1
|
Booi HN, Pang LY, Lee MK, Fung SY, Ng CL, Ng ST, Tan CS, Kong C, Lim KH, Roberts R, Ting KN. Evidence to support cultivated fruiting body of Ophiocordyceps sinensis (Ascomycota)'s role in relaxing airway smooth muscle. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118727. [PMID: 39182700 DOI: 10.1016/j.jep.2024.118727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health. AIM OF THE STUDY This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans. MATERIALS AND METHODS A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay. RESULTS Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%. CONCLUSIONS These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.
Collapse
Affiliation(s)
- Han-Ni Booi
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Li-Yin Pang
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mei-Kee Lee
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chyan-Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Szu-Ting Ng
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Cin Kong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Richard Roberts
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia.
| |
Collapse
|
2
|
Fitzpatrick AM, Mohammad AF, Desher K, Mutic AD, Stephenson ST, Dallalio GA, Grunwell JR. Clinical and inflammatory features of traffic-related diesel exposure in children with asthma. Ann Allergy Asthma Immunol 2024; 133:393-402.e4. [PMID: 39074656 PMCID: PMC11410514 DOI: 10.1016/j.anai.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Epidemiologic studies have revealed associations between traffic-related pollutants such as diesel particulate matter (PM) and asthma outcomes in children, but the inflammatory features associated with diesel PM exposure in children with asthma are not understood. OBJECTIVE To evaluate symptoms, exacerbations, and lung function measures in children with uncontrolled asthma and their associations with residential proximity to major roadways and to determine associations between diesel PM exposure and systemic inflammatory cytokines, circulating markers of T-cell activation and exhaustion, and metabolomic features using biomarker studies. METHODS Children 5 to 17 years of age with physician-diagnosed, uncontrolled asthma despite treatment with an asthma controller medication completed a research visit involving questionnaires, lung function testing, and venipuncture for biomarker studies. Geocoding was performed to quantify residential proximity to major roadways and pollutant exposure. RESULTS A total of 447 children with uncontrolled asthma were enrolled. Children living closer to highly trafficked roadways were more disadvantaged and had more exposure to diesel PM, more exacerbations prompting an emergency department visit, and lower lung function measures. Children with the highest diesel PM exposure, compared with children with the lowest diesel PM exposure, also had blunted cytokine secretion and evidence of T-cell exhaustion, including disturbances in several metabolites associated with glutathione formation and oxidative stress. CONCLUSION Traffic-related diesel PM exposure in children with poorly controlled asthma is associated with poorer clinical outcomes and unique patterns of inflammation and oxidative stress. These findings argue for continued mitigation efforts to improve traffic-related air quality and health equity in children with asthma.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia; Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia.
| | | | - Kaley Desher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Abby D Mutic
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
| | | | - Gail A Dallalio
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Georgia; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
3
|
Li J, Zhang Z, Zhu C, Zheng X, Wang C, Jiang J, Zhang H. Salidroside enhances NO bioavailability and modulates arginine metabolism to alleviate pulmonary arterial hypertension. Eur J Med Res 2024; 29:423. [PMID: 39152472 PMCID: PMC11330049 DOI: 10.1186/s40001-024-02016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Salidroside (SAL), derived from Rhodiola, shows protective effects in pulmonary arterial hypertension (PAH) models, but its mechanisms are not fully elucidated. OBJECTIVES Investigate the therapeutic effects and the mechanism of SAL on PAH. METHODS Monocrotaline was used to establish a PAH rat model. SAL's impact on oxidative stress and inflammatory responses in lung tissues was analyzed using immunohistochemistry, ELISA, and Western blot. Untargeted metabolomics explored SAL's metabolic regulatory mechanisms. RESULTS SAL significantly reduced mean pulmonary artery pressure, right ventricular hypertrophy, collagen deposition, and fibrosis in the PAH rats. It enhanced antioxidant enzyme levels, reduced inflammatory cytokines, and improved NO bioavailability by upregulating endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) and decreases the expression of endothelin-1 (ET-1). Metabolomics indicated SAL restored metabolic balance in PAH rats, particularly in arginine metabolism. CONCLUSIONS SAL alleviates PAH by modulating arginine metabolism, enhancing NO synthesis, and improving pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Zengyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Jianwei Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| |
Collapse
|
4
|
Eisha S, Morris AJ, Martin I, Yau YCW, Grasemann H, Waters V. Effect of L-arginine on cystic fibrosis Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2024; 68:e0033624. [PMID: 39023260 PMCID: PMC11304719 DOI: 10.1128/aac.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Cystic fibrosis (CF) airways are L-arginine deficient which may affect susceptibility to infection with certain pathogens. The potential impact of L-arginine supplementation on Pseudomonas aeruginosa, a common CF airway pathogen, is unclear. This study investigated the effects of L-arginine on P. aeruginosa biofilm cultures, using the laboratory strain PAO1 and multi-drug resistant CF clinical isolates. P. aeruginosa biofilms were grown in a chambered cover-glass slide model for 24 h, then exposed to either L-arginine alone or combined with tobramycin for an additional 24 h. Biofilms were visualized using confocal microscopy, and viable cells were measured via plating for colony-forming units. Increasing concentrations of L-arginine in bacterial culture medium reduced the biovolume of P. aeruginosa in a dose-dependent manner. Notably, L-arginine concentrations within the physiological range (50 mM and 100 mM) in combination with tobramycin promoted biofilm growth, while higher concentrations (600 mM and 1200 mM) inhibited growth. These findings demonstrate the potential of L-arginine as an adjuvant therapy to inhaled tobramycin in treating P. aeruginosa infections in people with CF.
Collapse
Affiliation(s)
- Shafinaz Eisha
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda J. Morris
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isaac Martin
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yvonne C. W. Yau
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Microbiology, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hartmut Grasemann
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Valerie Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Tiwari P, Verma S, Washimkar KR, Nilakanth Mugale M. Immune cells crosstalk Pathways, and metabolic alterations in Idiopathic pulmonary fibrosis. Int Immunopharmacol 2024; 135:112269. [PMID: 38781610 DOI: 10.1016/j.intimp.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) presents a challenging progression characterized by lung tissue scarring and abnormal extracellular matrix deposition. This review examines the influence of immune responses, emphasizing their complex role in initiating and perpetuating fibrosis. It highlights how metabolic pathways modulate immune cell function during IPF. Immune cell modulation holds promise in managing pulmonary fibrosis (PF). Inhibiting neutrophil recruitment and monitoring mast cell levels offer insights into PF progression. Low-dose IL-2 therapy and regulation of fibroblast recruitment present potential therapeutic avenues, while the role of innate lymphoid cells (ILC2s) in allergic lung inflammation sheds light on disease mechanisms. The review focuses on metabolic reprogramming's role in shaping immune cell function during IPF progression. While some immune cells use glycolysis for pro-inflammatory responses, others favor fatty acid oxidation for regulatory functions. Targeting specialized pro-resolving lipid mediators (SPMs) presents significant potential for managing fibrotic disorders. Additionally, it highlights the pivotal role of amino acid metabolism in synthesizing serine and glycine as crucial regulators of collagen production and exploring the interconnectedness of lipid metabolism, mitochondrial dysfunction, and adipokines in driving fibrotic processes. Moreover, the review discusses the impact of metabolic disorders such as obesity and diabetes on lung fibrosis. Advocating for a holistic approach, it emphasizes the importance of considering this interplay between immune cell function and metabolic pathways in developing effective and personalized treatments for IPF.
Collapse
Affiliation(s)
- Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Eicher T, Kelly RS, Braisted J, Siddiqui JK, Celedón J, Clish C, Gerszten R, Weiss ST, McGeachie M, Machiraju R, Lasky-Su J, Mathé EA. Consistent Multi-Omic Relationships Uncover Molecular Basis of Pediatric Asthma IgE Regulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308502. [PMID: 38883716 PMCID: PMC11178010 DOI: 10.1101/2024.06.05.24308502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Serum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation to allergic sensitization. High levels are associated with airway obstruction and poor clinical outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates discovery of molecular mechanisms underlying serum IgE level differences in children with asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were measured among children with asthma in the Childhood Asthma Management Program (CAMP, N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each cohort using multivariate linear models and were interpreted in a biochemical context using network topology, pathway and chemical enrichment, and representation within reactions. A total of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with the most genes in both cohorts, and the associations represented reactions central to glycine, serine, and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment analysis further highlighted additional related pathways of interest. The results of this study suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma exacerbation. Other potentially new targetable pathways are also uncovered.
Collapse
Affiliation(s)
- Tara Eicher
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
| | - Jalal K. Siddiqui
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Juan Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | | | - Robert Gerszten
- Harvard Medical School, Boston, MA USA
- Broad Institute, Cambridge, MA USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Raghu Machiraju
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Ewy A. Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
| |
Collapse
|
7
|
Alhakamy NA, Alamoudi AJ, Asfour HZ, Ahmed OAA, Abdel-Naim AB, Aboubakr EM. L-arginine mitigates bleomycin-induced pulmonary fibrosis in rats through regulation of HO-1/PPAR-γ/β-catenin axis. Int Immunopharmacol 2024; 131:111834. [PMID: 38493696 DOI: 10.1016/j.intimp.2024.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-β and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and β-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of β-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/β-catenin axis.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
8
|
Gan PXL, Liao W, Lim HF, Wong WSF. Dexamethasone protects against Aspergillus fumigatus-induced severe asthma via modulating pulmonary immunometabolism. Pharmacol Res 2023; 196:106929. [PMID: 37717682 DOI: 10.1016/j.phrs.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Severe asthma is a difficult-to-treat chronic airway inflammatory disease requiring systemic corticosteroids to achieve asthma control. It has recently been shown that drugs targeting immunometabolism have elicited anti-inflammatory effects. The purpose of this study was to investigate potential immunometabolic modulatory actions of systemic dexamethasone (Dex) in an Aspergillus fumigatus (Af)-induced severe asthma model. Mice were repeatedly exposed to the Af aeroallergen before systemic treatment with Dex. Simultaneous measurements of airway inflammation, real-time glycolytic and oxidative phosphorylation (OXPHOS) activities, expression levels of key metabolic enzymes, and amounts of metabolites were studied in lung tissues, and in primary alveolar macrophages (AMs) and eosinophils. Dex markedly reduced Af-induced eosinophilic airway inflammation, which was coupled with an overall reduction in lung glycolysis, glutaminolysis, and fatty acid synthesis. The anti-inflammatory effects of Dex may stem from its immunometabolic actions by downregulating key metabolic enzymes including pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase. Substantial suppression of eosinophilic airway inflammation by Dex coincided with a specific escalation of mitochondrial proton leak in primary lung eosinophils. Besides, while our findings confirmed that inflammation corresponds with an upregulation of glycolysis, it was accompanied with an unexpectedly stable or elevated OXPHOS in the lungs and activated immune cells, respectively. Our findings reveal that the anti-inflammatory effects of Dex in severe asthma are associated with downregulation of pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase, and the augmentation of mitochondrial proton leak in lung eosinophils. These enzymes and biological processes may be valuable targets for therapeutic interventions against severe asthma.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Hui Fang Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery & Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
9
|
Hudler AC, Díaz IRR, Sharma S, Holguin F. Gaps and Future Directions in Clinical Research on Obesity-Related Asthma. Pulm Ther 2023; 9:309-327. [PMID: 37330948 PMCID: PMC10447703 DOI: 10.1007/s41030-023-00230-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
Obesity is a major comorbidity for the development and worsening of asthma. It is associated with increased disease incidence, reduced response to inhaled and systemic steroids, increased asthma exacerbations, and poor disease control. Over the past two decades, we have learned that there are clinical asthma phenotypes associated with obesity, which have unique immune, inflammatory, and metabolic disease mechanisms. The objectives of this review are to provide a brief overview of the associations and gaps between these chronic inflammatory diseases and the role that traditional therapies have on treating patients with obesity-related asthma, and to describe new clinical research of therapeutic developments targeting mechanisms that are more specific to this patient population.
Collapse
Affiliation(s)
- Andi C Hudler
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora Colorado, USA
| | | | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora Colorado, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora Colorado, USA.
| |
Collapse
|
10
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
11
|
Ma C, Liao K, Wang J, Li T, Liu L. L-Arginine, as an essential amino acid, is a potential substitute for treating COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. Cell Biosci 2023; 13:152. [PMID: 37596640 PMCID: PMC10436497 DOI: 10.1186/s13578-023-00994-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/20/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a frequent and common disease in clinical respiratory medicine and its mechanism is unclear. The purpose of this study was to find the new biomarkers of COPD and elucidate its role in the pathogenesis of COPD. Analysis of metabolites in plasma of COPD patients were performed by ultra-high performance liquid chromatography (UPLC) and quadrupole time-of-flight mass spectrometry (TOF-MS). The differential metabolites were analyzed and identified by multivariate analysis between COPD patients and healthy people. The role and mechanisms of the differential biomarkers in COPD were verified with COPD rats, arginosuccinate synthetase 1 (ASS-l) KO mice and bronchial epithelial cells (BECs). Meanwhile, whether the differential biomarkers can be the potential treatment targets for COPD was also investigated. 85 differentials metabolites were identified between COPD patients and healthy people by metabonomic. RESULTS L-Arginine (LA) was the most obvious differential metabolite among the 85 metabolites. Compare with healthy people, the level of LA was markedly decreased in serum of COPD patients. It was found that LA had protective effects on COPD with in vivo and in vitro experiments. Silencing Ass-1, which regulates LA metabolism, and α-methy-DL-aspartic (NHLA), an Ass-1 inhibitor, canceled the protective effect of LA on COPD. The mechanism of LA in COPD was related to the inhibition of ROS/NLRP3/NF-κB signaling pathway. It was also found that exogenous LA significantly improved COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. L-Arginine (LA) as a key metabolic marker is identified in COPD patients and has a protective effect on COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. CONCLUSION LA may be a novel target for the treatment of COPD and also a potential substitute for treating COPD.
Collapse
Affiliation(s)
- Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Tranfusion Research, Department of Army Medical Center, Army Medical University, Chongqing, 400042, People's Republic of China
- The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Kexi Liao
- Institute of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Shapingba District, Gaotanyan Road 30, Chongqing, 400038, China
| | - Jing Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Biotechnology, Suzhou University, Anhui, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Tranfusion Research, Department of Army Medical Center, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Tranfusion Research, Department of Army Medical Center, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
12
|
Ming S, Qu S, Wu Y, Wei J, Zhang G, Jiang G, Huang X. COVID-19 Metabolomic-Guided Amino Acid Therapy Protects from Inflammation and Disease Sequelae. Adv Biol (Weinh) 2023; 7:e2200265. [PMID: 36775870 DOI: 10.1002/adbi.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Indexed: 02/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has caused a worldwide pandemic since 2019. A metabolic disorder is a contributing factor to deaths from COVID-19. However, the underlying mechanism of metabolic dysfunction in COVID-19 patients and the potential interventions are not elucidated. Here targeted plasma metabolomic is performed, and the metabolite profiles among healthy controls, and asymptomatic, moderate, and severe COVID-19 patients are compared. Among the altered metabolites, arachidonic acid and linolenic acid pathway metabolites are profoundly up-regulated in COVID-19 patients. Arginine biosynthesis, alanine, aspartate, and glutamate metabolism pathways are significantly disturbed in asymptomatic patients. In the comparison of metabolite variances among the groups, higher levels of l-citrulline and l-glutamine are found in asymptomatic carriers and moderate or severe patients at the remission stage. Furthermore, l-citrulline and l-glutamine combination therapy is demonstrated to effectively protect mice from coronavirus infection and endotoxin-induced sepsis, and is observed to efficiently prevent the occurrence of pulmonary fibrosis and central nervous system damage. Collectively, the data reveal the metabolite profile of asymptomatic COVID-19 patients and propose a potential strategy for COVID-19 treatment.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Guanmin Jiang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| |
Collapse
|
13
|
Calvani R, Picca A, Coelho-Júnior HJ, Tosato M, Marzetti E, Landi F. "Diet for the prevention and management of sarcopenia". Metabolism 2023:155637. [PMID: 37352971 DOI: 10.1016/j.metabol.2023.155637] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Sarcopenia is a geriatric condition characterized by a progressive loss of skeletal muscle mass and strength, with an increased risk of adverse health outcomes (e.g., falls, disability, institutionalization, reduced quality of life, mortality). Pharmacological remedies are currently unavailable for preventing the development of sarcopenia, halting its progression, or impeding its negative health outcomes. The most effective strategies to contrast sarcopenia rely on the adoption of healthier lifestyle behaviors, including adherence to high-quality diets and regular physical activity. In this review, the role of nutrition in the prevention and management of sarcopenia is summarized. Special attention is given to current "blockbuster" dietary regimes and agents used to counteract age-related muscle wasting, together with their putative mechanisms of action. Issues related to the design and implementation of effective nutritional strategies are discussed, with a focus on unanswered questions on the most appropriate timing of nutritional interventions to preserve muscle health and function into old age. A brief description is also provided on new technologies that can facilitate the development and implementation of personalized nutrition plans to contrast sarcopenia.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| |
Collapse
|
14
|
Althoff MD, Peterson R, McGrath M, Jin Y, Grasemann H, Sharma S, Federman A, Wisnivesky JP, Holguin F. Phenotypic characteristics of asthma and morbidity are associated with distinct longitudinal changes in L-arginine metabolism. BMJ Open Respir Res 2023; 10:e001683. [PMID: 37270184 PMCID: PMC10254613 DOI: 10.1136/bmjresp-2023-001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The L-arginine metabolome is dysregulated in asthma, though it is not understood how longitudinal changes in L-arginine metabolism differ among asthma phenotypes and relate to disease outcomes. OBJECTIVES To determine the longitudinal associations between phenotypic characteristics with L-arginine metabolites and their relationships with asthma morbidity. METHODS This is a prospective cohort study of 321 patients with asthma followed semiannually for over 18 months with assessments of plasma L-arginine metabolites, asthma control, spirometry, quality of life and exacerbations. Metabolite concentrations and ratios were transformed using the natural logarithm. RESULTS There were many differences in L-arginine metabolism among asthma phenotypes in the adjusted models. Increasing body mass index was associated with increased asymmetric dimethylarginine (ADMA) and depleted L-citrulline. Latinx was associated with increased metabolism via arginase, with higher L-ornithine, proline and L-ornithine/L-citrulline levels, and was found to have higher L-arginine availability compared with white race. With respect to asthma outcomes, increasing L-citrulline was associated with improved asthma control and increasing L-arginine and L-arginine/ADMA were associated with improved quality of life. Increased variability in L-arginine, L-arginine/ADMA, L-arginine/L-ornithine and L-arginine availability index over 12 months were associated with increased exacerbations, OR 4.70 (95% CI 1.35 to 16.37), OR 8.69 (95% CI 1.98 to 38.08), OR 4.17 (95% CI 1.40 to 12.41) and OR 4.95 (95% CI 1.42 to 17.16), respectively. CONCLUSIONS Our findings suggest that L-arginine metabolism is associated with multiple measures of asthma control and may explain, in part, the relationship between age, race/ethnicity and obesity with asthma outcomes.
Collapse
Affiliation(s)
- Meghan Dolan Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Peterson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Max McGrath
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ying Jin
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Hartmut Grasemann
- Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Pablo Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
16
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
17
|
Hamidou Soumana I, Ryu MH, Leitao Filho FS, Yang J, Orach J, Nislow C, Leung JM, Rider CF, Carlsten C. Exposure to diesel exhaust alters the functional metagenomic composition of the airway microbiome in former smokers. ENVIRONMENTAL RESEARCH 2023; 216:114826. [PMID: 36403657 DOI: 10.1016/j.envres.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 μg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Yu Y, Zhao W, Yuan X, Li R. Progress and prospects of nanozymes for enhanced antitumor therapy. Front Chem 2022; 10:1090795. [PMID: 36531332 PMCID: PMC9755492 DOI: 10.3389/fchem.2022.1090795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 09/06/2023] Open
Abstract
Nanozymes are nanomaterials with mimicked enzymatic activity, whose catalytic activity can be designed by changing their physical parameters and chemical composition. With the development of biomedical and material science, artificially created nanozymes have high biocompatibility and can catalyze specific biochemical reactions under biological conditions, thus playing a vital role in regulating physiological activities. Under pathological conditions, natural enzymes are limited in their catalytic capacity by the varying reaction conditions. In contrast, compared to natural enzymes, nanozymes have advantages such as high stability, simplicity of modification, targeting ability, and versatility. As a result, the novel role of nanozymes in medicine, especially in tumor therapy, is gaining increasing attention. In this review, function and application of various nanozymes in the treatment of cancer are summarized. Future exploration paths of nanozymes in cancer therapies based on new insights arising from recent research are outlined.
Collapse
Affiliation(s)
| | | | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Tosato M, Calvani R, Picca A, Ciciarello F, Galluzzo V, Coelho-Júnior HJ, Di Giorgio A, Di Mario C, Gervasoni J, Gremese E, Leone PM, Nesci A, Paglionico AM, Santoliquido A, Santoro L, Santucci L, Tolusso B, Urbani A, Marini F, Marzetti E, Landi F. Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022; 14:4984. [PMID: 36501014 PMCID: PMC9738241 DOI: 10.3390/nu14234984] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Long COVID, a condition characterized by symptom and/or sign persistence following an acute COVID-19 episode, is associated with reduced physical performance and endothelial dysfunction. Supplementation of l-arginine may improve endothelial and muscle function by stimulating nitric oxide synthesis. A single-blind randomized, placebo-controlled trial was conducted in adults aged between 20 and 60 years with persistent fatigue attending a post-acute COVID-19 outpatient clinic. Participants were randomized 1:1 to receive twice-daily orally either a combination of 1.66 g l-arginine plus 500 mg liposomal vitamin C or a placebo for 28 days. The primary outcome was the distance walked on the 6 min walk test. Secondary outcomes were handgrip strength, flow-mediated dilation, and fatigue persistence. Fifty participants were randomized to receive either l-arginine plus vitamin C or a placebo. Forty-six participants (median (interquartile range) age 51 (14), 30 [65%] women), 23 per group, received the intervention to which they were allocated and completed the study. At 28 days, l-arginine plus vitamin C increased the 6 min walk distance (+30 (40.5) m; placebo: +0 (75) m, p = 0.001) and induced a greater improvement in handgrip strength (+3.4 (7.5) kg) compared with the placebo (+1 (6.6) kg, p = 0.03). The flow-mediated dilation was greater in the active group than in the placebo (14.3% (7.3) vs. 9.4% (5.8), p = 0.03). At 28 days, fatigue was reported by two participants in the active group (8.7%) and 21 in the placebo group (80.1%; p < 0.0001). l-arginine plus vitamin C supplementation improved walking performance, muscle strength, endothelial function, and fatigue in adults with long COVID. This supplement may, therefore, be considered to restore physical performance and relieve persistent symptoms in this patient population.
Collapse
Affiliation(s)
- Matteo Tosato
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | | | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angela Di Giorgio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Clara Di Mario
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa Gremese
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Maria Leone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Nesci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Angelo Santoliquido
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Santoro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Metabolomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Ma PJ, Wang MM, Wang Y. Gut microbiota: A new insight into lung diseases. Biomed Pharmacother 2022; 155:113810. [DOI: 10.1016/j.biopha.2022.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
21
|
Tooba R, Wu TD. Obesity and asthma: A focused review. Respir Med 2022; 204:107012. [PMID: 36279813 PMCID: PMC9671155 DOI: 10.1016/j.rmed.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Rubabin Tooba
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Tianshi David Wu
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
22
|
Snyder BM, Gebretsadik T, Turi KN, McKennan C, Havstad S, Jackson DJ, Ober C, Lynch S, McCauley K, Seroogy CM, Zoratti EM, Khurana Hershey GK, Berdnikovs S, Cunningham G, Summar ML, Gern JE, Hartert TV. Association of citrulline concentration at birth with lower respiratory tract infection in infancy: Findings from a multi-site birth cohort study. Front Pediatr 2022; 10:979777. [PMID: 36324820 PMCID: PMC9618869 DOI: 10.3389/fped.2022.979777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Assessing the association of the newborn metabolic state with severity of subsequent respiratory tract infection may provide important insights on infection pathogenesis. In this multi-site birth cohort study, we identified newborn metabolites associated with lower respiratory tract infection (LRTI) in the first year of life in a discovery cohort and assessed for replication in two independent cohorts. Increased citrulline concentration was associated with decreased odds of LRTI (discovery cohort: aOR 0.83 [95% CI 0.70-0.99], p = 0.04; replication cohorts: aOR 0.58 [95% CI 0.28-1.22], p = 0.15). While our findings require further replication and investigation of mechanisms of action, they identify a novel target for LRTI prevention and treatment.
Collapse
Affiliation(s)
- Brittney M. Snyder
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kedir N. Turi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Suzanne Havstad
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Daniel J. Jackson
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, United States
| | - Susan Lynch
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Kathryn McCauley
- Department of Medicine, University of California, San Francisco, CA, United States
| | | | - Edward M. Zoratti
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sergejs Berdnikovs
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Gary Cunningham
- Department of Genetics and Metabolism, Children’s National Medical Center, Washington, DC, United States
| | - Marshall L. Summar
- Department of Genetics and Metabolism, Children’s National Medical Center, Washington, DC, United States
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | | |
Collapse
|
23
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|
24
|
Ye C, Wu J, Reiss JD, Sinclair TJ, Stevenson DK, Shaw GM, Chace DH, Clark RH, Prince LS, Ling XB, Sylvester KG. Progressive Metabolic Abnormalities Associated with the Development of Neonatal Bronchopulmonary Dysplasia. Nutrients 2022; 14:nu14173547. [PMID: 36079804 PMCID: PMC9459725 DOI: 10.3390/nu14173547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To assess the longitudinal metabolic patterns during the evolution of bronchopulmonary dysplasia (BPD) development. Methods: A case-control dataset of preterm infants (<32-week gestation) was obtained from a multicenter database, including 355 BPD cases and 395 controls. A total of 72 amino acid (AA) and acylcarnitine (AC) variables, along with infants’ calorie intake and growth outcomes, were measured on day of life 1, 7, 28, and 42. Logistic regression, clustering methods, and random forest statistical modeling were utilized to identify metabolic variables significantly associated with BPD development and to investigate their longitudinal patterns that are associated with BPD development. Results: A panel of 27 metabolic variables were observed to be longitudinally associated with BPD development. The involved metabolites increased from 1 predominant different AC by day 7 to 19 associated AA and AC compounds by day 28 and 16 metabolic features by day 42. Citrulline, alanine, glutamate, tyrosine, propionylcarnitine, free carnitine, acetylcarnitine, hydroxybutyrylcarnitine, and most median-chain ACs (C5:C10) were the most associated metabolites down-regulated in BPD babies over the early days of life, whereas phenylalanine, methionine, and hydroxypalmitoylcarnitine were observed to be up-regulated in BPD babies. Most calorie intake and growth outcomes revealed similar longitudinal patterns between BPD cases and controls over the first 6 weeks of life, after gestational adjustment. When combining with birth weight, the derived metabolic-based discriminative model observed some differences between those with and without BPD development, with c-statistics of 0.869 and 0.841 at day 7 and 28 of life on the test data. Conclusions: The metabolic panel we describe identified some metabolic differences in the blood associated with BPD pathogenesis. Further work is needed to determine whether these compounds could facilitate the monitoring and/or investigation of early-life metabolic status in the lung and other tissues for the prevention and management of BPD.
Collapse
Affiliation(s)
- Chengyin Ye
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jinghua Wu
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
| | - Jonathan D. Reiss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
| | - Tiffany J. Sinclair
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | - Reese H. Clark
- Pediatrix-Obstetrix Center for Research, Education and Quality, Sunrise, FL 33323, USA
| | - Lawrence S. Prince
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Xuefeng Bruce Ling
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Clinical and Translational Research Program, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA
- Correspondence: (X.B.L.); (K.G.S.); Tel.: +1-650-723-6439 (K.G.S.); Fax: +1-650-725-5577 (K.G.S.)
| | - Karl G. Sylvester
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Correspondence: (X.B.L.); (K.G.S.); Tel.: +1-650-723-6439 (K.G.S.); Fax: +1-650-725-5577 (K.G.S.)
| |
Collapse
|
25
|
High Doses of Inhaled Nitric Oxide as an Innovative Antimicrobial Strategy for Lung Infections. Biomedicines 2022; 10:biomedicines10071525. [PMID: 35884830 PMCID: PMC9312466 DOI: 10.3390/biomedicines10071525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Since the designation of nitric oxide as “Molecule of the Year” in 1992, the scientific and clinical discoveries concerning this biomolecule have been greatly expanding. Currently, therapies enhancing the release of endogenous nitric oxide or the direct delivery of the exogenous compound are recognized as valuable pharmacological treatments in several disorders. In particular, the administration of inhaled nitric oxide is routinely used to treat patients with pulmonary hypertension or refractory hypoxemia. More recently, inhaled nitric oxide has been studied as a promising antimicrobial treatment strategy against a range of pathogens, including resistant bacterial and fungal infections of the respiratory system. Pre-clinical and clinical findings have demonstrated that, at doses greater than 160 ppm, nitric oxide has antimicrobial properties and can be used to kill a broad range of infectious microorganisms. This review focused on the mechanism of action and current evidence from in vitro studies, animal models and human clinical trials of inhaled high-dose nitric oxide as an innovative antimicrobial therapy for lung infections.
Collapse
|
26
|
Grasemann H, McDonald N, Yuan XZ, Dell S, Waters V, Ratjen F. Lower Airway Nitrogen Oxide Levels in Children with Primary Ciliary Dyskinesia Is Linked to Neutrophilic Inflammation. J Pediatr 2022; 244:230-233. [PMID: 35120987 DOI: 10.1016/j.jpeds.2022.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Treatment of primary ciliary dyskinesia pulmonary exacerbations resulted in an increase in sputum nitric oxide (NO) metabolites and decrease in neutrophilic inflammation. The association between the 2 suggests that neutrophilic inflammation contributes to airway NO deficiency in primary ciliary dyskinesia and that reducing inflammation may lead to improved airway NO homeostasis. TRIAL REGISTRY: ClinicalTrials.gov: NCT01155115.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| | - Nancy McDonald
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Xi Zhou Yuan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sharon Dell
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Valerie Waters
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
28
|
Arolkar P, Damle G, Gala P. Role of nutrition in pediatric patients with respiratory failure. INDIAN JOURNAL OF RESPIRATORY CARE 2022. [DOI: 10.4103/ijrc.ijrc_162_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Dysregulated Arginine Metabolism in Young Patients with Chronic Persistent Asthma and in Human Bronchial Epithelial Cells. Nutrients 2021; 13:nu13114116. [PMID: 34836371 PMCID: PMC8622016 DOI: 10.3390/nu13114116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Recent metabolomics studies have found circulatory metabolism alterations in patients with asthma, indicating that altered metabolites played a significant role in asthma. However, the regulatory mechanisms in asthma, especially in young chronic persistent asthma remain underexplored. Methods: In this study, a prospective cohort of 162 patients diagnosed of asthma admitted to the First Affiliated Hospital of Xi’an Jiaotong University from January 2018 to December 2019 was used to perform a nested case-control study. Among them, we included 30 patients with chronic persistent asthma between 20 to 35 years old; 30 health control with evenly distributed age and sex were then recruited. Nontargeted metabolomics was applied to identify serum metabolic profiles and altered metabolic pathways. Results: In vitro, human bronchial epithelial cells (HBECs) line BEAS-2B with the addition of L-citrulline and/or asymmetric dimethylarginine (ADMA) model was utilized and the concentrations of nitric oxide (NO) metabolites were tested to evaluate the therapeutic potential of L-citrulline. The young patients with chronic persistent asthma displayed dysregulated serum metabolic profiles, especially enriched in arginine metabolism. The ratio of L-citrulline to ornithine is associated with blood eosinophil count. In vitro, adding L-citrulline could reverse ADMA-mediated reduction of NOx at lower L-arginine concentration (25 μM), but was ineffective in the higher L-arginine concentration (100 μM) media. Conclusions: The arginine metabolism balance is of vital importance during the pathogenesis and progression of chronic asthma. L-citrulline could be a powerful approach to restore airway NO production, potentially exhibiting therapeutic benefits among young patients with chronic asthma.
Collapse
|
30
|
Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101537. [PMID: 34679673 PMCID: PMC8533053 DOI: 10.3390/antiox10101537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Academic Field of Health Sciences, Okayama 700-8558, Japan;
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan;
- Correspondence:
| |
Collapse
|