1
|
Dwivedi K, Sahoo A, Almalki WH, Almujri SS, Aodah A, Alruwaili NK, Rab SO, Alanezi AA, Haji EM, Barkat MA, Singh T, Rahman M. Innovative nanocarrier systems for enhanced delivery of phyto-active compounds in cancer therapy. Nanomedicine (Lond) 2024:1-26. [PMID: 39703154 DOI: 10.1080/17435889.2024.2440301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Millions of people worldwide suffer from cancer, facing challenges such as treatments affecting healthy cells, suboptimal responses, adverse effects, recurrence risk, drug resistance, and nonspecific targeting. Chemoresistance leads to fatalities, but phytoactives show promise in cancer management despite limitations such as high metabolism, poor absorption, and high dosage requirements. Challenges in the large-scale isolation of phytoactive compounds, solubility, bioavailability, and targeting limit their development. Recent developments, including carbohydrate, lipid, and protein-based nanoparticles, have enhanced cancer treatment by improving the bioavailability and targeted delivery of phytoactives such as polyphenols, alkaloids, sulfur-containing compounds, flavonoids, and terpenes. Despite advancements, clinical application faces hurdles such as poor bioavailability and inconsistent immune responses. This article discusses the promise of phytoactive-loaded nanoformulations in cancer management, highlighting targeted drug delivery, unmet needs, and challenges. Further research is needed to overcome these challenges and fully understand the potential of phytoactives in cancer management.
Collapse
Affiliation(s)
- Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Prayagraj, India
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abdulkareem Ali Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al Batin, Saudi Arabia
| | - Esraa M Haji
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al Batin, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
2
|
Martínez-López AL, Reboredo C, González-Navarro CJ, Solas M, Puerta E, Javier Ramírez M, Vizmanos JL, Irache JM. Zein nanoparticles extend lifespan in C. elegans and SAMP8 mice. Int J Pharm 2024; 666:124798. [PMID: 39366528 DOI: 10.1016/j.ijpharm.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Empty zein nanoparticles (NP) have been shown to lower glycemia in rats by stimulating the secretion of endogenous GLP-1. This study evaluated the effect of these nanoparticles on the lifespan of two animal models: C. elegans fed with a glucose-rich diet and the senescence accelerated mouse-prone 8 (SAMP8 mice). In C. elegans, NP increased the mean lifespan of worms by 7 days (from 17.1 for control to 24.5 days). This observation was in line with the observed significant reductions of glucose and fat contents, lipofuscin accumulation, and ROS expression. Furthermore, NP supplementation led to an upregulation of the expression of daf-16 and skn-1 genes. DAF-16 (orthologue of the FOXO family) and SKN-1 (orthologue of mammalian Nrf/CNC proteins) are implicated in activating detoxification mechanisms against oxidative damage. In SAMP8, oral administration of NP also extended the mean lifespan of mice (by 28 % compared to controls), corroborating the protective effect of these nanoparticles.
Collapse
Affiliation(s)
- Ana L Martínez-López
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Cristian Reboredo
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | | | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - José L Vizmanos
- Department of Biochemistry & Genetics, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain.
| |
Collapse
|
3
|
Yang H, Mu Y, Zheng D, Puopolo T, Zhang L, Zhang Z, Gao S, Seeram NP, Ma H, Huang X, Li L. Caseinate-coated zein nanoparticles as potential delivery vehicles for guavinoside B from guava: Molecular interactions and encapsulation properties. Food Chem 2024; 456:140066. [PMID: 38901076 DOI: 10.1016/j.foodchem.2024.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Guavinoside B (GUB) is a characteristic constituent from guava with strong antioxidant activity; however, its low water solubility limits its utilization. Herein, we investigated the interaction between GUB and zein, a prolamin with self-assembling property, using multiple spectroscopic methods and fabricated GUB-zein-NaCas nanoparticles (GUB-Z-N NPs) via the antisolvent coprecipitation approach. GUB caused fluorescence quenching to zein via the static quenching mechanism. Fourier-transform infrared spectroscopy and computational analysis revealed that GUB bound to zein via van der Waals interaction, hydrogen bond, and hydrophobic forces. The GUB-Z-N NPs were in the nanometric size range (< 200 nm) and exhibited promising encapsulation efficiency and redispersibility after freeze-drying. These particles remained stable for up to 31 days at 4 °C and great resistance to salt and pH variation, and displayed superior antioxidant activity to native GUB. The current study highlights the potential of zein-based nanoparticles as delivery vehicles for GUB in the food industry.
Collapse
Affiliation(s)
- Haoning Yang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Lejie Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhuo Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Sai Gao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
4
|
Corteggio A, Heinzl T, Boraschi D, Voci S, Gagliardi A, Cosco D, Italiani P. Safety of Zein Nanoparticles on Human Innate Immunity and Inflammation. Int J Mol Sci 2024; 25:11630. [PMID: 39519184 PMCID: PMC11546227 DOI: 10.3390/ijms252111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, natural polymers have attracted great interest for the development of release systems for vaccine formulations and drug delivery. Zein, a hydrophobic proline-rich protein mixture obtained from maize, is one of the most widely used polymers, very promising for applications in tissue engineering and the parenteral delivery of bioactive agents. Still, we have a limited understanding of the interaction between zein particles and the human immune system, in particular innate immunity/inflammation, which is the first line of defense of our body. Assessing the immune safety of nanoparticles is of central importance for ensuring that nano-formulations for medical use do not cause adverse effects on human health. Here, we evaluated the capacity of zein nanoparticles to induce/modulate the innate/inflammatory response, the development of innate memory, and the macrophage polarization by using reliable in vitro systems based on human primary monocytes and monocyte-derived macrophages. We observed that zein nanoparticles do not influence any of these aspects of the innate immune/inflammatory response, suggesting its safety and its potential efficiency as a nanocarrier for drug or antigen delivery.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| | - Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| |
Collapse
|
5
|
Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS OMEGA 2024; 9:42613-42629. [PMID: 39464472 PMCID: PMC11500139 DOI: 10.1021/acsomega.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features. The advent of protein nanoarchitectures, which explore the biomolecular corona, offers new insights into their efficient tissue penetration and therapeutic potential. This review examines various animal- and plant-based protein nanoparticles, highlighting their source, activity, products, and unique biomedical applications in regenerative medicine, targeted therapies, gene and drug delivery, antimicrobial activity, bioimaging, immunological adjuvants, etc. It provides an extensive discussion on recent applications of protein nanoparticles across diverse biomedical fields as well as the evolving landscape of other nanoproducts and nanodevices for sensitive medical procedures. Furthermore, this review introduces different preparation technologies of protein nanoparticles, emphasizing how their design and construction significantly influence loading capacity, stability, and targeting effects. Additionally, we delve into the construction of different user-friendly multifunctional modular bioarchitectures by the assembly of protein nanoparticles (PNPs), marking a significant breakthrough in therapies. This review also considers the challenges of synthetic nanomaterials and the emergence of natural alternatives, which provides insights into protein nanoparticle research.
Collapse
Affiliation(s)
- Anju Muraleedharan
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Sarbari Acharya
- Department
of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India, 751024
| | - Ravindra Kumar
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| |
Collapse
|
6
|
Pilicita VA, Sonzogni AS, Allasia M, Borra F, Minari RJ, Gonzalez VDG. Proteins-Based Nanoparticles for Benznidazole Enteric Delivery. Macromol Biosci 2024:e2400338. [PMID: 39422611 DOI: 10.1002/mabi.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects millions worldwide, particularly in Latin America. Despite its prevalence, treatment options remain limited. Current drugs, such as benznidazole, cause adverse effects possibly due to ineffective administration. In this context, nanoparticles offer a promising solution to target and control drug delivery by leading the effector site and minimizing side effects. This article focuses on zein-casein-based nanoparticles (Bioparticles, BP) coated with Eudragit L100-55 (BP:EU) for enteric delivery of benznidazole. BP:EU structures are synthesized to minimize premature drug release in the stomach, promoting release in the small intestine. Physical characterization confirmed the successful synthesis of BP:EU and their pH-responsive trigger for drug release. These findings suggest that this material can be a promising approach for Chagas disease treatment, addressing challenges in benznidazole delivery that can lead to improved therapeutic responses.
Collapse
Affiliation(s)
- Victor A Pilicita
- Polymer Reaction Engineering Group, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe, 3000, Argentina
| | - Ana S Sonzogni
- Polymer Reaction Engineering Group, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe, 3000, Argentina
- Facultad de Ingenería Química (Universidad Nacional del Litoral) Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Mariana Allasia
- Polymer Reaction Engineering Group, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe, 3000, Argentina
| | - Florencia Borra
- Facultad de Ingenería Química (Universidad Nacional del Litoral) Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Roque J Minari
- Polymer Reaction Engineering Group, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe, 3000, Argentina
- Facultad de Ingenería Química (Universidad Nacional del Litoral) Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Verónica D G Gonzalez
- Polymer Reaction Engineering Group, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe, 3000, Argentina
- Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Ciudad Universitaria RN168, Santa Fe, 3000, Argentina
| |
Collapse
|
7
|
Cs J, Haider M, Rawas-Qalaji M, Sanpui P. Curcumin-loaded zein nanoparticles: A quality by design approach for enhanced drug delivery and cytotoxicity against cancer cells. Colloids Surf B Biointerfaces 2024; 245:114319. [PMID: 39461183 DOI: 10.1016/j.colsurfb.2024.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Zein, a maize protein, has been explored for constructing potential biomaterial due to its hydrophobic nature, self-assembly capability, and biocompatibility. In its nanoparticulate form, zein is a promising material for drug delivery applications, particularly in cancer treatment. Despite the importance of colloidal stability for effective drug delivery, systematic studies investigating the effect of various surface modifying agents (MAs) on the zein nanoparticles (ZNPs)-based formulations are limited. This study employs quality-by-design (QbD) approach to optimize curcumin-loaded ZNPs, enhancing colloidal stability, size, and drug-encapsulation efficiency using different MAs for potential cancer therapy. Gum arabic (GA) emerged as the optimal stabilizer, with GA-stabilized curcumin-loaded ZNPs (GA-Cur-ZNPs) achieving a particle size of 184.8 ± 2.85 nm, zeta potential of -23.4 ± 0.56 mV and 87.1 ±1.55 % drug encapsulation efficiency, along with excellent colloidal stability over two months. The optimal formulation also demonstrated sustained release of Cur over 72 h. GA-Cur-ZNPs demonstrated lower IC50 values and higher anti-proliferative effects on three different cancer cell lines compared to the free drug, while also exhibiting superior intracellular uptake. With negligible toxicity to human dermal fibroblast cells, the optimized Cur-GA-ZNPs show promise for safe and effective killing of cancer cells.
Collapse
Affiliation(s)
- Jayalakshmi Cs
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE.
| |
Collapse
|
8
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
9
|
Desai N, Nayi S, Khunt D, Kapoor DU, Salave S, Prajapati B, Vora C, Malviya R, Maheshwari R, Patel R. Zein: Potential biopolymer in inflammatory bowel diseases. J Biomed Mater Res A 2024. [PMID: 39210660 DOI: 10.1002/jbm.a.37785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Effectively managing inflammatory bowel disease (IBD) poses difficulties due to its persistent nature and unpredictable episodes of exacerbation. There is encouraging evidence that personalized medication delivery systems can improve therapy efficacy while reducing the negative effects of standard medicines. Zein, a protein produced from corn, has garnered interest as a possible means of delivering drugs for the treatment of IBD. This review delves into Zein-based drug delivery systems, showcasing its biodegradability, controlled release capabilities, and biocompatibility. Studies have shown that Zein-based nanoparticles, microcarriers, and core-shell microparticles have the capacity to increase medication stability, enhance targeting in the intestines, and decrease toxicity in animal models of IBD. The review highlights the promise of Zein in personalized therapy for IBD and urges more study to enhance its clinical use.
Collapse
Affiliation(s)
- Nimeet Desai
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Smit Nayi
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| | - Dignesh Khunt
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Bhupendra Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Chintan Vora
- WAYMADE India Pvt. Ltd., Vadodara, Gujarat, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Noida, Uttar Pradesh, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India
| | - Ravi Patel
- Gujarat Technological University, School of Pharmacy, Gandhinagar, Gujarat, India
| |
Collapse
|
10
|
Lin Z, Zhan L, Qin K, Li Y, Qin Y, Yang L, Sun Q, Ji N, Xie F. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Foods 2024; 13:1837. [PMID: 38928779 PMCID: PMC11202432 DOI: 10.3390/foods13121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Kaili Qin
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China;
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
11
|
Fan Z, Iqbal H, Ni J, Khan NU, Irshad S, Razzaq A, Alfaifi MY, Elbehairi SEI, Shati AA, Zhou J, Cheng H. Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges. Int J Pharm X 2024; 7:100238. [PMID: 38511068 PMCID: PMC10951516 DOI: 10.1016/j.ijpx.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.
Collapse
Affiliation(s)
- Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Naveed Ullah Khan
- Department of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Shahla Irshad
- Department of Allied Health Sciences, Faculty of Health and Medical Sciences, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir 10250, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mohammad Y. Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Ali A. Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
14
|
Srivastav AK, Rajput PK, Jaiswal J, Yadav UCS, Kumar U. In vitro and in silico investigation of glycyrrhizic acid encapsulated zein nanoparticles: A synergistic targeted drug delivery approach for breast cancer. Int J Biol Macromol 2024; 266:131368. [PMID: 38580025 DOI: 10.1016/j.ijbiomac.2024.131368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
This study presents an innovative approach for targeted drug delivery through the development of Glycyrrhizic acid-loaded zein nanoparticles (GA-LNPs) as a proficient carrier system. The juxtaposition of zein, a hydrophobic biological macromolecule as a protein carrier, and Glycyrrhizic acid (GA), a hydrophilic therapeutic compound, exemplifies the adaptability of hydrocolloids within cutting-edge drug delivery systems. The characterization and functional traits of research encompass multifaceted analyses of natural macromolecules, which elucidate the homogeneous and spherical morphology of GA-LNPs with an average size of 170.49 nm. The controlled drug release profile of GA, orchestrated under simulated gastrointestinal conditions, adheres to diffusion-based Higuchi kinetics, reflecting the controlled release of the natural macromolecules. The intermolecular interactions among Zein, GA, and cross-linker EDC, facilitated through molecular dynamics simulations, fortify the structural integrity of the encapsulation matrix. In Vitro studies revealed enhanced cellular uptake of GA-LNPs in MCF-7 breast cancer cells. This cellular internalization was further confirmed through cytotoxicity assessments using MTT and apoptosis assays (fluorescence microscopy), which demonstrated the prominent anticancer effects of GA-LNPs on MCF-7 in time/dose-dependent manner. The successful formulation of GA-LNPs, coupled with their sustained release and potent anticancer properties, makes them a potential platform for advanced targeted therapeutic strategies in biomedical applications.
Collapse
Affiliation(s)
- Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar-382030, India; Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana-123031, India.
| |
Collapse
|
15
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
16
|
Oleandro E, Stanzione M, Buonocore GG, Lavorgna M. Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:414. [PMID: 38470745 DOI: 10.3390/nano14050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins' abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers' efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs' structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions.
Collapse
Affiliation(s)
- Emilia Oleandro
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Mariamelia Stanzione
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | | | - Marino Lavorgna
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
- Institute of Polymers, Composites and Biomaterials-CNR, Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
17
|
Tan H, Zhou H, Guo T, Zhou Y, Zhang Y, Yuan R, Ma L. Emerging Zein-Bound Zearalenone in Maize: Thermal-Induced Mechanism of Binding or Releasing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20336-20347. [PMID: 37803486 DOI: 10.1021/acs.jafc.3c05794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The emerging zein-bound zearalenone (ZEN) in maize could affect its nutrition and health. Besides, thermal processing could affect the zein-ZEN interaction, causing the binding or release of ZEN. To control the harm of zein-bound ZEN on the quality of maize, the thermal-induced mechanism of binding or releasing of zein-bound ZEN were studied. Results showed that thermal processing decreased the binding constant from 1.70 to 0.27 × 104 L mol-1, and binding energy from -78.41 to -32.51 kJ mol-1, with the decreased hydrogen bonds, hydrophobic, and electrostatic interactions of ZEN with Leu81 and Arg85, Val125, Ala129, and Gln132. Furthermore, thermal processing destroyed the interactions among zein molecules and caused the unwinding of zein, releasing the ZEN from the hydrophobic cavity of zein. This paper provided theoretic insights into the heat-induced binding/releasing mechanism of ZEN with zein, which helped to perfect the exposure risk evaluation of ZEN (including free and zein-bound ZEN) in maize-based products.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R.China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R.China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R.China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R.China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, P.R.China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P.R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R.China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, P.R.China
| |
Collapse
|
18
|
Chen W, Pan H, Wang F, Sheng Y, Jiang F, Bi Y, Kong F. Pickering emulsions prepared using zein-sugarcane leaves polyphenol covalent crosslinking nanoparticles via ultrasonication: Capacities in storage stability, lipid oxidation, in vitro digestion and safety evaluation. ULTRASONICS SONOCHEMISTRY 2023; 99:106549. [PMID: 37574641 PMCID: PMC10448328 DOI: 10.1016/j.ultsonch.2023.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
This study firstly used sugarcane leaf polyphenols (SGLp) to modify zein to form covalent nanoparticles (SGLpZ) and used SGLpZ as an emulsifier to stabilize pickering emulsions (SZP) via ultrasonic method. The results showed that the addition of SGLp could alter the physicochemical properties of zein, including improving increasing the hydrophilicity of zein and the antioxidant properties of zein (three basic antioxidant activities test in vitro). SGLpZ could be able to form a dense film on the surface of the pickering emulsions which inhibited lipid oxidation as the concentration of SGLp increased at 4 ℃ for 20 days, thus stabilizing pickering emulsions (SZP). Further assessment of storage stability of pickering emulsions stabilized by SGLp was evaluated via measuring the free fatty acids (FFA) release in vitro gastrointestinal digestion. The results showed that the FFA release of SZP decreased from 20.61 ± 0.10% to 16.14 ± 0.69%. In addition, SGLp gave SZP a yellow color, which inspired that SZP could be used in the food industry to make yellow-colored functional foods. Finally, the safety of SZP initially assessed by in-vitro hemocompatibility and cytotoxicity (MTT) assays. In conclusion, our fingdings were beneficial for the further design and development of SGLp in food fields and enabled the development a new type in functional protein-plant polyphenols food pickering emulsions.
Collapse
Affiliation(s)
- Weiming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haihui Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feilin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanhao Sheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fengyu Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Wang G, Han J, Meng X, Kang SS, Liu X, Sun YE, Luo Q, Ye K. Zein-Based Nanoparticles Improve the Therapeutic Efficacy of a TrkB Agonist toward Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3249-3264. [PMID: 37583253 PMCID: PMC10734774 DOI: 10.1021/acschemneuro.3c00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/TrkB pathway plays a crucial role in neural plasticity and neuronal survival but is often deficient in neurodegenerative diseases like Alzheimer's disease (AD). CF3CN acts as a specific TrkB agonist that displays therapeutic effects in the AD mouse model, but its brain/plasma ratio (B/P ratio) distribution is not satisfactory. To increase its brain exposure, we synthesized several derivatives and employed nanoparticle (NP) formulation to optimize the most potent #2 derivative's in vivo PK profiles. We generated stable #2-loaded zein/lactoferrin composite NPs (#2/zein/LF) using the antisolvent co-precipitation method. In vivo PK studies revealed that nanoencapsulation improved #2's oral bioavailability by approximately 2-fold and significantly enhanced its plasma Cmax and t1/2, but the brain profiles were comparable. Pharmacodynamics showed that #2/zein/LF activates TrkB signaling that phosphorylates asparagine endopeptidase (AEP) T322 and decreases its enzymatic activity, resulting in reduced AEP-cleaved amyloid precursor protein and Tau fragments in the brains of AD mice, correlating with its PK profiles. After 3 months of treatment in 3xTg mice, #2/zein/LF decreased AD pathologies and alleviated cognitive dysfunction. Hence, zein/LF composite nanoencapsulation is a promising drug delivery method for improving the PK profiles of a potential preclinical candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangxing Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jianxin Han
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Eve Sun
- School of Medicine, Tongji University, Shanghai 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
20
|
Li W, Li W, Wan Y, Zhou T, Wang L. Thymol-loaded Zein-pectin composite nanoparticles as stabilizer to fabricate Pickering emulsion of star anise essential oil for improved stability and antimicrobial activity. J Food Sci 2023; 88:3807-3819. [PMID: 37530639 DOI: 10.1111/1750-3841.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
The aim of the present study was to prepare a new antimicrobial Pickering emulsion of which the star anise essential oil was added to the oil phase, and to investigate the effect of stabilization by bio-based active nanoparticles consisting of zein and pectin loaded with thymol. First, the thymol-loaded zein/pectin composite nanoparticles (ZTNPs) were fabricated as uniformly distributed spherical nanoparticles with an average diameter of 200 nm through antisolvent precipitation. Second, the effects of nanoparticles' concentration, oil phase ratio, and storage time on the stability of emulsions were explored according to particle size potential, interfacial tension, rheology, and micromorphology. Finally, the antibacterial results showed that Pickering emulsion inhibited Escherichia coli and Staphylococcus aureus compared to the control group by nearly 7 log colony-forming unit/g at 36 h, which was twice as much as the inhibition by thymol or star anise essential oils and ZTNPs. Therefore, the proposed Pickering emulsion with star anise essential oil could be used as a green and safe plant-derived antimicrobial agent in the food industry.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Wenqing Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Yulian Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|