1
|
Li XY, Liu Q, Xu XY, Wang J, Zhong YS, Jin LH, Yuan J, Qian JC, Zhang XD. Activity Variations of CYP2B6 Determine the Metabolic Stratification of Efavirenz. Chem Res Toxicol 2024. [PMID: 39400275 DOI: 10.1021/acs.chemrestox.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
PURPOSE To investigate the effects of hepatic enzyme activity variations and CYP2B6 gene polymorphisms on the in vivo and in vitro metabolism of efavirenz. MAIN METHODS In vitro enzyme systems using rat and human liver microsomes (RLM/HLM) were established, with in vivo studies conducted on Sprague-Dawley rats. Metabolite detection was performed via LC-MS/MS. Human recombinant CYP2B6 microsomes were prepared using a baculovirus-insect cell system and ultracentrifugation, with efavirenz serving as the substrate to study enzyme kinetics. RESULTS Isavuconazole exhibited an IC50 of 21.14 ± 0.57 μM in RLM, indicating a mixed competitive and noncompetitive mechanism, and an IC50 of 40.44 ± 4.23 μM in HLM, suggesting an anticompetitive mechanism. In rats, coadministration of efavirenz and isavuconazole significantly increased the AUC, Tmax, and Cmax of efavirenz. Co-administration of efavirenz and rifampicin significantly elevated the AUC, Tmax, and Cmax of 8-OH-efavirenz. The activity of CYP2B6.4, 6, and 7 increased significantly compared to CYP2B6.1, with relative clearance ranging from 158.34% to 212.72%. Conversely, the activity of CYP2B6.3, 8, 10, 11, 13-15, 18-21, 23-27, 31-33, and 37 was markedly reduced, ranging from 4.30% to 79.89%. CONCLUSION Variations in liver enzyme activity and CYP2B6 genetic polymorphisms can significantly alter the metabolism of efavirenz. It provides laboratory-based data for the precise application of efavirenz and other CYP2B6 substrate drugs.
Collapse
Affiliation(s)
- Xin-Yue Li
- The Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang 325018, PR China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Qian Liu
- Department of Clinical Laboratory, Aerospace Central Hospital, Beijing 100049, PR China
| | - Xiao-Yu Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jing Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yun-Shan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Le-Hao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jing Yuan
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiao-Dan Zhang
- The Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang 325018, PR China
| |
Collapse
|
2
|
Chen J, Hu Y, Hu J, Ye Z, Lin Q, Cai JP, Hu GX, Xu RA. Effect of recombinant CYP3A4 variants and interaction on imatinib metabolism in vitro. Biomed Pharmacother 2024; 180:117511. [PMID: 39366029 DOI: 10.1016/j.biopha.2024.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The aim of this study was to investigate the catalytic activity of 26 Cytochrome P450 3A4 (CYP3A4) variants and drug interactions on imatinib metabolism in recombinant insect microsomes. This study was designed with an appropriate incubation system and carried out in the constant temperature water. By using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to measure the quantities of its metabolite N-desmethyl imatinib, to elucidate the impacts of the CYP3A4 genetic polymorphism and drug interactions on the metabolism of imatinib. Consequently, as compared to CYP3A4.1, the intrinsic clearance (CLint) values of the variations were dramatically changed, rising from 2.34 % to 120.57 %. CYP3A4.14 showed an increase in CLint in comparison to CYP3A4.1, and the remaining 24 variants demonstrated decreases in catalytic activity for the metabolism of imatinib. In addition, the metabolism of imatinib was decreased to varied degrees by ketoconazole, itraconazole, and fluconazole in CYP3A4.1 and CYP3A4.18. Moreover, most of CYP3A4 variants showed similar trend of enzyme activity under different substrates of imatinib and cabozantinib, except 6 variants (CYP3A4.3,.4,.10,.15,.29 and.31). The first study of the effects of 26 CYP3A4 variants on imatinib metabolism will contribute to the clinical evaluation of imatinib and help personalize therapy in clinical settings.
Collapse
Affiliation(s)
- Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhize Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianmeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ye Z, Xia H, Hu J, Liu YN, Wang A, Cai JP, Hu GX, Xu RA. CYP3A4 and CYP2C19 genetic polymorphisms and myricetin interaction on tofacitinib metabolism. Biomed Pharmacother 2024; 175:116421. [PMID: 38719708 DOI: 10.1016/j.biopha.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.
Collapse
Affiliation(s)
- Zhize Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anzhou Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ye F, Ni J, Li X, Wang J, Luo J, Wang S, Xu X, Zhong Y, Qian J, Xiao Z. The influence of drug-induced metabolic enzyme activity inhibition and CYP3A4 gene polymorphism on aumolertinib metabolism. Front Pharmacol 2024; 15:1392849. [PMID: 38855755 PMCID: PMC11157048 DOI: 10.3389/fphar.2024.1392849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of this study is to clarify the drug interaction profile of aumolertinib, and the influence of CYP3A4 genetic polymorphism on aumolertinib metabolic characteristics. Through microsomal enzyme reactions, we screened 153 drugs and identified 15 that significantly inhibited the metabolism of aumolertinib. Among them, telmisartan and carvedilol exhibited potent inhibitory activities in rat liver microsomes (RLM) and human liver microsomes (HLM). In vivo, the pharmacokinetic parameters of aumolertinib, including AUC and Cmax, were significantly altered when co-administered with carvedilol, with a notable decrease in the clearance rate CLz/F. Interestingly, the pharmacokinetic parameters of the metabolite HAS-719 exhibited a similar trend as aumolertinib when co-administered. Mechanistically, both telmisartan and carvedilol exhibited a mixed-type inhibition on the metabolism of aumolertinib. Additionally, we used a baculovirus-insect cell expression system to prepare 24 recombinant CYP3A4 microsomes and obtained enzymatic kinetic parameters using aumolertinib as a substrate. Enzyme kinetic studies obtained the kinetic parameters of various CYP3A4 variant-mediated metabolism of aumolertinib. Based on the relative clearance rates, CYP3A4.4, 5, 7, 8, 9, 12, 13, 14, 17, 18, 19, 23, 24, 33, and 34 showed significantly lower clearance rates compared to the wild-type. Among the different CYP3A4 variants, the inhibitory potency of telmisartan and carvedilol on the metabolism of aumolertinib also varied. The IC50 values of telmisartan and carvedilol in CYP3A4.1 were 6.68 ± 1.76 μM and 0.60 ± 0.25 μM, respectively, whereas in CYP3A4.12, the IC50 exceeded 100 μM. Finally, we utilized adeno-associated virus to achieve liver-specific high expression of CYP3A4*1 and CYP3A4*12. In the group with high expression of the less active CYP3A4*12, the magnitude of the drug-drug interaction was significantly attenuated. In conclusion, CYP3A4 genetic polymorphism not only influences the pharmacokinetic characteristics of aumolertinib, but also the inhibitory potency of telmisartan and carvedilol on it.
Collapse
Affiliation(s)
- Feng Ye
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinhuan Ni
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyue Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchao Luo
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiyu Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunshan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Ye F, Li X, Ni J, Xu X, Luo J, Zhong Y, Wang Y, Wang S, Zhang Y, Hu G, Qian J. Gene Polymorphisms and Drug-Drug Interactions Determine the Metabolic Profile of Blonanserin. J Pharmacol Exp Ther 2024; 388:190-200. [PMID: 37863485 DOI: 10.1124/jpet.123.001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.
Collapse
Affiliation(s)
- Feng Ye
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyue Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinhuan Ni
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchao Luo
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunshan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yahui Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiyu Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Zheng E, Madura P, Grandos J, Broncel M, Pawlos A, Woźniak E, Gorzelak-Pabiś P. When the same treatment has different response: The role of pharmacogenomics in statin therapy. Biomed Pharmacother 2024; 170:115966. [PMID: 38061135 DOI: 10.1016/j.biopha.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Statins, also known as HMG-CoA reductase inhibitors, are one of the most potently prescribed and thoroughly researched medications, predominantly utilized for managing cardiovascular diseases by modulating serum cholesterol levels. Despite the well-documented efficacy of statins in reducing overall mortality via attenuating the risk of cardiovascular diseases, notable interindividual variability in therapeutic responses persists as such variability could compromise the lipid-lowering efficacy of the drug, potentially increasing susceptibility to adverse effects or attenuating therapeutic outcomes.This phenomenon has catalysed a growing interest in the scientific community to explore common genetic polymorphisms within genes that encode for pivotal enzymes within the pharmacokinetic pathways of statins. In our review, we focus to provide insight into potentially clinically relevant polymorphisms associated with statins' pharmacokinetic participants and assess their consequent implications on modulating the therapeutic outcomes of statins among distinct genetic carrier.
Collapse
Affiliation(s)
- Edward Zheng
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Paulina Madura
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Jakub Grandos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Agnieszka Pawlos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Ewelina Woźniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Paulina Gorzelak-Pabiś
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland.
| |
Collapse
|
7
|
Faris A, Ibrahim IM, Alnajjar R, Hadni H, Bhat MA, Yaseen M, Chakraborty S, Alsakhen N, Shamkh IM, Mabood F, M Naglah A, Ullah I, Ziedan N, Elhallaoui M. QSAR-driven screening uncovers and designs novel pyrimidine-4,6-diamine derivatives as potent JAK3 inhibitors. J Biomol Struct Dyn 2023:1-30. [PMID: 38059345 DOI: 10.1080/07391102.2023.2283168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
This study presents a robust and integrated methodology that harnesses a range of computational techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the employment of multiple linear regression (MLR). The initial MLR model underwent further refinement employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 0.95, respectively. The model's precision was assessed via leave-one-out cross-validation (CV) yielding a Q2 value of 0.65, supplemented by rigorous Y-randomization. , The pharmacophore model effectively differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demonstrated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosynthetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh, Swat, Pakistan
| | - Souvik Chakraborty
- Department of Physiology, Bhairab Ganguly College, Belghoria, Kolkata, West Bengal, India
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Israa M Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh, Swat, Pakistan
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh, Swat, Pakistan
| | - Noha Ziedan
- Department of Physical, Mathematical and Engineering Science, Faculty of Science, Business and Enterprise, University of Chester, Chester, UK
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Li Q, Wang J, Wang ZL, Shen Y, Zhou Q, Liu YN, Hu GX, Cai JP, Xu RA. The impacts of CYP3A4 genetic polymorphism and drug interactions on the metabolism of lurasidone. Biomed Pharmacother 2023; 168:115833. [PMID: 37935069 DOI: 10.1016/j.biopha.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
The aim of this study was to investigate the impacts of 24 variants of recombinant human CYP3A4 and drug interactions on the metabolism of lurasidone. In vitro, enzymatic reaction incubation system of CYP3A4 was established to determine the kinetic parameters of lurasidone catalyzed by 24 CYP3A4 variants. Then, we constructed rat liver microsomes (RLM) and human liver microsomes (HLM) incubation system to screen potential anti-tumor drugs that could interact with lurasidone and studied its inhibitory mechanism. In vivo, Sprague-Dawley (SD) rats were applied to study the interaction between lurasidone and olmutinib. The concentrations of the analytes were detected by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). As the results, we found that compared with the wild-type CYP3A4, the relative intrinsic clearances vary from 355.77 % in CYP3A4.15 to 14.11 % in CYP3A4.12. A series of drugs were screened based on the incubation system, and compared to without olmutinib, the amount of ID-14283 (the metabolite of lurasidone) in RLM and HLM were reduced to 7.22 % and 7.59 %, and its IC50 were 18.83 ± 1.06 μM and 16.15 ± 0.81 μM, respectively. At the same time, it exerted inhibitory effects both through a mixed mechanism. When co-administration of lurasidone with olmutinib in rats, the AUC(0-t) and AUC(0-∞) of lurasidone were significantly increased by 73.52 % and 69.68 %, respectively, while CLz/F was observably decreased by 43.83 %. In conclusion, CYP3A4 genetic polymorphism and olmutinib can remarkably affect the metabolism of lurasidone.
Collapse
Affiliation(s)
- Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Lu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Ping Cai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zhang X, Li Q, Zhou Q, Li Y, Li J, Jin L, Li S, Cai J, Chen G, Hu G, Qian J. Determine the enzymatic kinetic characteristics of CYP3A4 variants utilizing artemether-lumefantrine. Food Chem Toxicol 2023; 181:114065. [PMID: 37769895 DOI: 10.1016/j.fct.2023.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Artemether-lumefantrine is an artemisinin-based combination therapy for the treatment of malaria, which are primarily metabolized by cytochrome P450 3A4. Therapeutic difference caused by gene polymorphisms of CYP3A4 may lead to uncertain adverse side effects or treatment failure. The aim of this study was to evaluate the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolism in vitro. Enzyme kinetics assay was performed using recombinant human CYP3A4 cell microsomes. The analytes, dihydroartimisinin and desbutyl-lumefantrine, were detected by ultra-performance liquid chromatography tandem mass spectrometry. The results demonstrated that compared to CYP3A4.1, the intrinsic clearance of CYP3A4.4, 5, 9, 16, 18, 23, 24, 28, 31-34 significantly reduced for artemether (58.5%-93.3%), and CYP3A4.17 almost loss catalytic activity. Simultaneously, CYP3A4.5, 14, 17, 24 for lumefantrine were decreased by 56.1%-99.6%, and CYP3A4.11, 15, 18, 19, 23, 28, 29, 31-34 for lumefantrine was increased by 51.7%-296%. The variation in clearance rate indicated by molecular docking could be attributed to the disparity in the binding affinity of artemether and lumefantrine with CYP3A4. The data presented here have enriched our understanding of the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolizing. These findings serve as a valuable reference and provide insights for guiding the treatment strategy involving artemether-lumefantrine.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qingqing Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, PR China
| | - Yunxuan Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Junwei Li
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lehao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Sen Li
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Gaozhi Chen
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Liu YN, Chen J, Wang J, Li Q, Hu GX, Cai JP, Lin G, Xu RA. Effects of drug-drug interactions and CYP3A4 variants on alectinib metabolism. Arch Toxicol 2023; 97:2133-2142. [PMID: 37209178 DOI: 10.1007/s00204-023-03524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
In this study, the effects of 17 CYP3A4 variants and drug-drug interactions (DDI) with its mechanism on alectinib metabolism were investigated. In vitro incubation systems of rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4 variants were established. The formers were used to screen potential drugs that inhibited alectinib metabolism and study the underlying mechanism, and the latter was used to determine the dynamic characteristics of CYP3A4 variants. Alectinib and its main metabolite M4 were quantitatively determined by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that compared with CYP3A4.1, only CYP3A4.29 showed higher catalytic activity, while the catalytic activity of CYP3A4.4, .7, .8, .12, .14, .16, .17, .18, .19, .20, .23, and .24 decreased significantly. Among them, the catalytic activity of CYP3A4.20 is the lowest, only 2.63% of that of CYP3A4.1. Based on the RLM incubation system in vitro, 81 drugs that may be combined with alectinib were screened, among which 18 drugs had an inhibition rate higher than 80%. In addition, nicardipine had an inhibition rate of 95.09% with a half-maximum inhibitory concentration (IC50) value of 3.54 ± 0.96 μM in RLM and 1.52 ± 0.038 μM in HLM, respectively. There was a mixture of non-competitive and anti-competitive inhibition of alectinib metabolism in both RLM and HLM. In vivo experiments of Sprague-Dawley (SD) rats, compared with the control group (30 mg/kg alectinib alone), the AUC(0-t), AUC(0-∞), Tmax and Cmax of alectinib administered in combination with 6 mg/kg nicardipine were significantly increased in the experimental group. In conclusion, the metabolism of alectinib was affected by polymorphisms of the CYP3A4 gene and nicardipine. This study provides reference data for clinical individualized administration of alectinib in the future.
Collapse
Affiliation(s)
- Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Asadov C, Karimova N, Hasanova A, Bayramov B, Shirinova A, Alimirzoyeva Z. Association of CYP3A5*3, CYP3A4*18 & CYP2B6*6 polymorphisms with imatinib treatment outcome in Azerbaijani chronic myeloid leukaemia patients. Indian J Med Res 2023; 158:151-160. [PMID: 37706370 PMCID: PMC10645035 DOI: 10.4103/ijmr.ijmr_1103_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 09/15/2023] Open
Abstract
Background & objectives Imatinib mesylate (IM) is a reliable first line treatment for chronic myeloid leukaemia (CML). Nevertheless, despite promising results, a considerable proportion of patients develop resistance to the drug. Cytochrome P450 (CYP) enzymes play a crucial role in IM metabolism. Thus, point mutations in CYP genes may modify IM enzyme activity resulting in insufficient treatment response. This investigation was aimed to identify the functional impact of CYP3A5*3, CYP3A4*18 and CYP2B6*6 polymorphisms on the IM response in patients with CML in Azerbaijan. Methods Genotyping of CYP3A5*3, CYP3A4*18 and CYP2B6*6 was performed in 153 patients (102 IM non-responders and 51 IM responders) with CML by the PCR-restriction fragment length polymorphism (RFLP) assays. The odds ratios (ORs) with 95 per cent confidence intervals (CIs) were applied to assess the association between allelic variants and IM therapy outcome. The results were validated by sequencing. Results The frequency of the CYP3A4*18 allele was considerably lower in the responder's group (97.1 vs. 100%; P=0.036). For CYP3A5*3, the allelic frequency was slightly higher among the IM responders (100 vs. 99.02%) with no significant difference. Although patients heterozygous (TC) for CYP2B6*6 demonstrated a higher risk of acquiring resistance (OR 1.04; 95% CI: 0.492-2.218), differences were not significant (P=0.909). In addition, the homozygous genotype (TT) demonstrated a lower risk of unresponsiveness (OR 0.72; 95% CI: 0.283-1.836), but associations were not significant (P=0.491). Interpretation & conclusions Our results demonstrated that CYP3A4*18 was significantly associated with IM treatment response in patients with CML in Azerbaijan, whereas rather common CYP3A5*3 was identified to have no such association.
Collapse
Affiliation(s)
- Chingiz Asadov
- Department of Haematopoesis Pathology, Institute of Haematology & Transfusiology, Baku, Azerbaijan
| | - Nigar Karimova
- Department of Biotechnology, Genetic Resources Institute of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Aypara Hasanova
- Department of Leukemogenesis Laboratory, Institute of Haematology & Transfusiology, Baku, Azerbaijan
| | - Bayram Bayramov
- Human Genetics Laboratory, Genetic Resources Institute of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Aytan Shirinova
- Department of Haematology, Institute of Haematology & Transfusiology, Baku, Azerbaijan
| | - Zohra Alimirzoyeva
- Department of Haematology, Institute of Haematology & Transfusiology, Baku, Azerbaijan
| |
Collapse
|
12
|
Paço L, Hackett JC, Atkins WM. Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. J Inorg Biochem 2023; 244:112211. [PMID: 37080138 PMCID: PMC10175226 DOI: 10.1016/j.jinorgbio.2023.112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-β1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.
Collapse
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America
| | - John C Hackett
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America.
| |
Collapse
|
13
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
14
|
Kong Q, Gao N, Wang Y, Hu G, Qian J, Chen B. Functional evaluation of cyclosporine metabolism by CYP3A4 variants and potential drug interactions. Front Pharmacol 2023; 13:1044817. [PMID: 36686709 PMCID: PMC9852833 DOI: 10.3389/fphar.2022.1044817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to investigate the effects of CYP3A4 genetic polymorphisms on the metabolism of cyclosporine (CsA) in vitro and identify drugs that interact with CsA. An enzymatic incubation system was developed to evaluate the kinetic parameters of CYP3A4 on CsA catalysis. A total of 132 drugs were screened to identify potential drug-drug interactions. Sprague-Dawley rats were used to determine the interaction between CsA and nimodipine and nisoldipine. The metabolite AM1 was measured by ultra-performance liquid chromatography-tandem mass spectrometry. The results demonstrate that 16 CYP3A4 variants (CYP3A4.7, 8, 9, 12, 13, 14, 16, 18, 19, 23, 24, 28, 31, 32, 33, and 34) have a lower metabolic capacity for CsA, ranging from 7.19% to 72.10%, than CYP3A4.1. In contrast, the relative clearance rate of CYP3A4.5 is significantly higher than that of CYP3A4.1. Moreover, CYP3A4.20 loses its catalytic ability, and five other variants have no significant difference. A total of 12 drugs, especially calcium channel blockers, were found to remarkably inhibit the metabolism of CsA with an inhibitory rate of over 80%. Nimodipine inhibits the activity of CsA in rat liver microsomes with an IC50 of 20.54 ± 0.93 μM, while nisoldipine has an IC50 of 16.16 ± 0.78 μM. In in vivo, three groups of Sprague-Dawley rats were administered CsA with or without nimodipine or nisoldipine; the AUC(0-t) and AUC(0-∞) of CsA were significantly increased in the nimodipine group but not obviously in the nisoldipine group. Mechanistically, the inhibition mode of nimodipine on cyclosporine metabolism is a mixed inhibition. Our data show that gene polymorphisms of CYP3A4 and nimodipine remarkably affect the metabolism of CsA, thus providing a reference for the precise administration of CsA.
Collapse
Affiliation(s)
| | | | | | - Guoxin Hu
- *Correspondence: Guoxin Hu, ; Jianchang Qian, ; Bingbing Chen,
| | - Jianchang Qian
- *Correspondence: Guoxin Hu, ; Jianchang Qian, ; Bingbing Chen,
| | - Bingbing Chen
- *Correspondence: Guoxin Hu, ; Jianchang Qian, ; Bingbing Chen,
| |
Collapse
|
15
|
Lin L, Wang Y, Shao S, Lin W, Huang D, Dai Y, Xia Y. Herb-drug interaction between Shaoyao-Gancao-Fuzi decoction and tofacitinib via CYP450 enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115437. [PMID: 35667582 DOI: 10.1016/j.jep.2022.115437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Shaoyao-Gancao-Fuzi decoction (SGFD), a well-known traditional Chinese medicine formula, was originally described in "Treatise on Febrile Diseases" and has been extensively used to dispel wind, eliminate dampness and treat paralysis. It is widely used for the treatment of rheumatoid arthritis in clinic. However, the effect of SGFD on the activity of cytochrome P450 enzymes (CYP450s) and the herb-drug interactions are rarely studied. OBJECTIVE The aim of this study was to investigate the effect of SGFD on the activity of CYP450s and evaluate the potential herb-drug interactions between SGFD and tofacitinib, commonly used disease-modifying antirheumatic drug in rheumatoid arthritis. MATERIALS AND METHODS The cocktail approach was employed to assess the effect of SGFD on the activity of CYP1A2, 3A4, 2A6, 2E1, and 2C9. The pharmacokinetic profile of oral administration of tofacitinib in rats after two weeks of treatment with SGFD was investigated. RT-qPCR and molecular docking were performed to unveil the underlying mechanism of the herb-drug interaction. RESULTS SGFD had no effect on the activities of CYP2E1 and 2C9, had a weak effect on CYP2A6, and had activatory effect on CYP1A2. However, it had a dramatically inhibitory effect on the activity of CYP3A4. Simultaneously, the values of Cmax and AUC0-∞ of tofacitinib were obviously increased after treatment with SGFD for 14 days. The mechanism study manifested that SGFD significantly reduced the gene transcription of CYP3A. Molecular docking work confirmed that the inhibitory activity of glycyrrhetinic acid, glycyrrhizic acid and liquiritin, the main ingredients of SGFD, occurred by occupying the active sites of CYP3A4 and by making favorable interactions with its key residues. CONCLUSIONS The system exposure of tofacitinib was increased by SGFD. SGFD could affect the activity and gene expression of the key metabolic enzyme CYP3A. These findings give a clear understanding to predict herb-drug interaction of SGFD for safe clinical use in future.
Collapse
Affiliation(s)
- Li Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yuan Wang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Sennan Shao
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Dan Huang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Hu X, Ni J, Gao N, Ye Z, Hu G, Cai J, Qian J. The effect of CYP3A4 genetic polymorphism and drug interaction on the metabolism of istradefylline. Chem Biol Interact 2022; 366:110123. [PMID: 36007633 DOI: 10.1016/j.cbi.2022.110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
AIM This study investigated into the effect of CYP3A4 genetic polymorphism on istradefylline metabolism. Moreover, the potential drug-drug interaction with istradefylline was determined as well as underlied mechanism. METHOD In vitro, enzymatic reaction was performed to determine the kinetic parameters of CYP3A4 and its variants on catalyzing istradefylline. Meanwhile, the rat liver microsomes incubation assay was applied to screen interacting drugs. In vivo, SD rats were used to investigate the selected drug interaction. UPLC-MS/MS was used to detect the metabolite M1. RESULT The results demonstrated that the relative clearance rate of CYP3A4.29 decrease significantly compared with CYP3A4.1. But there is no statistically diverse in activities among CYP3A4.1, 2 and 3. The relative clearance rates of the remaining variants are significantly decreased compared with CYP3A4.1. In addition, 148 drugs were screened to determine the potential interaction with istradefylline, among which calcium channel blockers were identified. It's indicated that nimodipine has a significant inhibitory effect on metabolizing istradefylline with IC50 of 6.927 ± 0.372 μM, which via competitive and non-competitive mixed mechanism. In vivo, when istradefylline and nimodipine was co-administered to SD rats, we found the main pharmacokinetic parameters of M1 reduced remarkably, including AUC, MRT, Cmax and CLz/F. CONCLUSION CYP3A4 genetic polymorphism and nimodipine affect the metabolism of istradefylline. Thus, the present study provided reference data for clinical individualized medicine of istradefylline.
Collapse
Affiliation(s)
- Xiaoqin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinhuan Ni
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nanyong Gao
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhize Ye
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianping Cai
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Padró J, De Panis DN, Luisi P, Dopazo H, Szajnman S, Hasson E, Soto IM. Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti. Sci Rep 2022; 12:13180. [PMID: 35915153 PMCID: PMC9343604 DOI: 10.1038/s41598-022-17118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.
Collapse
Affiliation(s)
- Julian Padró
- INIBIOMA-CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF, San Carlos de Bariloche, Argentina.
| | - Diego N De Panis
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Pierre Luisi
- Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba (FFyH-UNC), Córdoba, Argentina.,Microbial Paleogenomics Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Hernan Dopazo
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Sergio Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Esteban Hasson
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Ignacio M Soto
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
18
|
Kasarla SS, Garikapati V, Kumar Y, Dodoala S. Interplay of Vitamin D and CYP3A4 Polymorphisms in Endocrine Disorders and Cancer. Endocrinol Metab (Seoul) 2022; 37:392-407. [PMID: 35654576 PMCID: PMC9262690 DOI: 10.3803/enm.2021.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022] Open
Abstract
Vitamin D has received considerable optimistic attention as a potentially important factor in many pathological states over the past few decades. However, the proportion of the active form of vitamin D metabolites responsible for biological activity is highly questionable in disease states due to flexible alterations in the enzymes responsible for their metabolism. For instance, CYP3A4 plays a crucial role in the biotransformation of vitamin D and other drug substances. Food-drug and/or drug-drug interactions, the disease state, genetic polymorphism, age, sex, diet, and environmental factors all influence CYP3A4 activity. Genetic polymorphisms in CYP450-encoding genes have received considerable attention in the past few decades due to their extensive impact on the pharmacokinetic and dynamic properties of drugs and endogenous substances. In this review, we focused on CYP3A4 polymorphisms and their interplay with vitamin D metabolism and summarized the role of vitamin D in calcium homeostasis, bone diseases, diabetes, cancer, other diseases, and drug substances. We also reviewed clinical observations pertaining to CYP3A4 polymorphisms among the aforementioned disease conditions. In addition, we highlighted the future perspectives of studying the pharmacogenetics of CYP3A4, which may have potential clinical significance for developing novel diagnostic genetic markers that will ascertain disease risk and progression.
Collapse
Affiliation(s)
- Siva Swapna Kasarla
- Biomarker Discovery Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Yashwant Kumar
- Biomarker Discovery Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Sujatha Dodoala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, India
- Corresponding author: Sujatha Dodoala Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women’s Univeristy), Tirupati, Andhra Pradesh 517502, India Tel: +91-0877-2284531, Fax: +91-0877-2284531, E-mail:
| |
Collapse
|
19
|
Gao N, Zhang X, Hu X, Kong Q, Cai J, Hu G, Qian J. The Influence of CYP3A4 Genetic Polymorphism and Proton Pump Inhibitors on Osimertinib Metabolism. Front Pharmacol 2022; 13:794931. [PMID: 35359868 PMCID: PMC8960255 DOI: 10.3389/fphar.2022.794931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to 1) investigate the effects of 27 CYP3A4 variants on the metabolism of osimertinib and 2) study the interactions between osimertinib and others as well as the underlying mechanism. A recombinant human CYP3A4 enzymatic incubation system was developed and employed to determine the kinetic profile of CYP3A4 variants. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was applied to detect the concentration of the main metabolite, AZ5104. The results demonstrated that the relative clearance rates of CYP3A4.19, 10, 18, 5, 16, 14, 11, 2, 13, 12, 7, 8, and 17 in catalyzing osimertinib were significantly reduced to a minimum of 25.68% compared to CYP3A4.1, while those of CYP3A4.29, 32, 33, 28, 15, 34, and 3 were obviously enhanced, ranging from 114.14% to 284.52%. The activities of the remaining variants were almost equal to those of CYP3A4.1. In addition, 114 drugs were screened to determine the potential interaction with osimertinib based on the rat liver microsome (RLM) reaction system. Sixteen of them inhibited the production of AZ5104 to 20% or less, especially proton pump inhibitors, among which the IC50 of rabeprazole was 6.49 ± 1.17 μM in RLM and 20.39 ± 2.32 μM in human liver microsome (HLM), with both following competitive and non-competitive mixed mechanism. In an in vivo study, Sprague–Dawley (SD) rats were randomly divided into groups, with six animals per group, receiving osimertinib with or without rabeprazole, omeprazole, and lansoprazole. We found that the AUC(0–t), AUC(0–∞), and Cmax of osimertinib decreased significantly after co-administration with rabeprazole orally, but they increased remarkably when osimertinib was administered through intraperitoneal injection. Taken together, our data demonstrate that the genetic polymorphism and proton pump inhibitors remarkably influence the disposition of osimertinib, thereby providing basic data for the precise application of osimertinib.
Collapse
Affiliation(s)
- Nanyong Gao
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaodan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Seventh People’s Hospital of Wenzhou, Wenzhou, China
| | - Xiaoqin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qihui Kong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianping Cai
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| |
Collapse
|
20
|
Lopes JL, Harris K, Karow MB, Peterson SE, Kluge ML, Kotzer KE, Lopes GS, Larson NB, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Black JL, Moyer AM. Targeted Genotyping in Clinical Pharmacogenomics: What Is Missing? J Mol Diagn 2022; 24:253-261. [PMID: 35041929 PMCID: PMC8961466 DOI: 10.1016/j.jmoldx.2021.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacogenomic testing typically uses targeted genotyping, which only detects variants included in the test design and may vary among laboratories. To evaluate the potential patient impact of genotyping compared with sequencing, which can detect common and rare variants, an in silico targeted genotyping panel was developed based on the variants most commonly included in clinical tests and applied to a cohort of 10,030 participants who underwent sequencing for CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, DPYD, SLCO1B1, TPMT, UGT1A1, and VKORC1. The results of in silico targeted genotyping were compared with the clinically reported sequencing results. Of the 10,030 participants, 2780 (28%) had at least one potentially clinically relevant variant/allele identified by sequencing that would not have been detected in a standard targeted genotyping panel. The genes with the largest number of participants with variants only detected by sequencing were SLCO1B1, DPYD, and CYP2D6, which affected 13%, 6.3%, and 3.5% of participants, respectively. DPYD (112 variants) and CYP2D6 (103 variants) had the largest number of unique variants detected only by sequencing. Although targeted genotyping detects most clinically significant pharmacogenomic variants, sequencing-based approaches are necessary to detect rare variants that collectively affect many patients. However, efforts to establish pharmacogenomic variant classification systems and nomenclature to accommodate rare variants will be required to adopt sequencing-based pharmacogenomics.
Collapse
Affiliation(s)
- Jaime L. Lopes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kimberley Harris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mary Beth Karow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandra E. Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. Kluge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Katrina E. Kotzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Guilherme S. Lopes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - John L. Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ann M. Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota,Address correspondence to Ann M. Moyer, M.D., Ph.D., Mayo Clinic, 200 First St SW, Rochester, MN 55905.
| |
Collapse
|
21
|
Clinical pharmacokinetics of quinine and its relationship with treatment outcomes in children, pregnant women, and elderly patients, with uncomplicated and complicated malaria: a systematic review. Malar J 2022; 21:41. [PMID: 35144612 PMCID: PMC8832728 DOI: 10.1186/s12936-022-04065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Standard dosage regimens of quinine formulated for adult patients with uncomplicated and complicated malaria have been applied for clinical uses in children, pregnant women, and elderly. Since these populations have anatomical and physiological differences from adults, dosage regimens formulated for adults may not be appropriate. The study aimed to (i) review existing information on the pharmacokinetics of quinine in children, pregnant women, and elderly populations, (ii) identify factors that influence quinine pharmacokinetics, and (iii) analyse the relationship between the pharmacokinetics and treatment outcomes (therapeutic and safety) of various dosage regimens of quinine. Methods Web of Sciences, Cochrane Library, Scopus, and PubMed were the databases applied in this systematic search for relevant research articles published up to October 2020 using the predefined search terms. The retrieved articles were initially screened by titles and abstracts to exclude any irrelevant articles and were further evaluated based on full-texts, applying the predefined eligibility criteria. Excel spreadsheet (Microsoft, WA, USA) was used for data collection and management. Qualitative data are presented as numbers and percentages, and where appropriate, mean + SD or median (range) or range values. Results Twenty-eight articles fulfilled the eligibility criteria, 19 in children, 7 in pregnant women, and 2 in elderly (14 and 7 articles in complicated and uncomplicated malaria, respectively). Severity of infection, routes of administration, and nutritional status were shown to be the key factors impacting quinine pharmacokinetics in these vulnerable groups. Conclusions The recommended dosages for both uncomplicated and complicated malaria are, in general, adequate for elderly and children with uncomplicated malaria. Dose adjustment may be required in pregnant women with both uncomplicated and complicated malaria, and in children with complicated malaria. Pharmacokinetics studies relevant to clinical efficacy in these vulnerable groups of patients with large sample size and reassessment of MIC (minimum inhibitory concentration) should be considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04065-1.
Collapse
|
22
|
Powell NR, Shugg T, Ly RC, Albany C, Radovich M, Schneider BP, Skaar TC. Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report. Front Oncol 2022; 11:809527. [PMID: 35174070 PMCID: PMC8841796 DOI: 10.3389/fonc.2021.809527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tyler Shugg
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Reynold C. Ly
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Costantine Albany
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Milan Radovich
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan P. Schneider
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Todd C. Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Todd C. Skaar,
| |
Collapse
|
23
|
Guo D, Tan Z, Lou X, Shi S, Shu Y, Zhou H, Yu L, Yang H. A genetic-based population PK/PD modeling of methadone in Chinese opiate dependence patients. Eur J Clin Pharmacol 2022; 78:565-578. [PMID: 35013802 DOI: 10.1007/s00228-021-03227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The full potential of methadone maintenance treatment (MMT) is often limited by the large inter-individual variability in both pharmacokinetics (PK) and pharmacodynamics (PD), and by the risk of torsade de pointes, a severe adverse effect caused by QTc prolongation. The current study aims to quantitate the contribution of genetic polymorphisms and other variables in PK/PD variability, and their contribution to the QTc interval prolongation in Chinese MMT patients. METHODS Population PK models were developed to fit (R)- and (S)-methadone PK data. Hierarchical models were tested to characterize the PK profile, the concentration-QTc relationship, and concentration-urinalysis illicit drug testing relationship, with demographics and genetic variants being included as covariates. Simulation based on the developed PK/PD models was performed to assess the effect of methadone dose and genetic variants on QTc interval prolongation. RESULTS The PK data were best-fit by a one-compartment, first-order absorption model. Clearance of (R)- and (S)-methadone was both affected by the weighted activity score derived from genetic variants. A linear model was used to describe both the methadone concentration-urinalysis illicit drug testing relationship and the methadone concentration-QTc relationship. Concentration of (R)- and (S)-methadone exhibits a comparable effect on QTc prolongation. Simulation showed that the percentage of QTc higher than 450 ms was almost doubled in the lowest clearance group as compared the highest when methadone dose was greater than 120 mg. CONCLUSIONS The large variability in PK/PD profiles can be partially explained by the genetic variants in an extent different from other population, which confirmed the necessity to conduct such a study in the specific Chinese patients.
Collapse
Affiliation(s)
- Dong Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoya Lou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pharmacy, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Shan Shi
- Nanning Red Cross Hospital, Nanning, 530000, Guangxi, China
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Li Yu
- Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China.
| | - Hong Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA.
| |
Collapse
|
24
|
Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100049. [PMID: 35872804 PMCID: PMC9307216 DOI: 10.1002/anbr.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
Collapse
Affiliation(s)
- Alex J Wang
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Allysa Allen
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marianna Sofman
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pierre Sphabmixay
- Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Ece Yildiz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Linda G. Griffith
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Yoon JG, Song SH, Choi S, Oh J, Jang IJ, Kim YJ, Moon S, Kim BJ, Cho Y, Kim HK, Min S, Ha J, Shin HS, Yang CW, Yoon HE, Yang J, Lee MG, Park JB, Kim MS. Unraveling the Genomic Architecture of the CYP3A Locus and ADME Genes for Personalized Tacrolimus Dosing. Transplantation 2021; 105:2213-2225. [PMID: 33654003 DOI: 10.1097/tp.0000000000003660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tacrolimus (TAC) is an immunosuppressant widely prescribed following an allogenic organ transplant. Due to wide interindividual pharmacokinetic (PK) variability, optimizing TAC dosing based on genetic factors is required to minimize nephrotoxicity and acute rejections. METHODS We enrolled 1133 participants receiving TAC from 4 cohorts, consisting of 3 with kidney transplant recipients and 1 with healthy males from clinical trials. The effects of clinical factors were estimated to appropriately control confounding variables. A genome-wide association study, haplotype analysis, and a gene-based association test were conducted using the Korea Biobank Array or targeted sequencing for 114 pharmacogenes. RESULTS Genome-wide association study verified that CYP3A5*3 is the only common variant associated with TAC PK variability in Koreans. We detected several CYP3A5 and CYP3A4 rare variants that could potentially affect TAC metabolism. The haplotype structure of CYP3A5 stratified by CYP3A5*3 was a significant factor for CYP3A5 rare variant interpretation. CYP3A4 rare variant carriers among CYP3A5 intermediate metabolizers displayed higher TAC trough levels. Gene-based association tests in the 61 absorption, distribution, metabolism, and excretion genes revealed that CYP1A1 are associated with additional TAC PK variability: CYP1A1 rare variant carriers among CYP3A5 poor metabolizers showed lower TAC trough levels than the noncarrier controls. CONCLUSIONS Our study demonstrates that rare variant profiling of CYP3A5 and CYP3A4, combined with the haplotype structures of CYP3A locus, provide additive value for personalized TAC dosing. We also identified a novel association between CYP1A1 rare variants and TAC PK variability in the CYP3A5 nonexpressers that needs to be further investigated.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Seung Hwan Song
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Sanghoon Moon
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Yuri Cho
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Kee Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Sik Shin
- Division of Nephrology, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Hye Eun Yoon
- Divison of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jaeseok Yang
- Department of Surgery, Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Sukprasong R, Chuwongwattana S, Koomdee N, Jantararoungtong T, Prommas S, Jinda P, Rachanakul J, Nuntharadthanaphong N, Jongjitsook N, Puangpetch A, Sukasem C. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep 2021; 11:12343. [PMID: 34117307 PMCID: PMC8195986 DOI: 10.1038/s41598-021-90969-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP2C19*6, CYP2C19*17, and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2, CYP2C19*3, CYP2C19*6, and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P < 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P < 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.
Collapse
Affiliation(s)
- Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sumonrat Chuwongwattana
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Bang Phli District, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutcha Jongjitsook
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
27
|
Alkattan A, Alsalameen E. Polymorphisms of genes related to phase-I metabolic enzymes affecting the clinical efficacy and safety of clopidogrel treatment. Expert Opin Drug Metab Toxicol 2021; 17:685-695. [PMID: 33931001 DOI: 10.1080/17425255.2021.1925249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Clopidogrel is an antiplatelet medication described as a prodrug, which cannot exert the antiplatelet effect until being biotransformed to the active metabolite. It is commonly used to reduce the risk of blood coagulation in patients diagnosed with acute coronary syndrome, or ischemic stroke.Area covered: We reviewed published articles in PubMed and Google Scholar that focused on the mutations of CYP2C19, CYP3A4, CYP2C9, CYP2B6, and CYP1A2 genes related to clopidogrel clinical efficacy and safety.Expert opinion: Based on current pharmacogenetic studies, patients carrying CYP2C19*2, CYP2C19*3, CYP2C9*3, and CYP2B6*5 alleles may not respond to clopidogrel due to poor platelet inhibition efficacy revealed among them. In contrast, carriers of CYP2C19*17, CYP3A4*1G, and CYP1A2*1C alleles showed a more significant antiplatelet effect in clopidogrel users and expected to have a protective role as a genetic factor against cardiovascular events. Genotyping for either CYP2C19, CYP3A4, CYP2C9, CYP2B6, or CYP1A2 variants is not recommended when considering clopidogrel treatment for patients, as some trials showed specific non-genetic factors (e.g. age and diabetes) that could affect clopidogrel responsiveness. Instead, platelets inhibition tests could be used as predictors of the clinical efficacy of clopidogrel treatment. Other P2Y12 receptor inhibitors should be considered as alternative medications.
Collapse
Affiliation(s)
- Abdullah Alkattan
- Department of Research and Development, General Directorate of Medical Consultations, Assisting Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Eman Alsalameen
- Department of Pharmacy, King Khaled University Hospital, Medical City King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Liu Q, Ou-Yang QG, Lin QM, Lu XR, Ma YQ, Li YH, Xu RA, Lin DD, Hu GX, Cai JP. Effects of 27 CYP3A4 protein variants on saxagliptin metabolism in vitro. Fundam Clin Pharmacol 2021; 36:150-159. [PMID: 33961299 DOI: 10.1111/fcp.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
Saxagliptin is a dipeptidyl peptidase 4 (DPP-4) inhibitor widely used in patients with type 2 diabetes. It can increase the amount of insulin after meals and lower blood sugar. CYP450 3A4 (CYP3A4) can metabolize about 30%-40% of therapeutic drugs. Individual differences caused by CYP3A4 genetic polymorphisms can lead to treatment failure, unpredictable side effects, or severe drug toxicity. The aim of this study was to evaluate the catalytic activities of 27 CYP3A4 variants on saxagliptin metabolism in vitro, which were identified in human CYP alleles. We successfully constructed 27 kinds of wild-type and variant vectors of pFast-dual-OR-3A4 by overlap extension PCR and prepared 27 kinds of CYP3A4 highly expressed cell microsomes by baculovirus insect cell expression system. The ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used to detect the concentrations of the metabolite of saxagliptin (5-hydroxysaxagliptin) and the internal standard. Compared with the wild-type CYP3A4.1, the intrinsic clearance values of most varieties decreased to 1.91%-77.08%. Most of these varieties showed a decrease in Vmax and an increase in Km values compared with wild type. We are the first to report the vitro metabolic data of 27 CYP3A4 variants of the metabolism of saxagliptin which can deepen our understanding of individualized drug use by combining previous studies about the effects of CYP3A4 variants of drug metabolism. With further in vivo studies, we hope it can guide individualized drug use in the clinic when the variants with low metabolic activity to saxagliptin were sequenced in the human body.
Collapse
Affiliation(s)
- Qian Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiu-Geng Ou-Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian-Meng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Xiang-Ran Lu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Qing Ma
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Hui Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong-Dong Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Cai Y, Lin Q, Jin Z, Xia F, Ye Y, Xia Y, Papadimos TJ, Wang Q, Hu G, Cai J, Chen L. Evaluation of Recombinant CYP3A4 Variants on the Metabolism of Oxycodone In Vitro. Chem Res Toxicol 2021; 34:103-109. [PMID: 33393779 DOI: 10.1021/acs.chemrestox.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 is a highly polymorphic enzyme and metabolizes approximately 40%-60% of therapeutic drugs. Its genetic polymorphism may significantly affect the expression and function of CYP3A4 resulting in alterations of the pharmacokinetics and pharmacodynamics of the CYP3A4-mediated drugs. The purpose of this study was to evaluate the catalytic activities of 30 CYP3A4 nonsynonymous variants and wild type toward oxycodone in vitro. CYP3A4 proteins were incubated with oxycodone for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Ultraperformance liquid chromatography tandem mass-spectrometry was used to analyze noroxycodone, and kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of noroxycodone were also determined. Compared with CYP3A4.1, 24 CYP3A4 variants (CYP3A4.2-.5, -.7-.16, -.18 and -.19, -.23 and -.24, -.28 and -.29, and -.31-.34) exhibited significantly decreased relative clearance values (from 4.82% ± 0.31% to 80.98% ± 5.08%), whereas CYP3A4.6, -.17, -.20, -.21, -.26, and -.30 displayed no detectable enzyme activity. As the first study of these alleles for oxycodone metabolism in vitro, results of this study may provide insight into establishing the genotype-phenotype relationship for oxycodone and serve as a reference for clinical administrators and advance the provision of personalized precision medicine.
Collapse
Affiliation(s)
- Yaoyao Cai
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianmeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Zhousheng Jin
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangfang Xia
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yingchao Ye
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xia
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Thomas J Papadimos
- Critical Care Section and Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Quanguang Wang
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guoxin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Limei Chen
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
30
|
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Ueda A, Saito S, Saigusa D, Tadaka S, Kinoshita K, Nakayoshi T, Oda A, Abe A, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1'-Hydroxylation and Testosterone 6 β-Hydroxylation. Drug Metab Dispos 2020; 49:212-220. [PMID: 33384383 DOI: 10.1124/dmd.120.000261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K m , k cat , and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT: CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akiko Ueda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Sakae Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Daisuke Saigusa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Shu Tadaka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Kengo Kinoshita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Tomoki Nakayoshi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akifumi Oda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Ai Abe
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masamitsu Maekawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Nariyasu Mano
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| |
Collapse
|
31
|
Wang Y, Ou-Yang QG, Huang WL, Huang HL, Zhuang XL, Lin QM, Zeng DL. Investigation of the Inhibitory Effect of Simvastatin on the Metabolism of Lidocaine Both in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1739-1747. [PMID: 32440099 PMCID: PMC7212776 DOI: 10.2147/dddt.s241022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Background Lidocaine has cardiovascular and neurologic toxicity, which is dose-dependent. Due to CYP3A4-involved metabolism, lidocaine may be prone to drug-drug interactions. Materials and Methods Given statins have the possibility of combination with lidocaine in the clinic, we established in vitro models to assess the effect of statins on the metabolism of lidocaine. Further pharmacokinetic alterations of lidocaine and its main metabolite, monoethylglycinexylidide in rats influenced by simvastatin, were investigated. Results In vitro study revealed that simvastatin, among the statins, had the most significant inhibitory effect on lidocaine metabolism with IC50 of 39.31 µM, 50 µM and 15.77 µM for RLM, HLM and CYP3A4.1, respectively. Consistent with in vitro results, lidocaine concomitantly used with simvastatin in rats was associated with 1.2-fold AUC(0-t), 1.2-fold AUC(0-∞), and 20%-decreased clearance for lidocaine, and 1.4-fold Cmax for MEGX compared with lidocaine alone. Conclusion Collectively, these results implied that simvastatin could evidently inhibit the metabolism of lidocaine both in vivo and in vitro. Accordingly, more attention and necessary therapeutic drug monitoring should be paid to patients with the concomitant coadministration of lidocaine and simvastatin so as to avoid unexpected toxicity.
Collapse
Affiliation(s)
- Ying Wang
- Pharmacy Department, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Qiu-Geng Ou-Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, People's Republic of China
| | - Wan-Li Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province,People's Republic of China
| | - Huan-le Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, People's Republic of China.,Department of Pharmacy, Ruian Hospital of Traditional Chinese Medicine, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Xin-Lei Zhuang
- Pharmacy Department, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Qian-Meng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, People's Republic of China
| | - Da-Li Zeng
- Department of Pharmacy, Ruian Hospital of Traditional Chinese Medicine, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
32
|
Saeheng T, Na-Bangchang K, Siccardi M, Rajoli RKR, Karbwang J. Physiologically-Based Pharmacokinetic Modeling for Optimal Dosage Prediction of Quinine Coadministered With Ritonavir-Boosted Lopinavir. Clin Pharmacol Ther 2020; 107:1209-1220. [PMID: 31721171 DOI: 10.1002/cpt.1721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/03/2019] [Indexed: 12/25/2022]
Abstract
The coformulated lopinavir/ritonavir significantly reduces quinine concentration in healthy volunteers due to potential drug-drug interactions (DDIs). However, DDI information in malaria and HIV coinfected patients are lacking. The objective of the study was to apply physiologically-based pharmacokinetic (PBPK) modeling to predict optimal dosage regimens of quinine when coadministered with lopinavir/ritonavir in malaria and HIV coinfected patients with different conditions. The developed model was validated against literature. Model verification was evaluated using the accepted method. The verified PBPK models successfully predicted unbound quinine disposition when coadministered with lopinavir/ritonavir in coinfected patients with different conditions. Suitable dose adjustments to counteract with the DDIs have identified in patients with various situations (i.e., a 7-day course at 1,800 mg t.i.d. in patients with malaria with HIV infection, 648 mg b.i.d. in chronic renal failure, 648 mg t.i.d. in hepatic insufficiency except for severe hepatic insufficiency (324 mg b.i.d.), and 648 mg t.i.d. in CYP3A4 polymorphism).
Collapse
Affiliation(s)
- Teerachat Saeheng
- Leading Program, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thammasat University, Pathumthani, Thailand.,Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Klongluang, Thailand
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Rajith K R Rajoli
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
33
|
Lin QM, Li YH, Liu Q, Pang NH, Xu RA, Cai JP, Hu GX. Functional characteristics of CYP3A4 allelic variants on the metabolism of loperamide in vitro. Infect Drug Resist 2019; 12:2809-2817. [PMID: 31571937 PMCID: PMC6750855 DOI: 10.2147/idr.s215129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 11/23/2022] Open
Abstract
Background Cytochrome P450 3A4 (CYP3A4) appears to be genetically polymorphic, which in turn contributes to interindividual variability in response to therapeutic drugs. Loperamide, identified as a CYP3A4 substrate, is prone to misuse and abuse and has high risks of life-threatening cardiotoxicity. Methods Thus, this study is designed to evaluate the enzymatic characteristics of 29 CYP3A4 alleles toward loperamide in vitro, including the 7 novel CYP3A4 variants (*28-*34). The incubation system (containing CYP3A4 enzyme, cytochrome b5, 0.5-20 μM loperamide, potassium phosphate buffer and nicotinamide adenine dinucleotide phosphate) was subject to 40-mins incubation at 37°C and the concentrations of N-demethylated loperamide were quantified by UPLC-MS/MS. Results As a result, CYP3A4.6, .17, .20 and .30 showed extremely low activity or no activity and the rest of CYP3A4 variants presented varying degrees of decrements in catalytical activities when compared with CYP3A4.1. Conclusion As the first study to identify the properties of these CYP3A4 variants toward loperamide metabolism, our investigation may establish the genotype-phenotype relationship for loperamide, predict an individual's capability in response to loperamide, and provide some guidance of clinical medication and treatment for loperamide.
Collapse
Affiliation(s)
- Qian-Meng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ying-Hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ni-Hong Pang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, People's Republic of China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| |
Collapse
|
34
|
Lin QM, Li YH, Lu XR, Wang R, Pang NH, Xu RA, Cai JP, Hu GX. Characterization of Genetic Variation in CYP3A4 on the Metabolism of Cabozantinib in Vitro. Chem Res Toxicol 2019; 32:1583-1590. [PMID: 31293154 DOI: 10.1021/acs.chemrestox.9b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cabozantinib is a multityrosine kinase inhibitor and has a wide range of applications in the clinic, whose metabolism is predominately dependent on CYP3A4. This study was performed to characterize the enzymatic properties of 29 CYP3A4 alleles toward cabozantinib and the functional changes of five selected alleles (the wild-type, CYP3A4.2.8.14 and .15) toward cabozantinib in the presence of ketoconazole. Cabozantinib, 1-100 μM, with/without the presence of ketoconazole and CYP3A4 enzymes in the incubation system went through 30 min incubation at 37 °C, and the concentrations of cabozantinib N-oxide were quantified by UPLC-MS/MS to calculate the corresponding kinetic parameters of each variant. Collectively, without the presence of ketoconazole, most variants displayed defective enzymatic activities in different degrees, and only CYP3A4.14 and .15 showed significantly augmented enzymatic activities. With the presence of ketoconazole, five tested CYP3A4 alleles, even CYP3A4.14 and .15, exhibited obvious reductions in intrinsic clearance. Besides, we compared cabozantinib with regorafenib in relative clearance to confirm that CYP3A4 has the property of substrate specificity. As the first study of CYP3A4 genetic polymorphisms toward cabozantinib, our observations can provide prediction of an individual's capability in response to cabozantinib and guidance for medication and treatment of cabozantinib.
Collapse
Affiliation(s)
- Qian-Meng Lin
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ying-Hui Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Xiang-Ran Lu
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ru Wang
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ni-Hong Pang
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University , 325035 Wenzhou , PR China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital , National Center of Gerontology , 100000 Beijing , PR China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences , Wenzhou Medical University , 325035 Wenzhou , PR China
| |
Collapse
|