1
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Field SE, Curle AJ, Barker RA. Inflammation and Huntington's disease - a neglected therapeutic target? Expert Opin Investig Drugs 2024; 33:451-467. [PMID: 38758356 DOI: 10.1080/13543784.2024.2348738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.
Collapse
Affiliation(s)
- Sophie E Field
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Annabel J Curle
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
4
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Estrada-Sánchez AM, Rebec GV, Galvan L. Editorial: New insight into Huntington's disease: From neuropathology to possible therapeutic targets. Front Neurosci 2023; 17:1138712. [PMID: 36816128 PMCID: PMC9933495 DOI: 10.3389/fnins.2023.1138712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico,*Correspondence: Ana María Estrada-Sánchez ✉
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Laurie Galvan
- Sciences Department, Université de Nîmes, Nîmes, France
| |
Collapse
|
6
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
7
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
8
|
Singh A, Agrawal N. Metabolism in Huntington's disease: a major contributor to pathology. Metab Brain Dis 2022; 37:1757-1771. [PMID: 34704220 DOI: 10.1007/s11011-021-00844-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
9
|
Behavioral- and blood-based biomarkers for Huntington's disease: Studies on the R6/1 mouse model with prospects for early diagnosis and monitoring of the disease. Brain Behav Immun Health 2022; 23:100482. [PMID: 35799674 PMCID: PMC9253406 DOI: 10.1016/j.bbih.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Objective Methods Results Conclusion Gender is one of the factors that determine the rate of progression of Huntington's disease symptoms. A set of non-invasive biomarkers that are useful in the diagnosis and monitoring of Huntington's disease progression. Hormonal profile may be a factor in the efficacy of potential therapy for Huntington's disease.
Collapse
|
10
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
11
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
12
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
13
|
Singh A, Agrawal N. Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166127. [PMID: 33722743 DOI: 10.1016/j.bbadis.2021.166127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is an inherited, progressively debilitating disorder marked by prominent degeneration in striatal and cortical brain regions. HD is caused by (CAG)n repeat expansion in huntingtin (HTT) gene that translates into a mutant form of the ubiquitously present Huntingtin (HTT) protein. Extensive metabolic dysfunction coexisting with overt neuropathies has been evidenced in clinical and experimental settings of HD. Body weight loss despite normal to high caloric intake remains a critical determinant of the disease progression and a challenge for therapeutic interventions. In the present study, we intended to monitor the cellular and molecular perturbations in Drosophila, caused by pan-neuronal expression of mHTT (mutant Huntingtin) protein. We found aberrant transcription profile of key lipolytic and lipogenic genes in whole-body of the fly with disease progression. Interestingly, fatbody undergoes extensive alteration of vital cellular processes and eventually surrenders to increased apoptotic cell death in terminal stage of the disease. Extensive mitochondrial dysfunction from early disease stage along with calcium derangement at terminal stage were observed in fatbody, which contribute to its deteriorating integrity. All the mechanisms were monitored progressively, at different disease stages, and many alterations were documented in the early stage itself. Our study hence provides insight into the mechanisms through which neuronal expression of mHTT might be inflicting the profound systemic effects, specifically on lipid metabolism, and may open new therapeutic avenues for alleviation of the multidimensional disease.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
14
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
15
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential. Neuropeptides 2021; 85:102112. [PMID: 33333485 DOI: 10.1016/j.npep.2020.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
16
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Ghrelin mitigates MPP +-induced cytotoxicity: Involvement of ERK1/2-mediated Nrf2/HO-1 and endoplasmic reticulum stress PERK signaling pathway. Peptides 2020; 133:170374. [PMID: 32814076 DOI: 10.1016/j.peptides.2020.170374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a common progressive and multifactorial neurodegenerative disease. Current pharmacological therapies for PD are inadequate and often accompanied by serious side effects. In search of neuroprotective agents being considered to be beneficial to PD therapy. Ghrelin confers neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned PD model, but the underlying mechanism remains not fully elucidated. Here, we utilized human neuroblastoma SH-SY5Y cells exposed to MPP+ as a PD model to investigate the underlying mechanism of Ghrelin. In our present work, cell viability, cell apoptosis, oxidative stress-related indicators, and the level of Nrf2, HO-1, PERK, eIF2α, ATF4, CHOP, and ERK1/2 were examined. The results showed that Ghrelin attenuated MPP+-induced change of cell viability, apoptosis, coupled with decreased Cytochrome c, caspase-9, and caspase-3 expressions. Consistently, Ghrelin suppressed MPP+-induced oxidative stress. Moreover, Ghrelin markedly enhanced Nrf2 expression and nuclear accumulation as well as HO-1 induction. Further investigations showed that Ghrelin significantly inhibited the endoplasmic reticulum stress PERK-eIF2α-ATF4-CHOP pathway. Interestingly, we then found that Ghrelin promoted phosphorylation of ERK1/2, and pharmacological inhibition of ERK signaling abolished the cytoprotective effect of Ghrelin. Furthermore, we also found promoting the activation of the Nrf2/ HO-1 pathway and suppressing of the PERK pathway were mediated by ERK1/2. These findings provided novel insights into the underlying mechanisms of Ghrelin exerted protective effect, suggesting its potential as a novel therapeutic strategy against PD.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, China
| | | | - Junge Zhu
- Cheeloo College of Medicine, Shandong University China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University China.
| |
Collapse
|
17
|
Blood Oxidative Stress Marker Aberrations in Patients with Huntington's Disease: A Meta-Analysis Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9187195. [PMID: 32963705 PMCID: PMC7499314 DOI: 10.1155/2020/9187195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a hereditary autosomal dominant neurodegenerative disease. Although studies have shown that blood oxidative stress markers are dysregulated in HD patients, clinical data on the blood oxidative stress markers of HD patients is inconsistent. To better understand the pathogenesis of HD, we performed a systematic review and meta-analysis of blood oxidative stress markers in HD patients and healthy control (HC) subjects. A database search from PubMed and Web of Science identified 12 studies with 375 HD patients and 447 HC subjects in this meta-analysis. A random-effects meta-analysis showed that blood lipid peroxidation products (Hedges' g = 0.883, 95%CI = 0.637 to 1.130, p < 0.001), 8-hydroxyguanosine (Hedges' g = 1.727, 95%CI = 0.489 to 2.965, p = 0.006) levels, and the activity of glutathione peroxidase (Hedges' g = 2.026, 95%CI = 0.570 to 3.482, p = 0.006) were significantly increased in HD patients compared to controls. In contrast, reduced glutathione levels were lower in HD patients than in controls (Hedges' g = −0.611, 95%CI = −1.016 to − 0.207, p = 0.003). However, blood superoxide dismutase, cholesterol, high-density lipoproteins, low-density lipoproteins, and triglycerides did not show significant differences between cases and controls. Taken together, this study clarified the associations between blood oxidative stress markers and HD, supporting the clinical evidence that HD is accompanied by increased oxidative stress.
Collapse
|
18
|
Corey-Bloom J, Fischer RS, Kim A, Snell C, Parkin GM, Granger DA, Granger SW, Thomas EA. Levels of Interleukin-6 in Saliva, but Not Plasma, Correlate with Clinical Metrics in Huntington's Disease Patients and Healthy Control Subjects. Int J Mol Sci 2020; 21:E6363. [PMID: 32887270 PMCID: PMC7503233 DOI: 10.3390/ijms21176363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests that inflammatory responses, in both the brain and peripheral tissues, contribute to disease pathology in Huntington's disease (HD), an inherited, progressive neurodegenerative disorder typically affecting adults in their 30-40 s. Hence, studies of inflammation-related markers in peripheral fluids might be useful to better characterize disease features. In this study, we measured levels of C-reactive protein (CRP), Interleukin-6 (IL-6), interleukin 1 beta (IL-1B), and alpha-amylase (AA) in saliva and plasma from n = 125 subjects, including n = 37 manifest HD patients, n = 36 premanifest patients, and n = 52 healthy controls, using immunoassays. We found increases in salivary levels of IL-6, IL-1B and CRP across different disease groups and increased levels of IL-6 in the plasma of HD patients as compared to premanifest patients and controls. The levels of salivary IL-6 were significantly correlated with each of the other salivary markers, as well as with IL-6 levels measured in plasma. Further, salivary IL-6 and IL-1B levels were significantly positively correlated with Total Motor Score (TMS) and chorea scores and negatively correlated with Total Functional Capacity (TFC) in HD patients, whereby in healthy control subjects, IL-6 was significantly negatively correlated with Montreal Cognitive Assessment (MoCA) and the Symbol Digit Modalities test (SDM). Interestingly, the plasma levels of IL-6 did not show similar correlations to any clinical measures in either HD or control subjects. These findings suggest that salivary IL-6 is particularly relevant as a potential non-invasive biomarker for HD symptoms. The advent of an effective, dependable salivary biomarker would meet the urgent need for a less invasive means of identifying and monitoring HD disease progression.
Collapse
Affiliation(s)
- Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, CA 92037, USA; (J.C.-B.); (C.S.)
| | - Ryan S. Fischer
- Salimetrics, LLC, Carlsbad, CA 92008, USA; (R.S.F.); (S.W.G.)
| | - Aeri Kim
- Department of Neurosciences, University of California, San Diego, CA 92037, USA; (J.C.-B.); (C.S.)
| | - Chase Snell
- Department of Neurosciences, University of California, San Diego, CA 92037, USA; (J.C.-B.); (C.S.)
| | - Georgia M. Parkin
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA; (G.M.P.); (D.A.G.)
- Department of Epidemiology, University of California Irvine, Irvine, CA 92697, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA; (G.M.P.); (D.A.G.)
- Bloomberg School of Public Health, and School of Nursing, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Elizabeth A. Thomas
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA; (G.M.P.); (D.A.G.)
- Department of Epidemiology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Brás IC, König A, Outeiro TF. Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. J Huntingtons Dis 2020; 8:245-256. [PMID: 31322580 PMCID: PMC6839463 DOI: 10.3233/jhd-190366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycation is the non-enzymatic reaction between reactive dicarbonyls and amino groups, and gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). Accumulation of AGEs on proteins is inevitable, and is associated with the aging process. Importantly, glycation is highly relevant in diabetic patients that experience periods of hyperglycemia. AGEs also play an important role in neurodegenerative diseases including Alzheimer’s (AD) and Parkinson’s disease (PD). Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by an expansion of a CAG repeat in the huntingtin gene. The resulting expanded polyglutamine stretch in the huntingtin (HTT) protein induces its misfolding and aggregation, leading to neuronal dysfunction and death. HD patients exhibit chorea and psychiatric disturbances, along with abnormalities in glucose and energy homeostasis. Interestingly, an increased prevalence of diabetes mellitus has been reported in HD and in other CAG triplet repeat disorders. However, the mechanisms underlying the connection between glycation and HD progression remain unclear. In this review, we explore the possible connection between glycation and proteostasis imbalances in HD, and posit that it may contribute to disease progression, possibly by accelerating protein aggregation and deposition. Finally, we review therapeutic interventions that might be able to alleviate the negative impact of glycation in HD.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol 2020; 184:101720. [DOI: 10.1016/j.pneurobio.2019.101720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
22
|
Alonso R, Pisa D, Carrasco L. Brain Microbiota in Huntington's Disease Patients. Front Microbiol 2019; 10:2622. [PMID: 31798558 PMCID: PMC6861841 DOI: 10.3389/fmicb.2019.02622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
One of the most important challenges facing medical science is to better understand the cause of neuronal pathology in neurodegenerative diseases. Such is the case for Huntington's disease (HD), a genetic disorder primarily caused by a triplet expansion in the Huntingtin gene (HTT). Although aberrant HTT is expressed from embryogenesis, it remains puzzling as to why the onset of disease symptoms manifest only after several decades of life. In the present study, we investigated the possibility of microbial infection in brain tissue from patients with HD, reasoning that perhaps mutated HTT could be deleterious for immune cells and neural tissue, and could facilitate microbial colonization. Using immunohistochemistry approaches, we observed a variety of fungal structures in the striatum and frontal cortex of seven HD patients. Some of these fungi were found in close proximity to the nucleus, or even as intranuclear inclusions. Identification of the fungal species was accomplished by next-generation sequencing (NGS). Interestingly, some genera, such as Ramularia, appeared unique to HD patients, and have not been previously described in other neurodegenerative diseases. Several bacterial species were also identified both by PCR and NGS. Notably, a curved and filamentous structure that immunoreacts with anti-bacterial antibodies was characteristic of HD brains and has not been previously observed in brain tissue from neurodegenerative patients. Prevalent bacterial genera included Pseudomonas, Acinetobacter, and Burkholderia. Collectively, our results represent the first attempt to identify the brain microbiota in HD. Our observations suggest that microbial colonization may be a risk factor for HD and might explain why the onset of the disease appears after several decades of life. Importantly, they may open a new field of investigation and could help in the design of new therapeutic strategies for this devastating disorder.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Silajdžić E, Björkqvist M. A Critical Evaluation of Wet Biomarkers for Huntington's Disease: Current Status and Ways Forward. J Huntingtons Dis 2019; 7:109-135. [PMID: 29614689 PMCID: PMC6004896 DOI: 10.3233/jhd-170273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an unmet clinical need for objective biomarkers to monitor disease progression and treatment response in Huntington's disease (HD). The aim of this review is, therefore, to provide practical advice for biomarker discovery and to summarise studies on biofluid markers for HD. A PubMed search was performed to review literature with regard to candidate saliva, urine, blood and cerebrospinal fluid biomarkers for HD. Information has been organised into tables to allow a pragmatic approach to the discussion of the evidence and generation of practical recommendations for future studies. Many of the markers published converge on metabolic and inflammatory pathways, although changes in other analytes representing antioxidant and growth factor pathways have also been found. The most promising markers reflect neuronal and glial degeneration, particularly neurofilament light chain. International collaboration to standardise assays and study protocols, as well as to recruit sufficiently large cohorts, will facilitate future biomarker discovery and development.
Collapse
Affiliation(s)
- Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Björkqvist
- Department of Experimental Medical Science, Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Rudenko O, Springer C, Skov LJ, Madsen AN, Hasholt L, Nørremølle A, Holst B. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. J Neuroendocrinol 2019; 31:e12699. [PMID: 30776164 DOI: 10.1111/jne.12699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a heritable neurodegenerative disorder, characterised by metabolic disturbances, along with cognitive and psychiatric impairments. Targeting metabolic HD dysfunction via the maintenance of body weight and fat mass and restoration of peripheral energy metabolism can improve the progression of neurological symptoms. In this respect, we focused on the therapeutic potential of the orexigenic peptide hormone ghrelin, which plays an important role in promoting a positive energy balance. In the present study, we found a significant disruption of circadian metabolic regulation in a R6/2 mouse HD model in the late stage of disease. Daily circadian rhythms of activity, energy expenditure, respiratory exchange ratio and feeding were strongly attenuated in R6/2 mice. During the rest phase, R6/2 mice had a higher total activity, elevated energy expenditure and excessive water consumption compared to control mice. We also found that, in the late stage of disease, R6/2 mice had ghrelin axis deficiency as a result of low circulating ghrelin levels, in addition to down-regulation of the ghrelin receptor and several key signalling molecules in the hypothalamus, as well as a reduced responsiveness to exogenous peripheral ghrelin. We demonstrated that, in pre-symptomatic mice, responsiveness to ghrelin is preserved. Chronic ghrelin treatment efficiently increased lean body mass and decreased the energy expenditure and fat utilisation of R6/2 mice in the early stage of disease. In addition, ghrelin treatment was also effective in the normalisation of drinking behaviour and the rest activity of these mice. Ghrelin treatment could provide a novel therapeutic possibility for delaying disease progression; however, deficiency in ghrelin receptor expression could limit its therapeutic potential in the late stage of disease.
Collapse
Affiliation(s)
- Olga Rudenko
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Springer
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louisa J Skov
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N Madsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lis Hasholt
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
26
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
27
|
Kakouri AC, Christodoulou CC, Zachariou M, Oulas A, Minadakis G, Demetriou CA, Votsi C, Zamba-Papanicolaou E, Christodoulou K, Spyrou GM. Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia. IEEE J Biomed Health Inform 2018; 23:26-37. [PMID: 30176611 DOI: 10.1109/jbhi.2018.2865569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.
Collapse
|
28
|
Montojo MT, Aganzo M, González N. Huntington's Disease and Diabetes: Chronological Sequence of its Association. J Huntingtons Dis 2018; 6:179-188. [PMID: 28968242 PMCID: PMC5676851 DOI: 10.3233/jhd-170253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although Huntington’s disease (HD) is primarily considered a rare neurodegenerative disorder, it has been linked to glucose metabolism alterations and diabetes, as has been described in other neuro syndromes such as Friedreich’s ataxia or Alzheimer’s disease. This review surveys the existing literature on HD and its potential relationship with diabetes, glucose metabolism-related indexes and pancreas morphology, in humans and in animal’s models. The information is reported in chronological sequence. That is, studies performed before and after the identification of the genetic defect underlying HD (CAG: encoding glutamine ≥36 repeats located in exon 1 of the HTT gene) and with the development and evolution of HD animal models. The aim of the review is to evaluate whether impaired glucose metabolism contributes to the development of HD, and whether optimized glycemic control may ameliorate the symptoms of HD.
Collapse
Affiliation(s)
- María Teresa Montojo
- Department of Neurology, Movement Disorders Unit, Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Aganzo
- Division of Endocrinology, Fundación Jiménez Díaz, Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| |
Collapse
|
29
|
Bellosta Diago E, Pérez-Pérez J, Santos Lasaosa S, Viloria Alebesque A, Martínez-Horta S, Kulisevsky J, López Del Val J. Neurocardiovascular pathology in pre-manifest and early-stage Huntington's disease. Eur J Neurol 2018. [PMID: 29537687 DOI: 10.1111/ene.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Cardiovascular events are a major cause of early death in the Huntington's disease (HD) population. Dysautonomia as well as deterioration of circadian rhythms can be detected early in the disease progression and can have profound effects on cardiac health. The aim of the present study was to determine if patients with HD and pre-manifest mutation carriers present a higher risk of cardiovascular disease than non-mutation-carrying controls. METHODS This was a prospective, cross-sectional, multicentre study of 38 HD mutation carriers (23 pre-manifest and 15 early-stage patients) compared with 38 age- and gender-matched healthy controls. Clinical and epidemiological variables, including the main haematological vascular risk factors, were recorded. Ambulatory blood-pressure monitoring and carotid intima-media thickness (CIMT) measurement were performed to assess autonomic function and as target-organ damage markers. RESULTS Most (63.2%) patients with HD (86.7% and 47.8%, respectively, of the early-stage and pre-manifest patients) were non-dippers compared with 23.7% of controls (P = 0.001). CIMT values were in the 75th percentile in 46.7% and 43.5%, respectively, of the early-stage and pre-manifest patients, whereas none of the controls presented pathological values (P = 0.001 and P = 0.006, respectively). Nocturnal non-dipping was significantly associated with CIMT values in patients (P = 0.002) but not in controls. CONCLUSIONS These results suggest that higher cardiovascular risks and target-organ damage are present even in pre-manifest patients. Although larger studies are needed to confirm these findings, clinicians should consider these results in the cardiovascular management of patients with HD.
Collapse
Affiliation(s)
- E Bellosta Diago
- Neurology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Resarch Group of Movement Disorders and Headache (GIIS070), Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - J Pérez-Pérez
- Neurology Department, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - S Santos Lasaosa
- Neurology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Resarch Group of Movement Disorders and Headache (GIIS070), Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - A Viloria Alebesque
- Neurology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Resarch Group of Movement Disorders and Headache (GIIS070), Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - S Martínez-Horta
- Neurology Department, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Kulisevsky
- Neurology Department, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J López Del Val
- Neurology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Resarch Group of Movement Disorders and Headache (GIIS070), Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| |
Collapse
|
30
|
Siddiqui S, Lustig A, Carter A, Sankar M, Daimon CM, Premont RT, Etienne H, van Gastel J, Azmi A, Janssens J, Becker KG, Zhang Y, Wood W, Lehrmann E, Martin JG, Martin B, Taub DD, Maudsley S. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging (Albany NY) 2017; 9:706-740. [PMID: 28260693 PMCID: PMC5391227 DOI: 10.18632/aging.101185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of 'neurometabolic' integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical 'organ', i.e. 'parathymic lobes'. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe - suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature 'aging' phenotype of GIT2KO mice.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Ana Lustig
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Arnell Carter
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Mathavi Sankar
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Caitlin M Daimon
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | | | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jaana van Gastel
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Kevin G Becker
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - William Wood
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - James G Martin
- Research Institute of the MUHC, Centre for Translational Biology (CTB), Meakins-Christie Laboratories, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Dennis D Taub
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| |
Collapse
|
31
|
Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington's disease. Sci Rep 2017; 7:8513. [PMID: 28819135 PMCID: PMC5561056 DOI: 10.1038/s41598-017-09148-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
PGC-1α is a versatile inducer of mitochondrial biogenesis and responsive to the changing energy demands of the cell. As mitochondrial ATP production requires proteins that derive from translation products of cytosolic ribosomes, we asked whether PGC-1α directly takes part in ribosomal biogenesis. Here, we show that a fraction of cellular PGC-1α localizes to the nucleolus, the site of ribosomal transcription by RNA polymerase I. Upon activation PGC-1α associates with the ribosomal DNA and boosts recruitment of RNA polymerase I and UBF to the rDNA promoter. This induces RNA polymerase I transcription under different stress conditions in cell culture and mouse models as well as in healthy humans and is impaired already in early stages of human Huntington’s disease. This novel molecular link between ribosomal and mitochondrial biogenesis helps to explain sarcopenia and cachexia in diseases of neurodegenerative origin.
Collapse
|
32
|
Martin B, Wang R, Cong WN, Daimon CM, Wu WW, Ni B, Becker KG, Lehrmann E, Wood WH, Zhang Y, Etienne H, van Gastel J, Azmi A, Janssens J, Maudsley S. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. J Biol Chem 2017; 292:11508-11530. [PMID: 28522608 DOI: 10.1074/jbc.m116.773820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.
Collapse
Affiliation(s)
- Bronwen Martin
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Rui Wang
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wei-Na Cong
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Caitlin M Daimon
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wells W Wu
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Bin Ni
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Kevin G Becker
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Elin Lehrmann
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - William H Wood
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Yongqing Zhang
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Harmonie Etienne
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jaana van Gastel
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Abdelkrim Azmi
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jonathan Janssens
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Stuart Maudsley
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224, .,the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| |
Collapse
|
33
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Jiao Q, Du X, Li Y, Gong B, Shi L, Tang T, Jiang H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci Biobehav Rev 2016; 73:98-111. [PMID: 27993602 DOI: 10.1016/j.neubiorev.2016.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/01/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
Abstract
Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Bing Gong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Berendzen KM, Durieux J, Shao LW, Tian Y, Kim HE, Wolff S, Liu Y, Dillin A. Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell 2016; 166:1553-1563.e10. [PMID: 27610575 DOI: 10.1016/j.cell.2016.08.042] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/17/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
During neurodegenerative disease, the toxic accumulation of aggregates and misfolded proteins is often accompanied with widespread changes in peripheral metabolism, even in cells in which the aggregating protein is not present. The mechanism by which the central nervous system elicits a distal reaction to proteotoxic stress remains unknown. We hypothesized that the endocrine communication of neuronal stress plays a causative role in the changes in mitochondrial homeostasis associated with proteotoxic disease states. We find that an aggregation-prone protein expressed in the neurons of C. elegans binds to mitochondria, eliciting a global induction of a mitochondrial-specific unfolded protein response (UPR(mt)), affecting whole-animal physiology. Importantly, dense core vesicle release and secretion of the neurotransmitter serotonin is required for the signal's propagation. Collectively, these data suggest the commandeering of a nutrient sensing network to allow for cell-to-cell communication between mitochondria in response to protein folding stress in the nervous system.
Collapse
Affiliation(s)
- Kristen M Berendzen
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Li-Wa Shao
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ye Tian
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyun-Eui Kim
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Wolff
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Liu
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Andrew Dillin
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Raper J, Bosinger S, Johnson Z, Tharp G, Moran SP, Chan AWS. Increased irritability, anxiety, and immune reactivity in transgenic Huntington's disease monkeys. Brain Behav Immun 2016; 58:181-190. [PMID: 27395434 PMCID: PMC5067193 DOI: 10.1016/j.bbi.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022] Open
Abstract
Although the most notable clinical symptoms of Huntington's disease (HD) are motor disturbances and brain atrophy, other symptoms include cognitive dysfunction, emotional and hormonal dysregulation. Emotional dysregulation (irritability, anger/aggression, and anxiety) and increased inflammation are early emerging symptoms which can be detected decades before the onset of motor symptoms in HD patients. Despite the advances in understanding the genetic causes of HD there is still no cure or preventative treatment. Thus, to better understand the pathogenesis of HD and develop effective treatments, a holistic understanding of HD is needed, as well as animal models that replicate the full spectrum of HD symptoms. The current study examined the emotional, hormonal, and gene expression responses to an acute stressor of adult male transgenic HD rhesus monkeys (n=2) as compared to wild-type controls (n=2). Results revealed that HD monkeys expressed increased anxiety and irritability/aggression as compared to controls. Reactive cortisol response to the stressor was similar between groups. However, HD monkeys exhibited increased pro-inflammatory cytokines and higher induction of immune pathway genes as compared to controls. Overall, results reveal that HD monkeys exhibit these early emerging symptoms of HD and may be an effective animal model to facilitate the development of new therapeutics for HD patients.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA; Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Steven Bosinger
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Zachary Johnson
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Gregory Tharp
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sean P Moran
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Anthony W S Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human Studies. Mediators Inflamm 2016; 2016:8653132. [PMID: 27578922 PMCID: PMC4992798 DOI: 10.1155/2016/8653132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by selective loss of neurons in the striatum and cortex, which leads to progressive motor dysfunction, cognitive decline, and psychiatric disorders. Although the cause of HD is well described—HD is a genetic disorder caused by a trinucleotide (CAG) repeat expansion in the gene encoding for huntingtin (HTT) on chromosome 4p16.3—the ultimate cause of neuronal death is still uncertain. Apart from impairment in systems for handling abnormal proteins, other metabolic pathways and mechanisms might contribute to neurodegeneration and progression of HD. Among these, inflammation seems to play a role in HD pathogenesis. The current review summarizes the available evidence about immune and/or inflammatory changes in HD. HD is associated with increased inflammatory mediators in both the central nervous system and periphery. Accordingly, there have been some attempts to slow HD progression targeting the immune system.
Collapse
|
38
|
Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 2016; 232:281-286. [DOI: 10.1002/jcp.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Veronica Cartocci
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Michela Servadio
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Viviana Trezza
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Valentina Pallottini
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| |
Collapse
|
39
|
Díez-Planelles C, Sánchez-Lozano P, Crespo MC, Gil-Zamorano J, Ribacoba R, González N, Suárez E, Martínez-Descals A, Martínez-Camblor P, Álvarez V, Martín-Hernández R, Huerta-Ruíz I, González-García I, Cosgaya JM, Visioli F, Dávalos A, Iglesias-Gutiérrez E, Tomás-Zapico C. Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment. Pharmacol Res 2016; 108:102-110. [PMID: 27155059 DOI: 10.1016/j.phrs.2016.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease, with peripheral consequences that negatively contribute to quality of life. Circulating microRNAs (cmiRNAs) are being explored for their roles in intercellular communication and gene expression regulation, which allows gaining insight into the regulation of crosstalk between neuronal and peripheral tissues. Here, we explore the cmiRNA profile of plasma samples from fifteen symptomatic patients, with 40-45 CAG repeats in the HTT gene, and seven healthy matched controls. Isolated miRNAs from plasma samples were run against human miRNome panels, which have sequences for 752 human mature miRNAs. We found that 168 cmiRNAs are altered in symptomatic patients. Considering Bonferroni's correction, miR-877-5p, miR-223-3p, miR-223-5p, miR-30d-5p, miR-128, miR-22-5p, miR-222-3p, miR-338-3p, miR-130b-3p, miR-425-5p, miR-628-3p, miR-361-5p, miR-942 are significantly increased in HD patients as compared with controls. Moreover, after patient's organization according to approved HD scales, miR-122-5p is significantly decreased in HD patients with Unified Huntington's Disease Rating Scale >24, whereas an increase in miR-100-5p levels and a decrease in miR-641 and miR-330-3p levels were recorded when patients were rearranged by Total Functional Capacity. These results suggest that cmiRNA profile could be further modified by disease progression, making cmiRNAs useful as monitoring biomarkers. Analysis of target genes indicated a general overexpression of cmiRNAs implicated in metabolism regulation. Profiling cmiRNA of HD subjects opens the possibility of personalized therapies for different groups of HD patients, based on disease modifiers: regulation of altered pathways might contribute to not only alleviate disease symptoms, but also influence HD progression.
Collapse
Affiliation(s)
- C Díez-Planelles
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | | | - M C Crespo
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - J Gil-Zamorano
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - R Ribacoba
- Neurology Service, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - N González
- Renal, Vascular and Diabetes Research Laboratory, IIS-Jiménez Díaz Foundation, The Autonomous University of Madrid, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - E Suárez
- Neurology Service, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - A Martínez-Descals
- Neurology Service, Jiménez Díaz Foundation University Hospital, Madrid, Spain
| | - P Martínez-Camblor
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Universidad Autónoma de Chile, Santiago, Chile
| | - V Álvarez
- Molecular Genetics Service-Laboratory of Genetics, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - R Martín-Hernández
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - I Huerta-Ruíz
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - I González-García
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - J M Cosgaya
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - F Visioli
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - A Dávalos
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - E Iglesias-Gutiérrez
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - C Tomás-Zapico
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
40
|
Nielsen SMB, Vinther-Jensen T, Nielsen JE, Nørremølle A, Hasholt L, Hjermind LE, Josefsen K. Liver function in Huntington's disease assessed by blood biochemical analyses in a clinical setting. J Neurol Sci 2016; 362:326-32. [DOI: 10.1016/j.jns.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/12/2022]
|
41
|
Ghrelin and Neurodegenerative Disorders-a Review. Mol Neurobiol 2016; 54:1144-1155. [PMID: 26809582 DOI: 10.1007/s12035-016-9729-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.
Collapse
|
42
|
Abstract
Background Huntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls. Methods Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. Results We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. Conclusions Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.
Collapse
|
43
|
Petrov AM, Kasimov MR, Zefirov AL. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction. Acta Naturae 2016; 8:58-73. [PMID: 27099785 PMCID: PMC4837572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper.
Collapse
Affiliation(s)
- A. M. Petrov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| | - M. R. Kasimov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| | - A. L. Zefirov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| |
Collapse
|
44
|
Mastrokolias A, Pool R, Mina E, Hettne KM, van Duijn E, van der Mast RC, van Ommen G, ‘t Hoen PAC, Prehn C, Adamski J, van Roon-Mom W. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington's disease peripheral blood samples. Metabolomics 2016; 12:137. [PMID: 27524956 PMCID: PMC4963448 DOI: 10.1007/s11306-016-1084-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Metabolic changes have been frequently associated with Huntington's disease (HD). At the same time peripheral blood represents a minimally invasive sampling avenue with little distress to Huntington's disease patients especially when brain or other tissue samples are difficult to collect. OBJECTIVES We investigated the levels of 163 metabolites in HD patient and control serum samples in order to identify disease related changes. Additionally, we integrated the metabolomics data with our previously published next generation sequencing-based gene expression data from the same patients in order to interconnect the metabolomics changes with transcriptional alterations. METHODS This analysis was performed using targeted metabolomics and flow injection electrospray ionization tandem mass spectrometry in 133 serum samples from 97 Huntington's disease patients (29 pre-symptomatic and 68 symptomatic) and 36 controls. RESULTS By comparing HD mutation carriers with controls we identified 3 metabolites significantly changed in HD (serine and threonine and one phosphatidylcholine-PC ae C36:0) and an additional 8 phosphatidylcholines (PC aa C38:6, PC aa C36:0, PC ae C38:0, PC aa C38:0, PC ae C38:6, PC ae C42:0, PC aa C36:5 and PC ae C36:0) that exhibited a significant association with disease severity. Using workflow based exploitation of pathway databases and by integrating our metabolomics data with our gene expression data from the same patients we identified 4 deregulated phosphatidylcholine metabolism related genes (ALDH1B1, MBOAT1, MTRR and PLB1) that showed significant association with the changes in metabolite concentrations. CONCLUSION Our results support the notion that phosphatidylcholine metabolism is deregulated in HD blood and that these metabolite alterations are associated with specific gene expression changes.
Collapse
Affiliation(s)
- Anastasios Mastrokolias
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Rene Pool
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, The Netherlands
- The EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kristina M. Hettne
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Center for Mental Health Care Delfland, Jorisweg 2, Delft, The Netherlands
| | - Roos C. van der Mast
- Department of Psychiatry, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - GertJan van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter A. C. ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Cornelia Prehn
- Helmholtz Zentrum, München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum, München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
45
|
Daimon CM, Jasien JM, Wood WH, Zhang Y, Becker KG, Silverman JL, Crawley JN, Martin B, Maudsley S. Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder. Front Physiol 2015; 6:324. [PMID: 26635614 PMCID: PMC4656818 DOI: 10.3389/fphys.2015.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Joan M Jasien
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - William H Wood
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Jill L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA ; Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp Antwerp, Belgium ; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp Antwerpen, Belgium
| |
Collapse
|
46
|
Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochem Biophys Res Commun 2015; 468:161-6. [PMID: 26522227 DOI: 10.1016/j.bbrc.2015.10.140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients.
Collapse
|
47
|
Mini-review: Retarding aging in murine genetic models of neurodegeneration. Neurobiol Dis 2015; 85:73-80. [PMID: 26477301 DOI: 10.1016/j.nbd.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022] Open
Abstract
Retardation of aging processes is a plausible approach to delaying the onset or slowing the progression of common neurodegenerative disorders. We review the results of experiments using murine genetic models of Alzheimer disease and Huntington disease to evaluate the effects of retarding aging. While positive results are reported in several of these experiments, there are several discrepancies in behavioral and pathologic outcomes both within and between different experiments. Similarly, different experiments yield varying assessments of potential proximate mechanisms of action of retarding aging. The anti-aging interventions used for some experiments include some that show only modest effects on lifespan, and others that have proven hard to reproduce. Several experiments used aggressive transgenic neurodegenerative disease models that may be less relevant in the context of age-related diseases. The experience with these models and interventions may be useful in designing future experiments assessing anti-aging interventions for disease-modifying treatment of neurodegenerative diseases.
Collapse
|
48
|
The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
|
49
|
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, Lehrmann E, Wood WH, Zhang Y, Siddiqui S, Park SS, Cong WN, Daimon CM, Maudsley S. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne) 2015; 6:191. [PMID: 26834700 PMCID: PMC4716144 DOI: 10.3389/fendo.2015.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.
Collapse
Affiliation(s)
- Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Richard T. Premont
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Robert Schmalzigaug
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - William H. Wood
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wei-na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- *Correspondence: Stuart Maudsley,
| |
Collapse
|
50
|
Wang R, van Keeken NMA, Siddiqui S, Dijksman LM, Maudsley S, Derval D, van Dam PS, Martin B. Higher TNF-α, IGF-1, and Leptin Levels are Found in Tasters than Non-Tasters. Front Endocrinol (Lausanne) 2014; 5:125. [PMID: 25120532 PMCID: PMC4114300 DOI: 10.3389/fendo.2014.00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022] Open
Abstract
Taste perception is controlled by taste cells that are present in the tongue that produce and secrete various metabolic hormones. Recent studies have demonstrated that taste receptors in tongue, gut, and pancreas are associated with local hormone secretion. The aim of this study was to determine whether there is a link between taste sensitivity and levels of circulating metabolic hormones in humans and whether taste sensitivity is potentially related to peripheral metabolic regulation. Thirty-one subjects were recruited and separated into tasters and non-tasters based on their phenol thiocarbamide (PTC) bitter taste test results. Fasting plasma and saliva were collected and levels of hormones and cytokines were assayed. We observed significant differences in both hormone levels and hormone-body mass index (BMI) correlation between tasters and non-tasters. Tasters had higher plasma levels of leptin (p = 0.05), tumor necrosis factor-α (TNF-α) (p = 0.04), and insulin-like growth factor 1 (IGF-1) (p = 0.03). There was also a trend toward increased IGF-1 levels in the saliva of tasters (p = 0.06). We found a positive correlation between plasma levels of glucose and BMI (R = 0.4999, p = 0.04) exclusively in non-tasters. In contrast, plasma C-peptide levels were found to be positively correlated to BMI (R = 0.5563, p = 0.03) in tasters. Saliva TNF-α levels were negatively correlated with BMI in tasters (R = -0.5908, p = 0.03). Our findings demonstrate that there are differences in circulating levels of leptin, TNF-α, and IGF-1 between tasters and non-tasters. These findings indicate that in addition to the regulation of food consumption, taste perception also appears to be tightly linked to circulating metabolic hormone levels. People with different taste sensitivity may respond differently to the nutrient stimulation. Further work investigating the link between taste perception and peripheral metabolic control could potentially lead to the development of novel therapies for obesity or Type 2 diabetes.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lea M. Dijksman
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Diana Derval
- Better Immune System Foundation, Amsterdam, Netherlands
| | - P. Sytze van Dam
- Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- *Correspondence: Bronwen Martin, Metabolism Unit, National Institute on Aging, 251 Bayview Blvd., Suite 100 Room 08C009, Baltimore, MD 21224, USA e-mail:
| |
Collapse
|