1
|
Zonta F, Mammano F, Pantano S. Molecular Dynamics Simulation of Permeation Through Connexin Channels. Methods Mol Biol 2024; 2801:45-56. [PMID: 38578412 DOI: 10.1007/978-1-0716-3842-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Molecular dynamics (MD) simulations are a collection of computational tools that can be used to trace intermolecular interactions at the sub-nanometer level. They offer possibilities that are often unavailable to experimental methods, making MD an ideal complementary technique for the understanding a plethora of biological processes. Thanks to significant efforts by many groups of developers around the world, setting up and running MD simulations has become progressively simpler. However, simulating ionic permeation through membrane channels still presents significant caveats.MD simulations of connexin (Cx) hemichannels (HCs) are particularly problematic because HCs create wide pores in the plasma membrane, and the lateral sizes of the extracellular and intracellular regions are quite different. In this chapter, we provide a detailed instruction to perform MD simulations aimed at computationally modeling the permeation of inorganic ions and larger molecules through Cx HCs.
Collapse
Affiliation(s)
- Francesco Zonta
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | | |
Collapse
|
2
|
Posukh OL, Maslova EA, Danilchenko VY, Zytsar MV, Orishchenko KE. Functional Consequences of Pathogenic Variants of the GJB2 Gene (Cx26) Localized in Different Cx26 Domains. Biomolecules 2023; 13:1521. [PMID: 37892203 PMCID: PMC10604905 DOI: 10.3390/biom13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
One of the most common forms of genetic deafness has been predominantly associated with pathogenic variants in the GJB2 gene, encoding transmembrane protein connexin 26 (Cx26). The Cx26 molecule consists of an N-terminal domain (NT), four transmembrane domains (TM1-TM4), two extracellular loops (EL1 and EL2), a cytoplasmic loop, and a C-terminus (CT). Pathogenic variants in the GJB2 gene, resulting in amino acid substitutions scattered across the Cx26 domains, lead to a variety of clinical outcomes, including the most common non-syndromic autosomal recessive deafness (DFNB1A), autosomal dominant deafness (DFNA3A), as well as syndromic forms combining hearing loss and skin disorders. However, for rare and poorly documented variants, information on the mode of inheritance is often lacking. Numerous in vitro studies have been conducted to elucidate the functional consequences of pathogenic GJB2 variants leading to amino acid substitutions in different domains of Cx26 protein. In this work, we summarized all available data on a mode of inheritance of pathogenic GJB2 variants leading to amino acid substitutions and reviewed published information on their functional effects, with an emphasis on their localization in certain Cx26 domains.
Collapse
Affiliation(s)
- Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Oliveira MC, Cordeiro RM, Bogaerts A. Effect of lipid oxidation on the channel properties of Cx26 hemichannels: A molecular dynamics study. Arch Biochem Biophys 2023; 746:109741. [PMID: 37689256 DOI: 10.1016/j.abb.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
4
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
5
|
Yue B, Haddad BG, Khan U, Chen H, Atalla M, Zhang Z, Zuckerman DM, Reichow SL, Bai D. Connexin 46 and connexin 50 gap junction channel properties are shaped by structural and dynamic features of their N-terminal domains. J Physiol 2021; 599:3313-3335. [PMID: 33876426 PMCID: PMC8249348 DOI: 10.1113/jp281339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Gap junctions formed by different connexins are expressed throughout the body and harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies by cryo-electron microscopy have produced high-resolution models of the related but functionally distinct lens connexins (Cx50 and Cx46) captured in a stable open state, opening the door for structure-function comparison. Here, we conducted comparative molecular dynamics simulation and electrophysiology studies to dissect the isoform-specific differences in Cx46 and Cx50 intercellular channel function. We show that key determinants Cx46 and Cx50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N-terminal domains, in particular the residue at the 9th position and differences in hydrophobic anchoring sites. The results of this study establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating the mechanism of gap junction channels and the molecular basis of disease-causing variants. ABSTRACT Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long-range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor for isoform-specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46-50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free-energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj gating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra- and inter-subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract-linked connexin variants.
Collapse
Affiliation(s)
- Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Bassam G. Haddad
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Umair Khan
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Mena Atalla
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ze Zhang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Steve L. Reichow
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
7
|
Levintov L, Vashisth H. Ligand Recognition in Viral RNA Necessitates Rare Conformational Transitions. J Phys Chem Lett 2020; 11:5426-5432. [PMID: 32551654 DOI: 10.1021/acs.jpclett.0c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) are conformationally flexible molecules that fold into three-dimensional structures and play an important role in different cellular processes as well as in the development of many diseases. RNA has therefore become an important target for developing novel therapeutic approaches. The biophysical processes underlying RNA function are often associated with rare structural transitions that play a key role in ligand recognition. In this work, we probe these rarely occurring transitions using nonequilibrium simulations by characterizing the dissociation of a ligand molecule from an HIV-1 viral RNA element. Specifically, we observed base-flipping rare events that are coupled with ligand binding/unbinding and also provided mechanistic details underlying these transitions.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
8
|
Shen J, Oza AM, Del Castillo I, Duzkale H, Matsunaga T, Pandya A, Kang HP, Mar-Heyming R, Guha S, Moyer K, Lo C, Kenna M, Alexander JJ, Zhang Y, Hirsch Y, Luo M, Cao Y, Wai Choy K, Cheng YF, Avraham KB, Hu X, Garrido G, Moreno-Pelayo MA, Greinwald J, Zhang K, Zeng Y, Brownstein Z, Basel-Salmon L, Davidov B, Frydman M, Weiden T, Nagan N, Willis A, Hemphill SE, Grant AR, Siegert RK, DiStefano MT, Amr SS, Rehm HL, Abou Tayoun AN. Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genet Med 2019; 21:2442-2452. [PMID: 31160754 PMCID: PMC7235630 DOI: 10.1038/s41436-019-0535-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.
Collapse
Affiliation(s)
- Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA.
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA.
| | - Andrea M Oza
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ignacio Del Castillo
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Hatice Duzkale
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Arti Pandya
- University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Saurav Guha
- Counsyl, South San Francisco, CA, USA
- New York Genome Center, New York, NY, 10013, USA
| | | | | | - Margaret Kenna
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John J Alexander
- EGL Genetics/Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- ConsulGene, LLC, Jacksonville, FL, USA
| | - Yan Zhang
- Certer for Medical Genetics, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, USA
| | - Minjie Luo
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ye Cao
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterinary Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Karen B Avraham
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Xinhua Hu
- Department of Biostatistics, Fairbanks School of Public Health and School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Gema Garrido
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel A Moreno-Pelayo
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - John Greinwald
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kejian Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yukun Zeng
- Certer for Medical Genetics, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Zippora Brownstein
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Bella Davidov
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Moshe Frydman
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
- Danek Gartner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, Israel
| | - Narasimhan Nagan
- Integrated Genetics, Laboratory Corporation of America® Holdings, Westborough, MA, USA
| | - Alecia Willis
- Integrated Genetics, Laboratory Corporation of America® Holdings, Research Triangle Park, NC, USA
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
| | - Sami S Amr
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
| | - Heidi L Rehm
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
9
|
Nielsen BS, Zonta F, Farkas T, Litman T, Nielsen MS, MacAulay N. Structural determinants underlying permeant discrimination of the Cx43 hemichannel. J Biol Chem 2019; 294:16789-16803. [PMID: 31554662 DOI: 10.1074/jbc.ra119.007732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/24/2019] [Indexed: 02/03/2023] Open
Abstract
Connexin (Cx) gap junction channels comprise two hemichannels in neighboring cells, and their permeability is well-described, but permeabilities of the single Cx hemichannel remain largely unresolved. Moreover, determination of isoform-specific Cx hemichannel permeability is challenging because of concurrent expression of other channels with similar permeability profiles and inhibitor sensitivities. The mammalian Cx hemichannels Cx30 and Cx43 are gated by extracellular divalent cations, removal of which promotes fluorescent dye uptake in both channels but atomic ion conductance only through Cx30. To determine the molecular determinants of this difference, here we employed chimeras and mutagenesis of predicted pore-lining residues in Cx43. We expressed the mutated channels in Xenopus laevis oocytes to avoid background activity of alternative channels. Oocytes expressing a Cx43 hemichannel chimera containing the N terminus or the first extracellular loop from Cx30 displayed ethidium uptake and, unlike WT Cx43, ion conduction, an observation further supported by molecular dynamics simulations. Additional C-terminal truncation of the chimeric Cx43 hemichannel elicited an even greater ion conductance with a magnitude closer to that of Cx30. The inhibitory profile for the connexin hemichannels depended on the permeant, with conventional connexin hemichannel inhibitors having a higher potency toward the ion conductance pathway than toward fluorescent dye uptake. Our results demonstrate a permeant-dependent, isoform-specific inhibition of connexin hemichannels. They further reveal that the outer segments of the pore-lining region, including the N terminus and the first extracellular loop, together with the C terminus preclude ion conductance of the open Cx43 hemichannel.
Collapse
Affiliation(s)
- Brian Skriver Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Thomas Farkas
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Albano JMR, Mussini N, Toriano R, Facelli JC, Ferraro MB, Pickholz M. Calcium interactions with Cx26 hemmichannel: Spatial association between MD simulations biding sites and variant pathogenicity. Comput Biol Chem 2018; 77:331-342. [PMID: 30466042 DOI: 10.1016/j.compbiolchem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/08/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
Connexinophaties are a collective of diseases related to connexin channels and hemichannels. In particular many Cx26 alterations are strongly associated to human deafness. Calcium plays an important role on this structures regulation. Here, using calcium as a probe, extensive atomistic Molecular Dynamics simulations were performed on the Cx26 hemichannel embedded in a lipid bilayer. Exploring different initial conditions and calcium concentration, simulation reached ∼4 μs. Several analysis were carried out in order to reveal the calcium distribution and localization, such as electron density profiles, density maps and distance time evolution, which is directly associated to the interaction energy. Specific amino acid interactions with calcium and their stability were capture within this context. Few of these sites such as, GLU42, GLU47, GLY45 and ASP50, were already suggested in the literature. Besides, we identified novel calcium biding sites: ASP2, ASP117, ASP159, GLU114, GLU119, GLU120 and VAL226. To the best of our knowledge, this is the first time that these sites are reported within this context. Furthermore, since various pathologies involving the Cx26 hemichannel are associated with pathogenic variants in the corresponding CJB2 gene, using ClinVar, we were able to spatially associate the 3D positions of the identified calcium binding sites within the framework of this work with reported pathogenic variants in the CJB2 gene. This study presents a first step on finding associations between molecular features and pathological variants of the Cx26 hemichannel.
Collapse
Affiliation(s)
- Juan M R Albano
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Nahuel Mussini
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Roxana Toriano
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, IFIBIO Houssay, Buenos Aires, Argentina
| | - Julio C Facelli
- Department of Biomedical Informatics, The University of Utah, 421 Wakara Way, Suite 140, Salt Lake City, UT 84108, USA.
| | - Marta B Ferraro
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Mónica Pickholz
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Zonta F, Buratto D, Crispino G, Carrer A, Bruno F, Yang G, Mammano F, Pantano S. Cues to Opening Mechanisms From in Silico Electric Field Excitation of Cx26 Hemichannel and in Vitro Mutagenesis Studies in HeLa Transfectans. Front Mol Neurosci 2018; 11:170. [PMID: 29904340 PMCID: PMC5990870 DOI: 10.3389/fnmol.2018.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/04/2018] [Indexed: 01/06/2023] Open
Abstract
Connexin channels play numerous essential roles in virtually every organ by mediating solute exchange between adjacent cells, or between cytoplasm and extracellular milieu. Our understanding of the structure-function relationship of connexin channels relies on X-ray crystallographic data for human connexin 26 (hCx26) intercellular gap junction channels. Comparison of experimental data and molecular dynamics simulations suggests that the published structures represent neither fully-open nor closed configurations. To facilitate the search for alternative stable configurations, we developed a coarse grained (CG) molecular model of the hCx26 hemichannel and studied its responses to external electric fields. When challenged by a field of 0.06 V/nm, the hemichannel relaxed toward a novel configuration characterized by a widened pore and an increased bending of the second transmembrane helix (TM2) at the level of the conserved Pro87. A point mutation that inhibited such transition in our simulations impeded hemichannel opening in electrophysiology and dye uptake experiments conducted on HeLa tranfectants. These results suggest that the hCx26 hemichannel uses a global degree of freedom to transit between different configuration states, which may be shared among the whole connexin family.
Collapse
Affiliation(s)
- Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
| | - Giulia Crispino
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Andrea Carrer
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Sergio Pantano
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
13
|
Agrahari AK, Kumar A, R S, Zayed H, C GPD. Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. J Theor Biol 2018; 437:305-317. [PMID: 29111421 DOI: 10.1016/j.jtbi.2017.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; Biosciences Sector, Center for advanced study research and development in Sardinia (CRS4), Loc. Piscina Manna, 09010 Pula, Italy
| | - Siva R
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - George Priya Doss C
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
del Castillo FJ, del Castillo I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci 2017; 10:428. [PMID: 29311818 PMCID: PMC5743749 DOI: 10.3389/fnmol.2017.00428] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
The inner ear is a very complex sensory organ whose development and function depend on finely balanced interactions among diverse cell types. The many different kinds of inner ear supporting cells play the essential roles of providing physical and physiological support to sensory hair cells and of maintaining cochlear homeostasis. Appropriately enough, the gene most commonly mutated among subjects with hereditary hearing impairment (HI), GJB2, encodes the connexin-26 (Cx26) gap-junction channel protein that underlies both intercellular communication among supporting cells and homeostasis of the cochlear fluids, endolymph and perilymph. GJB2 lies at the DFNB1 locus on 13q12. The specific kind of HI associated with this locus is caused by recessively-inherited mutations that inactivate the two alleles of the GJB2 gene, either in homozygous or compound heterozygous states. We describe the many diverse classes of genetic alterations that result in DFNB1 HI, such as large deletions that either destroy the GJB2 gene or remove a regulatory element essential for GJB2 expression, point mutations that interfere with promoter function or splicing, and small insertions or deletions and nucleotide substitutions that target the GJB2 coding sequence. We focus on how these alterations disrupt GJB2 and Cx26 functions and on their different effects on cochlear development and physiology. We finally discuss the diversity of clinical features of DFNB1 HI as regards severity, age of onset, inner ear malformations and vestibular dysfunction, highlighting the areas where future research should be concentrated.
Collapse
Affiliation(s)
- Francisco J. del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
15
|
Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77:522-547. [PMID: 27582044 PMCID: PMC5412853 DOI: 10.1002/dneu.22447] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017.
Collapse
Affiliation(s)
- I Martha Skerrett
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| | - Jamal B Williams
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| |
Collapse
|
16
|
Mondal A, Sachse FB, Moreno AP. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Front Physiol 2017; 8:206. [PMID: 28428758 PMCID: PMC5382223 DOI: 10.3389/fphys.2017.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023] Open
Abstract
Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger molecules in cardiomyocytes. We also assess the potency of fibroblasts in aggravating such imbalances through Cx43-Cx45 heterotypic channels in fibrotic heart tissue.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Frank B Sachse
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Alonso P Moreno
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA.,Department of Internal Medicine, Cardiology, University of UtahSalt Lake City, UT, USA
| |
Collapse
|
17
|
Varela-Eirin M, Varela-Vazquez A, Rodríguez-Candela Mateos M, Vila-Sanjurjo A, Fonseca E, Mascareñas JL, Eugenio Vázquez M, Mayan MD. Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:728-736. [PMID: 28167212 DOI: 10.1016/j.bbamcr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Connexins (Cxs) are integral membrane proteins that form high-conductance plasma membrane channels, allowing communication from cell to cell (via gap junctions) and from cells to the extracellular environment (via hemichannels). Initially described for their role in joining excitable cells (nerve and muscle), gap junctions (GJs) are found between virtually all cells in solid tissues and are essential for functional coordination by enabling the direct transfer of small signalling molecules, metabolites, ions, and electrical signals from cell to cell. Several studies have revealed diverse channel-independent functions of Cxs, which include the control of cell growth and tumourigenicity. Connexin43 (Cx43) is the most widespread Cx in the human body. The myriad roles of Cx43 and its implication in the development of disorders such as cancer, inflammation, osteoarthritis and Alzheimer's disease have given rise to many novel questions. Several RNA- and DNA-binding motifs were predicted in the Cx43 and Cx26 sequences using different computational methods. This review provides insights into new, ground-breaking functions of Cxs, highlighting important areas for future work such as transfer of genetic information through extracellular vesicles. We discuss the implication of potential RNA- and DNA-binding domains in the Cx43 and Cx26 sequences in the cellular communication and control of signalling pathways.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Adrian Varela-Vazquez
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Marina Rodríguez-Candela Mateos
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Anton Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade de A Coruña (UDC), Campus Zapateira, s/n 15.071, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), Servizo Galego de Saúde (SERGAS), University of A Coruña, Xubias de Arriba, 84 15006 A Coruña, Spain.
| |
Collapse
|
18
|
Villanelo F, Escalona Y, Pareja-Barrueto C, Garate JA, Skerrett IM, Perez-Acle T. Accessing gap-junction channel structure-function relationships through molecular modeling and simulations. BMC Cell Biol 2017; 18:5. [PMID: 28124624 PMCID: PMC5267332 DOI: 10.1186/s12860-016-0121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Gap junction channels (GJCs) are massive protein channels connecting the cytoplasm of adjacent cells. These channels allow intercellular transfer of molecules up to ~1 kDa, including water, ions and other metabolites. Unveiling structure-function relationships coded into the molecular architecture of these channels is necessary to gain insight on their vast biological function including electrical synapse, inflammation, development and tissular homeostasis. From early works, computational methods have been critical to analyze and interpret experimental observations. Upon the availability of crystallographic structures, molecular modeling and simulations have become a valuable tool to assess structure-function relationships in GJCs. Modeling different connexin isoforms, simulating the transport process, and exploring molecular variants, have provided new hypotheses and out-of-the-box approaches to the study of these important channels. Methods Here, we review foundational structural studies and recent developments on GJCs using molecular modeling and simulation techniques, highlighting the methods and the cross-talk with experimental evidence. Results and discussion By comparing results obtained by molecular modeling and simulations techniques with structural and functional information obtained from both recent literature and structural databases, we provide a critical assesment of structure-function relationships that can be obtained from the junction between theoretical and experimental evidence.
Collapse
Affiliation(s)
- F Villanelo
- Computational Biology Lab. Fundación Ciencia & Vida, Santiago, Chile
| | - Y Escalona
- Computational Biology Lab. Fundación Ciencia & Vida, Santiago, Chile
| | - C Pareja-Barrueto
- Computational Biology Lab. Fundación Ciencia & Vida, Santiago, Chile
| | - J A Garate
- Computational Biology Lab. Fundación Ciencia & Vida, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso, Chile
| | - I M Skerrett
- State University of New York (SUNY) Buffalo State, Buffalo, NY, 14222, USA
| | - T Perez-Acle
- Computational Biology Lab. Fundación Ciencia & Vida, Santiago, Chile. .,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso, Chile.
| |
Collapse
|
19
|
Computational Studies of Molecular Permeation through Connexin26 Channels. Biophys J 2017; 110:584-599. [PMID: 26840724 DOI: 10.1016/j.bpj.2015.11.3528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
A signal property of connexin channels is the ability to mediate selective diffusive movement of molecules through plasma membrane(s), but the energetics and determinants of molecular movement through these channels have yet to be understood. Different connexin channels have distinct molecular selectivities that cannot be explained simply on the basis of size or charge of the permeants. To gain insight into the forces and interactions that underlie selective molecular permeation, we investigated the energetics of two uncharged derivatized sugars, one permeable and one impermeable, through a validated connexin26 (Cx26) channel structural model, using molecular dynamics and associated analytic tools. The system is a Cx26 channel equilibrated in explicit membrane/solvent, shown by Brownian dynamics to reproduce key conductance characteristics of the native channel. The results are consistent with the known difference in permeability to each molecule. The energetic barriers extend through most of the pore length, rather than being highly localized as in ion-specific channels. There is little evidence for binding within the pore. Force decomposition reveals how, for each tested molecule, interactions with water and the Cx26 protein vary over the length of the pore and reveals a significant contribution from hydrogen bonding and interaction with K(+). The flexibility of the pore width varies along its length, and the tested molecules have differential effects on pore width as they pass through. Potential sites of interaction within the pore are defined for each molecule. The results suggest that for the tested molecules, differences in hydrogen bonding and entropic factors arising from permeant flexibility substantially contribute to the energetics of permeation. This work highlights factors involved in selective molecular permeation that differ from those that define selectivity among atomic ions.
Collapse
|
20
|
Dória M, Fernandes S, Moura CP. Study of Met34Thr variant in nonsyndromic hearing loss in four Portuguese families. Porto Biomed J 2016; 1:32-35. [PMID: 32258544 DOI: 10.1016/j.pbj.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/28/2015] [Indexed: 10/21/2022] Open
Abstract
Objective The purpose of this work was to characterize the Met34Thr variant in a group of patients with nonsyndromic hearing loss, in order to establish a genotype-phenotype correlation. Methods 13 cases from 4 unrelated Portuguese families were selected, in which one or more hearing-impaired members had Met34Thr variant. Results Met34Thr variant was identified in 11/13 cases. Two cases have an additional mutation - Val153Ile and 35delG. Hearing loss was mild in 2 patients (Met34Thr/Val153Ile; Met34Thr/Met34Thr), moderate in 3(Met34Thr/WT; Met34Thr/35delG; Met34Thr/Met34Thr), severe in 2 (2 Met34Thr/WT) and profound in 1 (Met34Thr/WT). Three individuals with Met34Thr had normal hearing thresholds. Conclusion The present data corroborate the hypothesis that the Met34Thr variant is associated with mild-to-severe forms of deafness and that this variant seems to segregate with a dominant hearing loss with incomplete penetrance and a variable expression of the phenotype. However, other factors are likely to also have a pathologic effect.
Collapse
Affiliation(s)
- Mariana Dória
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Susana Fernandes
- Department of Human Genetics, Faculty of Medicine, University of Porto/São João Hospital Center, Porto, Portugal.,Institute for Research and Innovation in Health/Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Carla Pinto Moura
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health/Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Otorhinolaryngology and Department of Human Genetics, São João Hospital Center, Porto, Portugal
| |
Collapse
|
21
|
Cascella R, Strafella C, Gambardella S, Longo G, Borgiani P, Sangiuolo F, Novelli G, Giardina E. Two molecular assays for the rapid and inexpensive detection ofGJB2andGJB6mutations. Electrophoresis 2016; 37:860-4. [DOI: 10.1002/elps.201500346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Raffaella Cascella
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
- Emotest Laboratory; Pozzuoli Italy
| | - Claudia Strafella
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
| | | | - Giuliana Longo
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, School of Medicine; University of Rome “Tor Vergata,”; Rome Italy
- Molecular Genetics Laboratory UILDM; Santa Lucia Foundation; Rome Italy
| |
Collapse
|
22
|
Gupta A, Bansal M. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Phys Chem Chem Phys 2016; 18:28767-28780. [DOI: 10.1039/c6cp04617g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work highlights a sequence dependent unfolding pathway of an RNA pseudoknot under force-induced pulling conditions.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
23
|
Dória M, Neto AP, Santos AC, Barros H, Fernandes S, Moura CP. Prevalence of 35delG and Met34Thr GJB2 variants in Portuguese samples. Int J Pediatr Otorhinolaryngol 2015; 79:2187-90. [PMID: 26482070 DOI: 10.1016/j.ijporl.2015.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To estimate the prevalence of 35delG and Met34Thr variants in a Portuguese children's community sample and to compare these frequencies with nonsyndromic hearing-loss patients. METHODS 502 children were randomly selected among the 8647 participants of the Portuguese birth cohort Generation XXI, and screened for Met34Thr and 35delG variants in the GJB2 gene. These variants were also studied on 89 index-cases, observed in the Clinic of "Hereditary Hearing-loss" in Saint John's Hospital Center, presenting a mild to profound nonsyndromic hearing-loss. RESULTS Among the 502 children from Generation XXI, 10 were heterozygous for the 35delG variant (95% Confidence Interval 1.03-3.68) and 1 homozygous (95% Confidence Interval 0.01-1.24). Other 10 children presented heterozygosity for the Met34Thr variant (95% Confidence Interval 1.03-3.68). No homozygous for the Met34Thr or compound heterozygotes (35delG/Met34Thr) were found. In the total of 89 nonsyndromic hearing-loss patients, 5 (95% Confidence Interval 2.11-12.8) were heterozygous and 7 (95% Confidence Interval 3.61-15.6) were homozygous for the 35delG variant. The Met34Thr variant was found in 4 patients, 2 heterozygous (95% Confidence Interval 0.13-8.31) and 2 homozygous (95% Confidence Interval 0.13-8.31). CONCLUSION The carrier frequency of 35delG and Met34Thr variants in a Portuguese sample was 1 in 50. Our data suggests that the 35delG mutation has an association with deafness. For the Met34Thr variant, no association was observed. However, Met34Thr seemed to conform to an additive model in hearing-loss.
Collapse
Affiliation(s)
- Mariana Dória
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Ana Paula Neto
- Department of Human Genetics, Faculty of Medicine, University of Porto, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health/Instituto de Investigação e Inovação em Saúde, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Cristina Santos
- Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; EPI Unit-Institute of Public Health, University of Porto, Rua das Taipas no. 135, 4050-600 Porto, Portugal
| | - Henrique Barros
- Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; EPI Unit-Institute of Public Health, University of Porto, Rua das Taipas no. 135, 4050-600 Porto, Portugal
| | - Susana Fernandes
- Department of Human Genetics, Faculty of Medicine, University of Porto, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health/Instituto de Investigação e Inovação em Saúde, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carla Pinto Moura
- Department of Human Genetics, Faculty of Medicine, University of Porto, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health/Instituto de Investigação e Inovação em Saúde, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Otorhinolaryngology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
24
|
Brennan MJ, Karcz J, Vaughn NR, Woolwine-Cunningham Y, DePriest AD, Escalona Y, Perez-Acle T, Skerrett IM. Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32. J Biol Chem 2015; 290:17074-84. [PMID: 25969535 PMCID: PMC4498046 DOI: 10.1074/jbc.m115.650747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.
Collapse
Affiliation(s)
- Matthew J Brennan
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Jennifer Karcz
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Nicholas R Vaughn
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Yvonne Woolwine-Cunningham
- the Clinical and Translational Research Center, State University of New York at Buffalo, Buffalo, New York 14214
| | - Adam D DePriest
- the Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Yerko Escalona
- the Computational Biology Lab, Fundación Ciencia and Vida, 7780344 Santiago, Chile, and the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2360102 Valparaíso, Chile
| | - Tomas Perez-Acle
- the Computational Biology Lab, Fundación Ciencia and Vida, 7780344 Santiago, Chile, and the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2360102 Valparaíso, Chile
| | - I Martha Skerrett
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222,
| |
Collapse
|
25
|
Sengupta M, Sarkar D, Ganguly K, Sengupta D, Bhaskar S, Ray K. In silico analyses of missense mutations in coagulation factor VIII: identification of severity determinants of haemophilia A. Haemophilia 2015; 21:662-9. [PMID: 25854144 DOI: 10.1111/hae.12662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
Abstract
Factor VIII (FVIII) mutations cause haemophilia A (HA), an X-linked recessive coagulation disorder. Over 1000 missense mutations in FVIII are known and they lead to variable clinical phenotypes (severe, moderate and mild). The exact molecular basis of this phenotypic heterogeneity by FVIII missense mutations is elusive to date. In this study, we aimed to identify the severity determinants that cause phenotypic heterogeneity of HA. We compiled and curated a data set of 766 missense mutations from the repertoire of missense mutations in FVIII. We analysed these mutations by computational programs (e.g. Swiss-PdbViewer) and different mutation analysis servers (e.g. SIFT, PROVEAN, CUPSAT, PolyPhen2, MutPred); and various sequence- and structure-based parameters were assessed for any significant distribution bias among different HA phenotypes. Our analyses suggest that 'mutations in evolutionary conserved residues', 'mutations in buried residues', mutation-induced 'steric clash' and 'surface electrostatic potential alteration' act as risk factors towards severe HA. We have developed a grading system for FVIII mutations combining the severity determinants, and the grading pattern correlates with HA phenotype. This study will help to correctly associate the HA phenotype with a mutation and aid early characterization of novel variants.
Collapse
Affiliation(s)
- M Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India
| | - D Sarkar
- Department of Genetics, University of Calcutta, Kolkata, India
| | - K Ganguly
- Department of Genetics, University of Calcutta, Kolkata, India
| | - D Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India
| | - S Bhaskar
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - K Ray
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India.,Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
26
|
Zonta F, Girotto G, Buratto D, Crispino G, Morgan A, Abdulhadi K, Alkowari M, Badii R, Gasparini P, Mammano F. The p.Cys169Tyr variant of connexin 26 is not a polymorphism. Hum Mol Genet 2015; 24:2641-8. [PMID: 25628337 PMCID: PMC4383868 DOI: 10.1093/hmg/ddv026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the GJB2 gene, which encodes the gap junction protein connexin 26 (Cx26), are the primary cause of hereditary prelingual hearing impairment. Here, the p.Cys169Tyr missense mutation of Cx26 (Cx26C169Y), previously classified as a polymorphism, has been identified as causative of severe hearing loss in two Qatari families. We have analyzed the effect of this mutation using a combination of confocal immunofluorescence microscopy and molecular dynamics simulations. At the cellular level, our results show that the mutant protein fails to form junctional channels in HeLa transfectants despite being correctly targeted to the plasma membrane. At the molecular level, this effect can be accounted for by disruption of the disulfide bridge that Cys169 forms with Cys64 in the wild-type structure (Cx26WT). The lack of the disulfide bridge in the Cx26C169Y protein causes a spatial rearrangement of two important residues, Asn176 and Thr177. In the Cx26WT protein, these residues play a crucial role in the intra-molecular interactions that permit the formation of an intercellular channel by the head-to-head docking of two opposing hemichannels resident in the plasma membrane of adjacent cells. Our results elucidate the molecular pathogenesis of hereditary hearing loss due to the connexin mutation and facilitate the understanding of its role in both healthy and affected individuals.
Collapse
Affiliation(s)
- Francesco Zonta
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Damiano Buratto
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy
| | - Giulia Crispino
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy, Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
| | - Anna Morgan
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Khalid Abdulhadi
- Audiology and Balance Unit, National Program for Early Detection of Hearing Loss, WH, Hamad Medical Corporation (HMC) Doha, Doha, Qatar
| | - Moza Alkowari
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ramin Badii
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy, Medical Genetics, Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy and
| | - Fabio Mammano
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy, Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy, CNR Institute of Cell Biology and Neurobiology, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
27
|
Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:673895. [PMID: 25003127 PMCID: PMC4066682 DOI: 10.1155/2014/673895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
Connexin50 (Cx50) mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.
Collapse
|