1
|
Pakaew K, Chonpathompikunlert P, Wongmanee N, Rojanaverawong W, Sitdhipol J, Thaveethaptaikul P, Charoenphon N, Hanchang W. Lactobacillus reuteri TISTR 2736 alleviates type 2 diabetes in rats via the hepatic IRS1/PI3K/AKT signaling pathway by mitigating oxidative stress and inflammatory mediators. Eur J Nutr 2024; 64:27. [PMID: 39589518 DOI: 10.1007/s00394-024-03529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study investigated the beneficial effects of Lactobacillus reuteri TISTR 2736 on glucose homeostasis, carbohydrate metabolism, and the underlying mechanisms of its actions in type 2 diabetic (T2D) rats. METHODS A rat model of T2D was established by a combination of a high-fat diet and streptozotocin. The diabetic rats were treated daily with L. reuteri TISTR 2736 (2 × 108 CFU/day) for 30 days. Biochemical, histopathological, and molecular analyses were carried out to determine insulin signaling, carbohydrate metabolism, oxidative stress, and inflammation. RESULTS The results demonstrated that treatment with L. reuteri TISTR 2736 significantly ameliorated fasting blood glucose and glucose intolerance, and improved insulin sensitivity indices in the diabetic rats. The hepatic histopathology was improved with L. reuteri TISTR 2736 treatment, which was correlated with a reduction of hepatic lipid profiles. L. reuteri TISTR 2736 significantly reduced glycogen content, fructose 1,6-bisphosphatase activity, and phosphoenolpyruvate carboxykinase 1 protein expression, and enhanced hexokinase activity in the diabetic liver. The downregulation of IRS1 and phosphorylated IRS1Ser307 and upregulation of PI3K and phosphorylated AKTSer473 proteins in the liver were found in the L. reuteri TISTR 2736-treated diabetic group. Furthermore, it was able to suppress oxidative stress and inflammation in the diabetic rats, as demonstrated by decreased malondialdehyde and protein levels of NF-κB, IL-6 and TNF-α, but increased antioxidant enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase. CONCLUSION By inhibiting oxidative and inflammatory stress, L. reuteri TISTR 2736 alleviated hyperglycemia and improved carbohydrate metabolism through activating IRS1/PI3K/AKT pathway in the T2D rats.
Collapse
Affiliation(s)
- Kamonthip Pakaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Navinee Wongmanee
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worarat Rojanaverawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Punnathorn Thaveethaptaikul
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wanthanee Hanchang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
2
|
Hanchang W, Dissook S, Wongmanee N, Rojanaverawong W, Charoenphon N, Pakaew K, Sitdhipol J, Thanagornyothin T, Phapugrangkul P, Ayudthaya SPN, Chonpathompikunlert P. Antidiabetic Effect of Bifidobacterium animalis TISTR 2591 in a Rat Model of Type 2 Diabetes. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10377-2. [PMID: 39384734 DOI: 10.1007/s12602-024-10377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
This study investigated the beneficial effects of probiotic Bifidobacterium animalis TISTR 2591 on the regulation of blood glucose and its possible mechanisms in a rat model of type 2 diabetes. The type 2 diabetic-Sprague Dawley rats were established by the combination of a high-fat diet and a low dose of streptozotocin. After 4 weeks of treatment with 2 × 108 CFU/ml of B. animalis TISTR 2591, fasting blood glucose (FBG), oral glucose tolerance, serum insulin, and pancreatic and hepatic histopathology were determined. Liver lipid accumulation, glycogen content, and gluconeogenic protein expression were evaluated. Oxidative stress and inflammatory status were determined. B. animalis TISTR 2591 significantly reduced FBG levels and improved glucose tolerance and serum insulin in the diabetic rats. Structural damage of the pancreas and liver was ameliorated in the B. animalis TISTR 2591-treated diabetic rats. In addition, significant decreases in hepatic fat accumulation, glycogen content, and phosphoenolpyruvate carboxykinase-1 protein expression were found in the diabetic rats treated with B. animalis TISTR 2591. The diabetic rats showed a significant reduction of inflammation following B. animalis TISTR 2591 supplementation, as demonstrated by decreasing hepatic NF-κB protein expression and serum and liver TNF-α levels. The B. animalis TISTR 2591 significantly decreased MDA levels and increased antioxidant SOD and GPx activities in the diabetic rats. In conclusion, B. animalis TISTR 2591 was shown to be effective in controlling glucose homeostasis and improving glucose tolerance in the diabetic rats. These beneficial activities were attributed to reducing oxidative and inflammatory status and modulating hepatic glucose metabolism.
Collapse
Affiliation(s)
- Wanthanee Hanchang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Navinee Wongmanee
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worarat Rojanaverawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kamonthip Pakaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Thanaphol Thanagornyothin
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Pongsathon Phapugrangkul
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Susakul Palakawong Na Ayudthaya
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand.
| |
Collapse
|
3
|
Alruhaimi RS, Hussein OE, Alnasser SM, Elbagory I, Alzoghaibi MA, Kamel EM, El Mohtadi M, Mahmoud AM. Haloxylon salicornicum Phytochemicals Suppress NF-κB, iNOS and Pro-inflammatory Cytokines in Lipopolysaccharide-induced Macrophages. Chem Biodivers 2024:e202401623. [PMID: 39355861 DOI: 10.1002/cbdv.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Haloxylon salicornicum is traditionally used for the treatment of several disorders associated with inflammation. Despite it is a defense response against tissue injury and infections, inflammation can become a chronic condition that can negatively impact the body. This study investigated the effect of H. salicornicum phytochemicals nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS) and cytokines release by lipopolysaccharide (LPS)-challenged macrophages in vitro. The binding affinity of the tested phytochemical towards NF-κB and iNOS was investigated using molecular docking. Ten compounds (four coumarins, three sterols and three flavonoids) were isolated from the ethanolic extract of H. salicornicum. Treatment of LPS-challenged macrophages with the compounds resulted in remarkable decrease in NF-κB p65 and iNOS mRNA abundance. All compounds suppressed the production of nitric oxide (NO) and the pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) from macrophages challenged with LPS. Molecular docking revealed the ability of the isolated phytochemicals to bind NF-κB p65 and iNOS. In conclusion, H. salicornicum is a rich source of phytochemicals with anti-inflammatory properties. The anti-inflammatory efficacy of H. salicornicum phytoconstituents is mediated via their ability to modulate NF-κB and iNOS, and suppress the release of NO, TNF-α, and IL-6 from macrophages.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
4
|
Kamel EM, Aba Alkhayl FF, Alqhtani HA, Bin-Jumah M, Rudayni HA, Lamsabhi AM. Bridging in silico and in vitro perspectives to unravel molecular mechanisms underlying the inhibition of β-glucuronidase by coumarins from Hibiscus trionum. Biophys Chem 2024; 313:107304. [PMID: 39079275 DOI: 10.1016/j.bpc.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Unraveling the intricacies of β-glucuronidase inhibition is pivotal for developing effective strategies in applications specific to gastrointestinal health and drug metabolism. Our study investigated the efficacy of some Hibiscus trionum phytochemicals as β-glucuronidase inhibitors. The results showed that cleomiscosin A and mansonone H emerged as the most potent inhibitors, with IC50 values of 3.97 ± 0.35 μM and 10.32 ± 1.85 μM, respectively. Mechanistic analysis of β-glucuronidase inhibition indicated that cleomiscosin A and the reference drug EGCG displayed a mixed inhibition mode against β-glucuronidase, while mansonone H exhibited noncompetitive inhibition against β-glucuronidase. Docking studies revealed that cleomiscosin A and mansonone H exhibited the lowest binding affinities, occupying the same site as EGCG, and engaged significant key residues in their binding mechanisms. Using a 30 ns molecular dynamics (MD) simulation, we explored the interaction dynamics of isolated compounds with β-glucuronidase. Analysis of various MD parameters showed that cleomiscosin A and mansonone H exhibited consistent trajectories and significant energy stabilization with β-glucuronidase. These computational insights complemented experimental findings, underscoring the potential of cleomiscosin A and mansonone H as β-glucuronidase inhibitors.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Sultan WS, Mahmoud AM, Ahmed SA, Alruhaimi RS, Alzoghaibi MA, El-Bassuony AA, Hasona NA, Kamel EM. Phytochemical Analysis and Anti-dyslipidemia and Antioxidant Activities of Pluchea dioscoridis: In Vitro, In Silico and In Vivo Studies. Chem Biodivers 2024; 21:e202400842. [PMID: 38884416 DOI: 10.1002/cbdv.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Pluchea dioscoridis (L.) DC. is a flowering wild plant used traditionally in the treatment of rhematic disorders. This study investigated the phytochemical and in vitro radical scavenging activity (RSA), and in vivo anti-hyperlipidemic, antioxidant and anti-inflammatory properties of P. dioscoridis. The antihyperlipidemic efficacy was determined in a rat model of dyslipidemia. The extract and fractions of P. dioscoridis showed RSA with the ethyl acetate (EA) fraction exhibiting the most potent activity. The phytochemical analysis of P. dioscoridis EA fraction (PDEAF) led to the isolation of five compounds (lupeol, quercetin, lupeol acetate, stigmasterol, and syringic acid). To evaluate its anti-hyperlipidemic effect, three doses of PDEAF were supplemented to rats for 14 days and poloxamer-407 was administered on day 15 to induce dyslipidemia. All doses of PDEAF decreased plasma triglycerides, cholesterol, low-density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein-cholesterol (vLDL-C), and increased plasma lipoprotein lipase (LPL). PDEAF upregulated hepatic LDL receptor and suppressed 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, decreased lipid peroxidation and tumor necrosis factor (TNF)-α and enhanced reduced glutathione (GSH) and enzymatic antioxidants in dyslipidmeic rats. In silico findings revealed the binding affinity of the isolated compounds towards LPL, HMG-CoA reductase, and LDL receptor. In conclusion, P. dioscoridis is rich in phytoconstituents, exhibited RSA and its EA fraction effectively prevented acute dyslipidemia and its associated oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Wageha S Sultan
- Department of Chemistry, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Shimaa A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
6
|
Ahmed SA, Kamel EM, Mahmoud AM, Nasr HMD, Hassan HM, Alanazi MM, Rateb ME, Hozayen WG, Ahmed SA. Phytochemical Analysis, and Antioxidant and Hepatoprotective Activities of Chamaerops humilis L. Leaves; A Focus on Xanthine Oxidase. Chem Biodivers 2024; 21:e202400865. [PMID: 38867399 DOI: 10.1002/cbdv.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Chamaerops humilis L. is clumping palm of the family Arecaceae with promising health-promoting effects. Parts of this species are utilized as food and employed in folk medicine to treat several disorders. This study investigated the phytochemical constituents of C. humilis leaves and their antioxidant and xanthine oxidase (XO) inhibitory activities in vitro and in vivo in acetaminophen (APAP)-induced hepatotoxicity in rats. The chemical structure of the isolated phytochemicals was determined using data obtained from UV, MS, IR, and 1H-, 13C-NMR spectroscopic tools as well as comparison with authentic markers. Eleven compounds, including tricin 7-O-β-rutinoside, vicenin, tricin, astragalin, borassoside D, pregnane-3,5,6,16-tetrol, oleanolic acid, β-sitosterol and campesterol were isolated from C. humilis ethanolic extract (CHEE). CHEE and the butanol, n-hexane, and dichloromethane fractions exhibited in vitro radical scavenging and XO inhibitory efficacies. The computational findings revealed the tendency of the isolated compounds towards the active site of XO. In vivo, CHEE ameliorated liver function markers and prevented tissue injury induced by APAP in rats. CHEE suppressed hepatic XO, decreased serum uric acid and liver malondialdehyde (MDA), and enhanced reduced glutathione (GSH), superoxide dismutase (SOD), and catalase in APAP-treated rats. CHEE ameliorated serum tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β in APAP-treated rats. Thus, C. humilis is rich in beneficial phytochemicals that possess binding affinity towards XO. C. humilis exhibited potent in vitro antioxidant and XO inhibitory activities, and prevented APAP hepatotoxicity by attenuating tissue injury, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Hamdi M D Nasr
- Department of Chemistry, Faculty of Science, Al-Azhar University (Assiut), Assiut, 71524, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Walaa G Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| |
Collapse
|
7
|
Kamel EM, Alkhayl FFA, Alqhtani HA, Bin-Jumah M, Rudayni HA, Lamsabhi AM. Dissecting molecular mechanisms underlying the inhibition of β-glucuronidase by alkaloids from Hibiscus trionum: Integrating in vitro and in silico perspectives. Comput Biol Med 2024; 180:108969. [PMID: 39089106 DOI: 10.1016/j.compbiomed.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
β-Glucuronidase, a crucial enzyme in drug metabolism and detoxification, represents a promising target for therapeutic intervention due to its potential to modulate drug pharmacokinetics and enhance therapeutic efficacy. Herein, we assessed the inhibitory potential of phytochemicals from Hibiscus trionum against β-glucuronidase. Grossamide and grossamide K emerged as the most potent β-glucuronidase inhibitors with IC50 values of 0.73 ± 0.03 and 1.24 ± 0.03 μM, respectively. The investigated alkaloids effectively inhibited β-glucuronidase-catalyzed PNPG hydrolysis through a noncompetitive inhibition mode, whereas steppogenin displayed a mixed inhibition mechanism. Molecular docking analyses highlighted grossamide and grossamide K as inhibitors with the lowest binding free energy, all compounds successfully docked into the same main binding site occupied by the reference drug Epigallocatechin gallate (EGCG). We explored the interaction dynamics of isolated compounds with β-glucuronidase through a 200 ns molecular dynamics (MD) simulation. Analysis of various MD parameters revealed that grossamide and grossamide K maintained stable trajectories and demonstrated significant energy stabilization upon binding to β-glucuronidase. Additionally, these compounds exhibited the lowest average interaction energies with the target enzyme. The MM/PBSA calculations further supported these findings, showing the lowest binding free energies for grossamide and grossamide K. These computational results are consistent with experimental data, suggesting that grossamide and grossamide K could be potent inhibitors of β-glucuronidase.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
8
|
Alruhaimi RS, Mahmoud AM, Elbagory I, Ahmeda AF, El-Bassuony AA, Lamsabhi AM, Kamel EM. Unveiling the tyrosinase inhibitory potential of phenolics from Centaurium spicatum: Bridging in silico and in vitro perspectives. Bioorg Chem 2024; 147:107397. [PMID: 38691905 DOI: 10.1016/j.bioorg.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76321, Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ashraf A El-Bassuony
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
9
|
Abdalla MMI. Therapeutic potential of adiponectin in prediabetes: strategies, challenges, and future directions. Ther Adv Endocrinol Metab 2024; 15:20420188231222371. [PMID: 38250316 PMCID: PMC10798122 DOI: 10.1177/20420188231222371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Adiponectin, an adipose-derived hormone, plays a pivotal role in glucose regulation and lipid metabolism, with a decrease in circulating adiponectin levels being linked to insulin resistance and prediabetes. This review examines the therapeutic potential of adiponectin in managing prediabetes, elucidating on multiple aspects including its role in glucose and lipid metabolism, influence on insulin sensitivity, and anti-inflammatory properties. Moreover, the paper highlights the latest strategies to augment adiponectin levels, such as gene therapy, pharmacological interventions, dietary modifications, and lifestyle changes. It also addresses the challenges encountered in translating preclinical findings into clinical practice, primarily related to drug delivery, safety, and efficacy. Lastly, the review proposes future directions, underlining the need for large-scale human trials, novel adiponectin analogs, and personalized treatment strategies to harness adiponectin's full therapeutic potential in preventing the transition from prediabetes to diabetes.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Human Biology Department, School of Medicine, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur 57000, Malaysia
| |
Collapse
|
10
|
Xiu W, Wang X, Na Z, Yu S, Wang J, Yang M, Ma Y. Ultrasound-assisted hydrogen peroxide-ascorbic acid method to degrade sweet corncob polysaccharides can help treat type 2 diabetes via multiple pathways in vivo. ULTRASONICS SONOCHEMISTRY 2023; 101:106683. [PMID: 37948893 PMCID: PMC10663900 DOI: 10.1016/j.ultsonch.2023.106683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In this study, we aimed to investigate the impact of various ultrasound durations on the structure and bioactivity of sweet corncob polysaccharides treated with ultrasound-assisted degradation using hydrogen peroxide and ascorbic acid (H2O2-Vc). We subjected sweet corncob polysaccharides to ultrasound treatment for 0, 30, 60, and 90 min alongside the H2O2-Vc method. We then analyzed their chemical composition and structure. Additionally, we administered these polysaccharides to mice with type 2 diabetes (T2DM) through gavage at a dosage of 200 mg/kg/day. The results indicated a significant reduction in the molecular weight of the degraded sweet corncob polysaccharides, while their composition remained relatively stable. However, the basic structure of the polysaccharides was retained. In vivo experiments demonstrated that ultrasound-assisted degradation of these polysaccharides had a positive impact on T2DM, particularly the 60-minute ultrasound treatment (UH-DSCBP-60 min), which effectively controlled blood glucose levels by regulating glycolipid metabolism in the livers of mice with T2DM. This approach also reduced inflammation and oxidative stress levels and inhibited disaccharide activity in the small intestine. We demonstrated that ultrasound can positively affect the sweet corncob polysaccharides hypoglycemic activity. The findings of our study provide a theoretical foundation for the valuable utilization of sweet corncob polysaccharides.
Collapse
Affiliation(s)
- Weiye Xiu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Xin Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China.
| | - Zhiguo Na
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Shiyou Yu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Jingyang Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Mengyuan Yang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Yongqiang Ma
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| |
Collapse
|