens, damaged cells, or irritants. Physiological inflammation eliminates pathogens and promotes tissue repair and healing. Effective immune response in humans depends on a tightly regulated balance among inflammatory and anti-inflammatory mechanisms involving both innate and adaptive arms of the immune system. Excessive inflammation can become pathological and induce detrimental effects. If this process is not self-limited, an inappropriate remodeling of the tissues and organs can occur and lead to the onset of chronic degenerative diseases. A wide spectrum of infectious and non-infectious agents may activate the inflammation, via the release of mediators and cytokines by distinct subtypes of lymphocytes and macrophages. Several molecular mechanisms regulate the onset, progression, and resolution of inflammation. All these steps, even the termination of this process, are active and not passive events. In particular, a complex interplay exists between mediators (belonging to the group of Eicosanoids), which induce the beginning of inflammation, such as Prostaglandins (PGE2), Leukotrienes (LT), and thromboxane A2 (TXA2), and molecules which display a key role in counteracting this process and in promoting its proper resolution. The latter group of mediators includes: ω-6 arachidonic acid (AA)-derived metabolites, such as Lipoxins (LXs), ω -3 eicosapentaenoic acid (EPA)-derived mediators, such as E-series Resolvins (RvEs), and ω -3 docosahexaenoic (DHA)-derived mediators, such as D-series Resolvins (RvDs), Protectins (PDs) and Maresins (MaRs). Overall, these mediators are defined as specialized pro-resolving mediators (SPMs). Reduced synthesis of these molecules may lead to uncontrolled inflammation with possible harmful effects. ω-3 fatty acids are widely used in clinical practice as rather inexpensive, safe, readily available supplemental therapy. Taking advantage of this evidence, several researchers are suggesting that SPMs may have beneficial effects in the complementary treatment of patients with severe forms of SARS-CoV-2 related infection, to counteract the "cytokine storm" observed in these individuals. Well-designed and sized trials in patients suffering from COVID-19 with different degrees of severity are needed to investigate the real impact in the clinical practice of this promising therapeutic approach.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Rossella Loiacono
- Internal Medicine Unit, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Elisabetta Loggi
- Hepatology Unit, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | |
Collapse
|
21
|
Herrera Vielma F, Valenzuela R, Videla LA, Zúñiga-Hernández J. N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune-Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients 2021; 13:3384. [PMID: 34684386 PMCID: PMC8539469 DOI: 10.3390/nu13103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.
Collapse
Affiliation(s)
- Francisca Herrera Vielma
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Jessica Zúñiga-Hernández
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| |
Collapse
|
22
|
Chávez-Castillo M, Ortega Á, Cudris-Torres L, Duran P, Rojas M, Manzano A, Garrido B, Salazar J, Silva A, Rojas-Gomez DM, De Sanctis JB, Bermúdez V. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy? Int J Mol Sci 2021; 22:ijms221910370. [PMID: 34638711 PMCID: PMC8509014 DOI: 10.3390/ijms221910370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina sede Valledupar, Valledupar 200001, Colombia;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Aljadis Silva
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Diana Marcela Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, 77900 Olomouc, Czech Republic;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
23
|
Beegun I, Koenis DS, Alusi G, Dalli J. Dysregulated Maresin Concentrations in Plasma and Nasal Secretions From Patients With Chronic Rhinosinusitis. Front Immunol 2021; 12:733019. [PMID: 34531873 PMCID: PMC8438229 DOI: 10.3389/fimmu.2021.733019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that lead to disease onset and propagation in patients with chronic rhinosinusitis (CRS) are not fully elucidated. Maresins (MaR) are a family of essential fatty acid-derived lipid mediators that play a central role in the regulation of inflammation with several studies demonstrating that these mediators display protective activities in airway inflammation. Therefore, in the present studies we evaluated whether concentrations of these mediators were altered in both peripheral blood and nasal secretions from CRS patients. Herein, we focused on patients with CRS that also develop nasal polyps (CRSwNP), given that therapeutic options for the treatment of these patients are limited. Thereby, insights into disease mechanisms in these patients may help design more effective treatments. For this purpose, we compared maresin concentrations from CRSwNP patients with those found in healthy volunteers or patients with an upper respiratory tract infection (URTI), as a self-resolving inflammatory condition. Using liquid chromatography tandem mass spectrometry, we found that MaR concentrations were significantly decreased in plasma from patients with CRSwNP when compared to healthy volunteers. MaR concentrations were observed to be significantly upregulated in nasal secretions from patients with CRSwNP when compared with both healthy volunteers and URTI subjects. Concentration of these mediators in both plasma and nasal secretions from CRSwNP patients were positively correlated with quality-of-life scores in these patients. Assessment of the concentrations of other pro-resolving and pro-inflammatory lipid mediators (LM) demonstrated that there was a general shift in LM levels in both plasma and nasal secretions from CRSwNP when compared with healthy volunteers and URTI subjects. Of note, incubation of peripheral blood cells from CRSwNP patients with MaR1 downregulated the expression of activation markers on peripheral blood phagocytes, including CD41 and CD62P, markers of platelet-leukocyte heterotypic aggregates. Together these findings demonstrate that both local and systemic LM concentrations, in particularly those of the MaR family, become altered in patients with CRSwNP. They also suggest that therapeutics designed around MaR1 may be useful in regulating the activation of phagocytes in patients with CRSwNP thereby potentially also limiting the local inflammatory response in these patients.
Collapse
Affiliation(s)
- Issa Beegun
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ghassan Alusi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021; 22:204. [PMID: 34261470 PMCID: PMC8279385 DOI: 10.1186/s12931-021-01792-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an essential mechanism of various diseases. The development and resolution of inflammation are complex immune-modulation processes which induce the involvement of various types of immune cells. Specialized pro-resolving lipid mediators (SPMs) have been demonstrated to be signaling molecules in inflammation. SPMs are involved in the pathophysiology of different diseases, especially respiratory diseases, including asthma, pneumonia, and chronic obstructive pulmonary disease. All of these diseases are related to the inflammatory response and its persistence. Therefore, a deeper understanding of the mechanisms and development of inflammation in respiratory disease, and the roles of the SPM family in the resolution process, might be useful in the quest for novel therapies and preventive measures for pulmonary diseases.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| |
Collapse
|
25
|
Trilleaud C, Gauttier V, Biteau K, Girault I, Belarif L, Mary C, Pengam S, Teppaz G, Thepenier V, Danger R, Robert-Siegwald G, Néel M, Bruneau S, Glémain A, Néel A, Poupon A, Mosnier JF, Chêne G, Dubourdeau M, Blancho G, Vanhove B, Poirier N. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. SCIENCE ADVANCES 2021; 7:eabd1453. [PMID: 33811066 PMCID: PMC11057782 DOI: 10.1126/sciadv.abd1453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Resolution of inflammation is elicited by proresolving lipids, which activate GPCRs to induce neutrophil apoptosis, reduce neutrophil tissue recruitment, and promote macrophage efferocytosis. Transcriptional analyses in up to 300 patients with Inflammatory Bowel Disease (IBD) identified potential therapeutic targets mediating chronic inflammation. We found that ChemR23, a GPCR targeted by resolvin E1, is overexpressed in inflamed colon tissues of severe IBD patients unresponsive to anti-TNFα or anti-α4β7 therapies and associated with significant mucosal neutrophil accumulation. We also identified an anti-ChemR23 agonist antibody that induces receptor signaling, promotes macrophage efferocytosis, and reduces neutrophil apoptosis at the site of inflammation. This ChemR23 mAb accelerated acute inflammation resolution and triggered resolution in ongoing chronic colitis models, with a significant decrease in tissue lesions, fibrosis and inflammation-driven tumors. Our findings suggest that failure of current IBD therapies may be associated with neutrophil infiltration and that ChemR23 is a promising therapeutic target for chronic inflammation.
Collapse
Affiliation(s)
- C Trilleaud
- OSE Immunotherapeutics, Nantes, France
- Université de Nantes
| | | | - K Biteau
- OSE Immunotherapeutics, Nantes, France
| | - I Girault
- OSE Immunotherapeutics, Nantes, France
| | - L Belarif
- OSE Immunotherapeutics, Nantes, France
| | - C Mary
- OSE Immunotherapeutics, Nantes, France
| | - S Pengam
- OSE Immunotherapeutics, Nantes, France
| | - G Teppaz
- OSE Immunotherapeutics, Nantes, France
| | | | - R Danger
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | | | - M Néel
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | - S Bruneau
- Université de Nantes
- [ITUN], 44000 Nantes, France
| | - A Glémain
- Université de Nantes
- [ITUN], 44000 Nantes, France
| | - A Néel
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- Service de Médecine Interne, CHU de Nantes, Nantes, France
| | | | - J F Mosnier
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- Service d'Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - G Chêne
- Ambiotis, Canal Biotech 2, Toulouse, France
| | | | - G Blancho
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | - B Vanhove
- OSE Immunotherapeutics, Nantes, France
| | - N Poirier
- OSE Immunotherapeutics, Nantes, France.
| |
Collapse
|
26
|
Recchiuti A, Patruno S, Mattoscio D, Isopi E, Pomilio A, Lamolinara A, Iezzi M, Pecce R, Romano M. Resolvin D1 and D2 reduce SARS-CoV-2-induced inflammatory responses in cystic fibrosis macrophages. FASEB J 2021; 35:e21441. [PMID: 33749902 PMCID: PMC8250053 DOI: 10.1096/fj.202001952r] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
An excessive, non‐resolving inflammatory response underlies severe COVID‐19 that may have fatal outcomes. Therefore, the investigation of endogenous pathways leading to resolution of inflammation is of interest to uncover strategies for mitigating inflammation in people with SARS‐CoV‐2 infection. This becomes particularly urgent in individuals with preexisting pathologies characterized by chronic respiratory inflammation and prone to bacterial infection, such as cystic fibrosis (CF). Here, we analyzed the immune responses to SARS‐CoV‐2 virion spike 1 glycoprotein (S1) of macrophages (MΦ) from volunteers with and without CF and tested the efficacy of resolvins (Rv) D1 and D2 in regulating the inflammatory and antimicrobial functions of MΦ exposed to S1. S1 significantly increased chemokine release, including interleukin (IL)‐8, in CF and non‐CF MΦ, while it enhanced IL‐6 and tumor necrosis factor (TNF)‐α in non‐CF MΦ, but not in CF cells. S1 also triggered the biosynthesis of RvD1 and modulated microRNAs miR‐16, miR‐29a, and miR‐103, known to control the inflammatory responses. RvD1 and RvD2 treatment abated S1‐induced inflammatory responses in CF and non‐CF MΦ, significantly reducing the release of select chemokines and cytokines including IL‐8 and TNF‐α. RvD1 and RvD2 both restored the expression of miR‐16 and miR‐29a, while selectively increasing miR‐223 and miR‐125a, which are involved in NF‐κB activation and MΦ inflammatory polarization. During Pseudomonas aeruginosa infection, S1 stimulated the MΦ phagocytic activity that was further enhanced by RvD1 and RvD2. These results provide a map of molecular responses to SARS‐CoV‐2 in MΦ, key determinants of COVID‐19‐related inflammation, unveiling some peculiarity in the response of cells from individuals with CF. They also demonstrate beneficial, regulatory actions of RvD1 and RvD2 on SARS‐CoV‐2‐induced inflammation.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Sara Patruno
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Antonella Pomilio
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Romina Pecce
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| |
Collapse
|
27
|
Liu YC. Developments of specialized pro-resolving mediators in periodontitis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:94-98. [PMID: 33723943 PMCID: PMC7905408 DOI: 10.7518/hxkq.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Resolution of inflammation plays an important part in maintaining homeostasis. It is an actively programmed progress involving multiple immune cells and mediators. Specialized pro-resolving mediators (SPMs) derived from Ω-3 polyunsaturated fatty acids include resolvins, protectins and maresins, and they exert abilities in the resolution of inflammation, host defense, organ protection, and tissue generation. Periodontitis is an inflammatory and destructive disease in the periodontal tissue initiated by dental plaque. Inadequate proinflammatory or proresolving responses, or the imbalance between the two, may contribute to the pathogenesis of the disease. Studies have shown that activating specialized receptors SPMs displayed multiple biological effects towards periodontitis, including resolution of inflammation, alveolar bone protection, periodontal tissue regeneration, and pathogen resistance. Thus, the relationship between SPM and periodontitis and the potentials and challenges in SPM application were reviewed.
Collapse
Affiliation(s)
- Yin-Chen Liu
- Dept. of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
28
|
Sandhaus S, Swick AG. Specialized proresolving mediators in infection and lung injury. Biofactors 2021; 47:6-18. [PMID: 33249673 PMCID: PMC7744833 DOI: 10.1002/biof.1691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.
Collapse
MESH Headings
- Anti-Inflammatory Agents/therapeutic use
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Docosahexaenoic Acids/therapeutic use
- Herpes Simplex/drug therapy
- Herpes Simplex/metabolism
- Herpes Simplex/pathology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Lipoxins/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/drug therapy
- Lung Injury/metabolism
- Lung Injury/pathology
- Lung Injury/virology
- Periodontitis/drug therapy
- Periodontitis/metabolism
- Periodontitis/pathology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/virology
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/metabolism
- Respiratory Distress Syndrome/pathology
- Respiratory Distress Syndrome/virology
- SARS-CoV-2/pathogenicity
- Sepsis/drug therapy
- Sepsis/metabolism
- Sepsis/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- COVID-19 Drug Treatment
Collapse
|
29
|
Insuela DBR, Ferrero MR, Coutinho DDS, Martins MA, Carvalho VF. Could Arachidonic Acid-Derived Pro-Resolving Mediators Be a New Therapeutic Strategy for Asthma Therapy? Front Immunol 2020; 11:580598. [PMID: 33362766 PMCID: PMC7755608 DOI: 10.3389/fimmu.2020.580598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Quiros M. Therapeutic Opportunities for Repair GPCRs during Intestinal Mucosal Wound Healing. Trends Mol Med 2020; 26:971-974. [PMID: 32958405 DOI: 10.1016/j.molmed.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are crucial for establishing the resolution phase following an intestinal inflammatory episode. Because current treatments for intestinal inflammation have a high percentage of failure and lead to immunosuppression, repair GPCRs have promising therapeutic potential because they trigger resolution pathways without compromising the immune response.
Collapse
Affiliation(s)
- Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Recchiuti A, Isopi E, Romano M, Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int J Mol Sci 2020; 21:E6637. [PMID: 32927853 PMCID: PMC7555248 DOI: 10.3390/ijms21186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic pathway that accounts for degradation and recycling of cellular components to extend cell survival under stress conditions. In addition to this prominent role, recent evidence indicates that autophagy is crucially involved in the regulation of the inflammatory response, a tightly controlled process aimed at clearing the inflammatory stimulus and restoring tissue homeostasis. To be efficient and beneficial to the host, inflammation should be controlled by a resolution program, since uncontrolled inflammation is the underlying cause of many pathologies. Resolution of inflammation is an active process mediated by a variety of mediators, including the so-called specialized pro-resolving lipid mediators (SPMs), a family of endogenous lipid autacoids known to regulate leukocyte infiltration and activities, and counterbalance cytokine production. Recently, regulation of autophagic mechanisms by these mediators has emerged, uncovering unappreciated connections between inflammation resolution and autophagy. Here, we summarize mechanisms of autophagy and resolution, focusing on the contribution of autophagy in sustaining paradigmatic examples of chronic inflammatory disorders. Then, we discuss the evidence that SPMs can restore dysregulated autophagy, hypothesizing that resolution of inflammation could represent an innovative approach to modulate autophagy and its impact on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Domenico Mattoscio
- Center for Advanced Studies and Technology, Department of Medical, Oral and Biotechnology Sciences, University of Chieti—Pescara, 66100 Chieti, Italy; (A.R.); (E.I.); (M.R.)
| |
Collapse
|
32
|
Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.
Collapse
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Strandvik
- Dept of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Recchiuti A, Patruno S, Plebani R, Romano M. The Resolution Approach to Cystic Fibrosis Inflammation. Front Pharmacol 2020; 11:1129. [PMID: 32848748 PMCID: PMC7403222 DOI: 10.3389/fphar.2020.01129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Despite the high expectations associated with the recent introduction of CFTR modulators, airway inflammation still remains a relevant clinical issue in cystic fibrosis (CF). The classical anti-inflammatory drugs have shown very limited efficacy, when not being harmful, raising the question of whether alternative approaches should be undertaken. Thus, a better knowledge of the mechanisms underlying the aberrant inflammation observed in CF is pivotal to develop more efficacious pharmacology. In this respect, the observation that endogenous proresolving pathways are defective in CF and that proresolving mediators, physiologically generated during an acute inflammatory reaction, do not completely suppress inflammation, but promote resolution, tissue healing and microbial clearance, without compromising immune host defense mechanisms, opens interesting therapeutic scenarios for CF. In this mini-review, we present the current knowledge and perspectives of proresolving pharmacology in CF, focusing on the specialized proresolving lipid mediators and selected peptides.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Patruno
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
35
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
36
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
37
|
Landberg R, Sunnerheim K, Dimberg LH. Avenanthramides as lipoxygenase inhibitors. Heliyon 2020; 6:e04304. [PMID: 32637696 PMCID: PMC7330496 DOI: 10.1016/j.heliyon.2020.e04304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/21/2020] [Accepted: 06/22/2020] [Indexed: 01/18/2023] Open
Abstract
Avenanthramides (AVAs) present in oats are amides of anthranilic and cinnamic acids. AVAs are potent antioxidants and have anti-inflammatory properties. There are various potential mechanisms for their anti-inflammatory effects, including inhibition of lipoxygenases (LOX), which catalyse oxygenation of polyunsaturated fatty acids into potent signal molecules involved in inflammatory processes. In this study, AVAs were screened for LOX inhibition in vitro and structure-activity relationships were examined. Twelve different AVAs at 0.6 mM were tested as LOX inhibitors. The corresponding free cinnamic acids, the AVA analogue Tranilast® and the known LOX inhibitor trans-resveratrol were included for comparison. It was found that AVAs comprising caffeic or sinapic acid exhibited significant lipoxygenase inhibition (60–90%) (P < 0.05), whereas low or no inhibition was observed with AVAs containing p-coumaric or ferulic acid. No difference in inhibition was seen on comparing AVAs with their free corresponding cinnamic acids, which implies that the anthranilic acid part of the avenanthramide molecule does not affect inhibition. Trans-resveratrol showed inhibition, whereas no inhibition was seen for Tranilast® at the concentrations used in this study. This study suggests that aventahtramides comprising caffeic acid or sinapic acid partly exert their antioxidant and anti-inflammatory effects via lipoxygenase inhibition.
Collapse
Affiliation(s)
- Rikard Landberg
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin Sunnerheim
- Department of Chemical Engineering, Mid Sweden University, Sundsvall, Sweden
| | - Lena H Dimberg
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
39
|
Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, Kantharidis P, Ritchie RH, Qin CX. Therapeutic Potential of Lipoxin A 4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol Transl Sci 2020; 3:43-55. [PMID: 32259087 DOI: 10.1021/acsptsci.9b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Several studies have shown that failure to resolve inflammation may contribute to the progression of many chronic inflammatory disorders. It has been suggested targeting the resolution of inflammation might be a novel therapeutic approach for chronic inflammatory diseases, including inflammatory bowel disease, diabetic complications, and cardiometabolic disease. Lipoxins [LXs] are a class of endogenously generated mediators that promote the resolution of inflammation. Biological actions of LXs include inhibition of neutrophil infiltration, promotion of macrophage polarization, increase of macrophage efferocytosis, and restoration of tissue homeostasis. Recently, several studies have demonstrated that LXs and synthetic analogues protect tissues from acute and chronic inflammation. The mechanism includes down-regulation of pro-inflammatory cytokines and chemokines (e.g., interleukin-1β and tumor necrosis factor-α), inhibition of the activation of the master pro-inflammatory pathway (e.g., nuclear factor κ-light-chain-enhancer of activated B cells pathway) and increased release of the pro-resolving cytokines (e.g., interleukin-10). Three generations of LXs analogues are well described in the literature, and more recently a fourth generation has been generated that appears to show enhanced potency. In this review, we will briefly discuss the potential therapeutic opportunity provided by lipoxin A4 as a novel approach to treat chronic inflammatory disorders, focusing on cardiometabolic disease and the current drug development in this area.
Collapse
Affiliation(s)
- Ting Fu
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H Ritchie
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|