1
|
Pagella P, Lai CF, Pirenne L, Cantù C, Schwab ME, Mitsiadis TA. An unexpected role of neurite outgrowth inhibitor A as regulator of tooth enamel formation. Int J Oral Sci 2024; 16:60. [PMID: 39426966 PMCID: PMC11490607 DOI: 10.1038/s41368-024-00323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel. Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fl transgenic mice, we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel. This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production, such as amelogenin, ameloblastin and enamelin. By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals, we found that Nogo-A directly interacts with molecules important for regulating gene expression, and its deletion disturbs their cellular localisation. Furthermore, we demonstrated that inhibition of the intracellular, but not cell-surface, Nogo-A is responsible for gene expression modulation in ameloblasts. Taken together, these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden
| | - Chai Foong Lai
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Laurence Pirenne
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Liu H, Yu M, Sun K, Zheng J, Wang J, Liu H, Feng H, Liu Y, Han D. KDF1 promotes ameloblast differentiation by inhibiting the IKK/IκB/NF-κB axis. J Cell Physiol 2024:e31437. [PMID: 39300779 DOI: 10.1002/jcp.31437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear. This study demonstrated that KDF1 was persistently expressed in all stages of ameloblast differentiation, through RNAscope in situ hybridization. KDF1 expression in the mouse ameloblast cell line LS8 was demonstrated via immunofluorescence assay. KDF1 was knocked out in LS8 cells using the CRISPR/Cas-9 system or overexpressed in LS8 cells through lentiviral infection. In vitro ameloblast differentiation induction, quantitative reverse transcription PCR, western blot analysis, and alkaline phosphatase (ALP) assay indicated that knockout or overexpression of KDF1 in LS8 cells decreased or increased the mRNA and protein levels of several key amelogenesis markers, as well as ALP activity. Furthermore, liquid chromatography-mass spectrometry and co-immunoprecipitation analyses revealed that KDF1 can interact with the IKK complex, thereby inhibiting the NF-κB pathway. Suppressing NF-κB activity partially recovered the decreased ameloblast differentiation in LS8 cells induced by KDF1-knockout. This study demonstrated that KDF1 can promote ameloblast differentiation of LS8 cells by inhibiting the IKK/IκB/NF-κB axis, and is a potential target for functional enamel regeneration.
Collapse
Affiliation(s)
- Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
3
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
4
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
5
|
Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, Good J, Liu CJ. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023; 301:122289. [PMID: 37639975 PMCID: PMC11232488 DOI: 10.1016/j.biomaterials.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Hydrogels with long-term storage stability, controllable sustained-release properties, and biocompatibility have been garnering attention as carriers for drug/growth factor delivery in tissue engineering applications. Chitosan (CS)/Graphene Oxide (GO)/Hydroxyethyl cellulose (HEC)/β-glycerol phosphate (β-GP) hydrogel is capable of forming a 3D gel network at physiological temperature (37 °C), rendering it an excellent candidate for use as an injectable biomaterial. This work focused on an injectable thermo-responsive CS/GO/HEC/β-GP hydrogel, which was designed to deliver Atsttrin, an engineered derivative of a known chondrogenic and anti-inflammatory growth factor-like molecule progranulin. The combination of the CS/GO/HEC/β-GP hydrogel and Atsttrin provides a unique biochemical and biomechanical environment to enhance fracture healing. CS/GO/HEC/β-GP hydrogels with increased amounts of GO exhibited rapid sol-gel transition, higher viscosity, and sustained release of Atsttrin. In addition, these hydrogels exhibited a porous interconnected structure. The combination of Atsttrin and hydrogel successfully promoted chondrogenesis and osteogenesis of bone marrow mesenchymal stem cells (bmMSCs) in vitro. Furthermore, the work also presented in vivo evidence that injection of Atsttrin-loaded CS/GO/HEC/β-GP hydrogel stimulated diabetic fracture healing by simultaneously inhibiting inflammatory and stimulating cartilage regeneration and endochondral bone formation signaling pathways. Collectively, the developed injectable thermo-responsive CS/GO/HEC/βG-P hydrogel yielded to be minimally invasive, as well as capable of prolonged and sustained delivery of Atsttrin, for therapeutic application in impaired fracture healing, particularly diabetic fracture healing.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Angel Cabrera Pereira
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ellen Kim
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Julia Good
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Zhang K, Lu Z, Guo X. Advances in epidemiological status and pathogenesis of dental fluorosis. Front Cell Dev Biol 2023; 11:1168215. [PMID: 37215086 PMCID: PMC10196443 DOI: 10.3389/fcell.2023.1168215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Fluoride is commonly consider as a "double-edged sword" because low consumption of fluoride can effectively prevent dental caries, but excessive consumption of fluoride can cause fluorosis. Dental fluorosis (DF) is a characteristic feature of fluorosis in the oral cavity that is manifested as tooth color changes and evident enamel defect. Presently, the pathogenesis of DF remains unclear. Herein, we have summarized the research progress in the pathogenesis and mechanism of DF in the past 5 years.
Collapse
Affiliation(s)
- Kaiqiang Zhang
- Department of Preventive Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Zhenfu Lu
- Department of Preventive Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Hermans F, Hemeryck L, Bueds C, Torres Pereiro M, Hasevoets S, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A, Vankelecom H. Organoids from mouse molar and incisor as new tools to study tooth-specific biology and development. Stem Cell Reports 2023; 18:1166-1181. [PMID: 37084723 DOI: 10.1016/j.stemcr.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Marc Torres Pereiro
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Steffie Hasevoets
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Hiroto Kobayashi
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Visakan G, Bapat RA, Su J, Moradian-Oldak J. Modeling ameloblast-matrix interactions using 3D cell culture. Front Physiol 2022; 13:1069519. [PMID: 36531170 PMCID: PMC9751369 DOI: 10.3389/fphys.2022.1069519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
The distinct morphology adopted by ameloblasts during amelogenesis is highly stage specific and involved intimately with the development of a hierarchical enamel microstructure. The molecular mechanisms that govern the development of an elongated and polarized secretory ameloblast morphology and the potential roles played by the enamel matrix proteins in this process are not fully understood. Thus far, the in vitro models that have been developed to mimic these early cell-matrix interactions have either been unable to demonstrate direct morphological change or have failed to adapt across ameloblast cell lines. Here, we use a recently established 3D cell culture model to examine the interactions between HAT-7 cells and the major enamel matrix proteins, amelogenin and ameloblastin. We demonstrate that HAT-7 cells selectively respond to functional EMPs in culture by forming clusters of tall cells. Aspect ratio measurements from three-dimensional reconstructions reveal that cell elongation is 5-times greater in the presence of EMPs when compared with controls. Using confocal laser scanning microscopy, we observe that these clusters are polarized with asymmetrical distributions of Par-3 and claudin-1 proteins. The behavior of HAT-7 cells in 3D culture with EMPs is comparable with that of ALC and LS-8 cells. The fact that the 3D model presented here is tunable with respect to gel substrate composition and ameloblast cell type highlights the overall usefulness of this model in studying ameloblast cell morphology in vitro.
Collapse
|
9
|
Li Y, Costiniti V, Souza Bomfim GH, Neginskaya M, Son GY, Rothermel B, Pavlov E, Lacruz RS. Overexpression of RCAN1, a Gene on Human Chromosome 21, Alters Cell Redox and Mitochondrial Function in Enamel Cells. Cells 2022; 11:3576. [PMID: 36429004 PMCID: PMC9688881 DOI: 10.3390/cells11223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The regulator of calcineurin (RCAN1) has been implicated in the pathogenesis of Down syndrome (DS). Individuals with DS show dental abnormalities for unknown reasons, and RCAN1 levels have been found to be elevated in several tissues of DS patients. A previous microarray analysis comparing cells of the two main formative stages of dental enamel, secretory and maturation, showed a significant increase in RCAN1 expression in the latter. Because the function of RCAN1 during enamel formation is unknown, there is no mechanistic evidence linking RCAN1 with the dental anomalies in individuals with DS. We investigated the role of RCAN1 in enamel by overexpressing RCAN1 in the ameloblast cell line LS8 (LS8+RCAN1). We first confirmed that RCAN1 is highly expressed in maturation stage ameloblasts by qRT-PCR and used immunofluorescence to show its localization in enamel-forming ameloblasts. We then analyzed cell redox and mitochondrial bioenergetics in LS8+RCAN1 cells because RCAN1 is known to impact these processes. We show that LS8+RCAN1 cells have increased reactive oxygen species (ROS) and decreased mitochondrial bioenergetics without changes in the expression of the complexes of the electron transport chain, or in NADH levels. However, LS8+RCAN1 cells showed elevated mitochondrial Ca2+ uptake and decreased expression of several enamel genes essential for enamel formation. These results provide insight into the role of RCAN1 in enamel and suggest that increased RCAN1 levels in the ameloblasts of individuals with DS may impact enamel formation by altering both the redox environment and mitochondrial function, as well as decreasing the expression of enamel-specific genes.
Collapse
Affiliation(s)
- Yi Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Veronica Costiniti
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Maria Neginskaya
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Beverly Rothermel
- Department of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
10
|
Visakan G, Su J, Moradian-Oldak J. Data from ameloblast cell lines cultured in 3D using various gel substrates in the presence of ameloblastin. Data Brief 2022; 42:108233. [PMID: 35586397 PMCID: PMC9108880 DOI: 10.1016/j.dib.2022.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
This article contains data related to the research article in this issue titled ameloblastin promotes polarization of ameloblast cell lines in a 3D cell culture system (Visakan et al., 2022). In the process of amelogenesis, the organic matrix components are pivotal to the establishment of ameloblast-matrix adhesion. Here we employ immortalized ameloblast cell lines and analyse their morphological changes in 3D cell culture when cultured in the presence of recombinant enamel matrix proteins- ameloblastin and amelogenin compared with controls. The recombinant proteins that were purified using high-performance liquid chromatography (HPLC) were characterized using SDS-gel electrophoresis. A 3D-on-top culture technique was employed, and the cells were analysed 24 and 72 h post inoculation using fluorescent and confocal microscopy for qualitative and quantitative changes. Aspect ratio of cells was measured and used as the parameter to compare between test proteins and controls. Repeated measurements of aspect ratio were recorded to analyse for statistical significance. Additionally, three distinct gel substrates were studied to examine the effect of composition and stiffness of the substrate on cell behaviour. The cells in the 3D culture were fixed and labelled using antibodies to junctional complex, polarity and tight junctional proteins following protocols for whole culture fixation. Co-localization between membrane and specific antibody labels were examined under confocal microscopy.
Collapse
|
11
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
12
|
Husein D, Alamoudi A, Ohyama Y, Mochida H, Ritter B, Mochida Y. Identification of the C-terminal region in Amelogenesis Imperfecta causative protein WDR72 required for Golgi localization. Sci Rep 2022; 12:4640. [PMID: 35301423 PMCID: PMC8930991 DOI: 10.1038/s41598-022-08719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Amelogenesis Imperfecta (AI) represents a group of hereditary conditions that manifest tooth enamel defects. Several causative mutations in the WDR72 gene have been identified and patients with WDR72 mutations have brown (or orange-brown) discolored enamel, rough enamel surface, early loss of enamel after tooth eruption, and severe attrition. Although the molecular function of WDR72 is not yet fully understood, a recent study suggested that WDR72 could be a facilitator of endocytic vesicle trafficking, which appears inconsistent with the previously reported cytoplasmic localization of WDR72. Therefore, the aims of our study were to investigate the tissues and cell lines in which WDR72 was expressed and to further determine the sub-cellular localization of WDR72. The expression of Wdr72 gene was investigated in mouse tissues and cell lines. Endogenous WDR72 protein was detected in the membranous fraction of ameloblast cell lines in addition to the cytosolic fraction. Sub-cellular localization studies supported our fractionation data, showing WDR72 at the Golgi apparatus, and to a lesser extent, in the cytoplasmic area. In contrast, a WDR72 AI mutant form that lacks its C-terminal region was exclusively detected in the cytoplasm. In addition, our studies identified a putative prenylation/CAAX motif within the last four amino acids of human WDR72 and generated a WDR72 variant, called CS mutant, in which the putative motif was ablated by a point mutation. Interestingly, mutation of the putative CAAX motif impaired WDR72 recruitment to the Golgi. Cell fractionation assays confirmed subcellular distribution of wild-type WDR72 in both cytosolic and membranous fractions, while the WDR72 AI mutant and CS mutant forms were predominantly detected in the cytosolic fraction. Our studies provide new insights into the subcellular localization of WDR72 and demonstrate a critical role for the C-terminal CAAX motif in regulating WDR72 recruitment to the Golgi. In accordance with structural modelling studies that classified WDR72 as a potential vesicle transport protein, our findings suggest a role for WDR72 in vesicular Golgi transport that may be key to understanding the underlying cause of AI.
Collapse
Affiliation(s)
- Dina Husein
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Brigitte Ritter
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Katsura K, Nakano Y, Zhang Y, Shemirani R, Li W, Den Besten P. WDR72 regulates vesicle trafficking in ameloblasts. Sci Rep 2022; 12:2820. [PMID: 35181734 PMCID: PMC8857301 DOI: 10.1038/s41598-022-06751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.
Collapse
Affiliation(s)
- Kaitlin Katsura
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Rozana Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Wu Li
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA.
| |
Collapse
|
14
|
Costiniti V, Bomfim GHS, Neginskaya M, Son GY, Mitaishvili E, Giacomello M, Pavlov E, Lacruz RS. Mitochondria modulate ameloblast Ca 2+ signaling. FASEB J 2022; 36:e22169. [PMID: 35084775 PMCID: PMC8852362 DOI: 10.1096/fj.202100602r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
The role of mitochondria in enamel, the most mineralized tissue in the body, is poorly defined. Enamel is formed by ameloblast cells in two main sequential stages known as secretory and maturation. Defining the physiological features of each stage is essential to understand mineralization. Here, we analyzed functional features of mitochondria in rat primary secretory and maturation-stage ameloblasts focusing on their role in Ca2+ signaling. Quantification of the Ca2+ stored in the mitochondria by trifluoromethoxy carbonylcyanide phenylhydrazone stimulation was comparable in both stages. The release of endoplasmic reticulum Ca2+ pools by adenosine triphosphate in rhod2AM-loaded cells showed similar mitochondrial Ca2+ (m Ca2+ ) uptake. However, m Ca2+ extrusion via Na+ -Li+ -Ca2+ exchanger was more prominent in maturation. To address if m Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) played a role in cytosolic Ca2+ (c Ca2+ ) buffering, we stimulated Ca2+ influx via the store-operated Ca2+ entry (SOCE) and blocked MCU with the inhibitor Ru265. This inhibitor was first tested using the enamel cell line LS8 cells. Ru265 prevented c Ca2+ clearance in permeabilized LS8 cells like ruthenium red, and it did not affect ΔΨm in intact cells. In primary ameloblasts, SOCE stimulation elicited a significantly higher m Ca2+ uptake in maturation ameloblasts. The uptake of Ca2+ into the mitochondria was dramatically decreased in the presence of Ru265. Combined, these results suggest an increased mitochondrial Ca2+ handling in maturation but only upon stimulation of Ca2+ influx via SOCE. These functional studies provide insights not only on the role of mitochondria in ameloblast Ca2+ physiology, but also advance the concept that SOCE and m Ca2+ uptake are complementary processes in biological mineralization.
Collapse
Affiliation(s)
- Veronica Costiniti
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Guilherme H. S. Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Maria Neginskaya
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Erna Mitaishvili
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Marta Giacomello
- Department of Biology, University of Padova, Padua, Italy,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| |
Collapse
|
15
|
Ren Q, Pan J, Chen Y, Shen Z, Yang Z, Kwon K, Guo Y, Wang Y, Ji F. Melatonin-Medicated Neural JNK3 Up-Regulation Promotes Ameloblastic Mineralization. Front Cell Dev Biol 2022; 9:749642. [PMID: 35004671 PMCID: PMC8740296 DOI: 10.3389/fcell.2021.749642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Melatonin, an endogenous neurohormone, modulates the biological circadian rhythms of vertebrates. It functions have been reported in previous stomatological studies as anti-inflammation, antioxidant, osseointegration of dental implants and stimulation to dental pulp stem cells differentiation, but its role in ameloblastic differentiation and mineralization has been rarely studied. Objective: To reveal the effects of melatonin on the mineralization of ameloblast lineage cells (ALCs), and to identify the change in gene expression and the potential mechanism based on ribonucleic acid sequencing (RNA-seq) analysis. Method: ALCs were induced in melatonin-conditioned medium. After 7-days culture, Western blot, real-time PCR, alkaline phosphatase (ALP) activity test, RNA-seq were accordingly used to detect the change in molecular level. After 1-month odontogenic induction in melatonin medium, Alizarin Red-S (ARS) staining showed the changes of mineral nodules. Differentially expressed genes (DEGs), enrichment of functions and signaling pathways analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) database were performed. The JNK3 antagonist (JNK3 inhibitor IX, SR3576) and β-arrestin1 (Arrb1) overexpression were applied to confirm the fluctuation of melatonin-medicated JNK3 and Arrb1 expression. Results: In this study, we found out melatonin contributed to the ameloblastic mineralization, from which we can observed the elevated expression of enamel matrix protein, and increased ALP activity and mineralized nodules formation. RNA-seq analysis showed the up-regulation of neural JNK3 and down-regulation of Arrb1 in ALCs. Meanwhile, phosphorylated JNK3 deficiency (phosphorylated JNK3 inhibitor---SR3576 added to culture medium) led to mineralization delay, and Arrb1 overexpression proved Arrb1 takes bridge between melatonin receptors (MTNR) and JNK3 in MAPK signaling pathway.
Collapse
Affiliation(s)
- Qianhui Ren
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Pan
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yunshuo Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhecheng Shen
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Yang
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kubin Kwon
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Guo
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Ji
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Visakan G, Su J, Moradian-Oldak J. Ameloblastin promotes polarization of ameloblast cell lines in a 3-D cell culture system. Matrix Biol 2022; 105:72-86. [PMID: 34813898 PMCID: PMC8955733 DOI: 10.1016/j.matbio.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Studies on animal models with mutations in ameloblastin gene have suggested that the extracellular matrix protein ameloblastin (AMBN) plays important roles in controlling cell-matrix adhesion and ameloblast polarization during amelogenesis. In order to examine the function of AMBN in cell polarization and morphology, we developed an in vitro 3D cell culture model to examine the effect of AMBN and amelogenin (AMEL) addition on ameloblast cell lines. We further used high resolution confocal microscopy to detect expression of polarization markers in response to AMBN addition. Addition of AMBN to the 3D culture matrix resulted in the clustering and elongation (higher aspect ratio) of ALC in a dose dependent manner. The molar concentration of AMEL required to exact this response from ALC was 2.75- times greater than that of AMBN. This polarization effect of ameloblastin was attributable directly to an evolutionary conserved domain within its exon 5-encoded region. The lack of exon 6-encoded region also influenced AMBN-cell interactions but to a lesser extent. The clusters formed with AMBN were polarized with expression of E-cadherin, Par3 and Cldn1 assembly at the nascent cell-cell junctions. The elongation effect was specific to epithelial cells of ameloblastic lineage ALC and LS8 cells. Our data suggest that AMBN may play critical signaling roles in the initiation of cell polarity by acting as a communicator between cell-cell and cell-matrix interactions. Our investigation has important implications for understanding the function of ameloblastin in enamel-cell matrix adhesion and the outcomes may contribute to efforts to develop strategies for enamel tissue regeneration.
Collapse
|
17
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
18
|
Souza Bomfim GH, Mitaishvili E, Aguiar TF, Lacruz RS. Mibefradil alters intracellular calcium concentration by activation of phospholipase C and IP 3 receptor function. MOLECULAR BIOMEDICINE 2021; 2:12. [PMID: 35006468 PMCID: PMC8607413 DOI: 10.1186/s43556-021-00037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Mibefradil is a tetralol derivative originally developed as an antagonist of T-type voltage-gated calcium (Ca2+) channels to treat hypertension when used at nanomolar dosage. More recently, its therapeutic application in hypertension has declined and has been instead repurposed as a treatment of cancer cell proliferation and solid tumor growth. Beyond its function as a Cav blocker, the micromolar concentration of mibefradil can stimulate a rise in [Ca2+]cyt although the mechanism is poorly known. The chanzyme TRPM7 (transient receptor potential melastanin 7), the release of intracellular Ca2+ pools, and Ca2+ influx by ORAI channels have been associated with the increase in [Ca2+]cyt triggered by mibefradil. This study aims to investigate the cellular targets and pathways associated with mibefradil's effect on [Ca2+]cyt. To address these questions, we monitored changes in [Ca2+]cyt in the specialized mouse epithelial cells (LS8 and ALC) and the widely used HEK-293 cells by stimulating these cells with mibefradil (0.1 μM to 100 μM). We show that mibefradil elicits an increase in [Ca2+]cyt at concentrations above 10 μM (IC50 around 50 μM) and a fast Ca2+ increase capacity at 100 μM. We found that inhibiting IP3 receptors, depleting the ER-Ca2+ stores, or blocking phospholipase C (PLC), significantly decreased the capacity of mibefradil to elevate [Ca2+]cyt. Moreover, the transient application of 100 μM mibefradil triggered Ca2+ influx by store-operated Ca2+ entry (SOCE) mediated by the ORAI channels. Our findings reveal that IP3R and PLC are potential new targets of mibefradil offering novel insights into the effects of this drug.
Collapse
Affiliation(s)
- Guilherme H Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Erna Mitaishvili
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Rodrigo S Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
19
|
Yang Z, Shi G, Guo J, Zhou Y, Jia J. JNK Signaling Pathway Mediates Fluoride-Induced Upregulation of CK1α during Enamel Formation. Caries Res 2021; 55:225-233. [PMID: 33827100 DOI: 10.1159/000515108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Fluorosis is a defect in the enamel mineral content caused by excessive fluoride intake during amelogenesis; the interaction of various factors in the development and progression of fluorosis has not been defined. Casein kinase 1α (CK1α) is constitutively active in cells and is involved in diverse cellular processes; however, its expression in fluorosis has not been measured. This study aimed to investigate the effects of fluoride on CK1α expression and to assess the regulation of molecular signaling involving fluoride and CK1α during enamel development. Kunming mice were randomly divided into the control and F groups with induced clinical features of fluorosis. The F group mice, including mothers and newborns, were treated with 50 ppm fluoridated water. Immunohistochemical staining of the sections of the embryonic mandible regions was performed at the bell stage. Protein expression and signaling pathways in a mouse-derived ameloblast-like cell line (LS8) exposed to fluoride or a Jun N-terminal kinase (JNK) inhibitor were compared to those in control cells without exposure. CK1α and proteins of the JNK signaling pathways were assayed by quantitative real-time PCR and Western blotting. Mice of the F group developed dental fluorosis. Scanning electron microscopy showed a significant reduction in the degree of mineralization in the F group mice, which manifested as thin, loosely arranged, and disorganized enamel rods. Additional analysis revealed that the expression of CK1α in the F group was significantly elevated compared with that in the control group; LS8 cells responded to fluoride by upregulation of CK1α expression through the JNK pathway. Our findings identified the potential effects of CK1α on fluorosis using a mouse model and revealed that a high fluoride level increases the expression of CK1α and that JNK can be a key regulatory factor in CK1α expression.
Collapse
Affiliation(s)
- Zhongrui Yang
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Guanghui Shi
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jing Guo
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yanyan Zhou
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jie Jia
- The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
20
|
Song D, Yang S, Tan T, Wang R, Ma Z, Wang Y, Wang L. ODAM promotes junctional epithelium-related gene expression via activation of WNT1 signaling pathway in an ameloblast-like cell line ALC. J Periodontal Res 2021; 56:482-491. [PMID: 33452817 DOI: 10.1111/jre.12848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, we investigated the potential and mechanism of odontogenic ameloblast-associated protein (ODAM) in the promoting junctional epithelium-related gene expression in an ameloblast-like cell line ALC. BACKGROUND ODAM is expressed in ameloblasts and JE and acts as a component of the inner basal lamina (IBL) and intercellular matrix of JE. ODAM KO mice showed destruction of the integrity of the JE, which detaches from teeth. ODAM was confirmed to regulate the cytoskeleton through the ODAM-ARHGEF5-RhoA signaling pathway of the JE. Whether ODAM contributes to the regulation of ameloblast differentiation in JE remains unclear. After the formation of enamel, the ameloblast undergoes a series of morphological changes. Whether ODAM will affect the biological behavior of ameloblasts making them have the characteristics of JE is unclear. METHODS A murine ameloblast-like cell line, ALC, was used to investigate the effects of ODAM on the JE-like changes of ALC cells in an epithelium-induced environment by generating ODAM overexpression and ODAM knockdown cells through a lentivirus transduction approach. The biomarkers of junctional epithelium CK19, SLPI, and ODAM and the potential regulatory gene WNT1 were investigated by real-time PCR, western blot, immunocytochemistry, immunostaining, luciferase reporter, and rescue assays. RESULTS ODAM, CK19, and SLPI were significantly upregulated after epithelial induction. Overexpression of ODAM in ALC cells markedly increased CK19 and SLPI expression, while knockdown of ODAM in ALC cells clearly decreased CK19 and SLPI expression. A reporter luciferase assay showed that ODAM activated the WNT signaling pathway, especially through WNT1. Exogenous overexpression of ODAM upregulated WNT1 expression, while knockdown of ODAM reversed this effect. The WNT1 inhibition assay further confirmed the above results and showed that the WNT1 pathway was positively correlated with biomarkers of junctional epithelium CK19 and SLPI expression. Rescue studies showed that knocking down WNT1 in the ODAM-overexpressing ALC cells decreased the expression of CK19 and SLPI. Immunocytochemistry showed that ODAM colocalized with CK19, SLPI, and WNT1 in the cells. CONCLUSION In conclusion, the research work showed that ODAM promotes junctional epithelium-related gene expression in ALC via the ODAM-WNT1 axis, which may provide new insight into the function of ODAM and JE formation.
Collapse
Affiliation(s)
- Danyang Song
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Sui Yang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tao Tan
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ruijie Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zeyun Ma
- Department of Dental VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lei Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
21
|
Challenges of Engineering Biomimetic Dental and Paradental Tissues. Tissue Eng Regen Med 2020; 17:403-421. [PMID: 32621282 DOI: 10.1007/s13770-020-00269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Loss of the dental and paradental tissues resulting from trauma, caries or from systemic diseases considered as one of the most significant and frequent clinical problem to the healthcare professionals. Great attempts have been implemented to recreate functionally, healthy dental and paradental tissues in order to substitute dead and diseased tissues resulting from secondary trauma of car accidents, congenital malformations of cleft lip and palate or due to acquired diseases such as cancer and periodontal involvements. METHOD An extensive literature search has been done on PubMed database from 2010 to 2019 about the challenges of engineering a biomimetic tooth (BioTooth) regarding basic biology of the tooth and its supporting structures, strategies, and different techniques of obtaining biological substitutes for dental tissue engineering. RESULTS It has been found that great challenges need to be considered before engineering biomimetic individual parts of the tooth such as enamel, dentin-pulp complex and periodontium. In addition, two approaches have been adopted to engineer a BioTooth. The first one was to engineer a BioTooth as an individual unit and the other was to engineer a BioTooth with its supporting structures. CONCLUSION Engineering of BioTooth with its supporting structures thought to be in the future will replace the traditional and conventional treatment modalities in the field of dentistry. To accomplish this goal, different cell lines and growth factors with a variety of scaffolds at the nano-scale level are now in use. Recent researches in this area of interest are dedicated for this objective, both in vivo and in vitro. Despite progress in this field, there are still many challenges ahead and need to be overcome, many of which related to the basic tooth biology and its supporting structures and some others related to the sophisticated techniques isolating cells, fabricating the needed scaffolds and obtaining the signaling molecules.
Collapse
|
22
|
Souza Bomfim GH, Costiniti V, Li Y, Idaghdour Y, Lacruz RS. TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium 2020; 87:102187. [PMID: 32146159 DOI: 10.1016/j.ceca.2020.102187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release-activated Ca2+ (CRAC) channels mediated by STIM1/2 and ORAI (ORAI1-3) proteins form the dominant store-operated Ca2+ entry (SOCE) pathway in a wide variety of cells. Among these, the enamel-forming cells known as ameloblasts rely on CRAC channel function to enable Ca2+ influx, which is important for enamel mineralization. This key role of the CRAC channel is supported by human mutations and animal models lacking STIM1 and ORAI1, which results in enamel defects and hypomineralization. A number of recent reports have highlighted the role of the chanzyme TRPM7 (transient receptor potential melastanin 7), a transmembrane protein containing an ion channel permeable to divalent cations (Mg2+, Ca2+), as a modulator of SOCE. This raises the question as to whether TRPM7 should be considered an alternative route for Ca2+ influx, or if TRPM7 modifies CRAC channel activity in enamel cells. To address these questions, we monitored Ca2+ influx mediated by SOCE using the pharmacological TRPM7 activator naltriben and the inhibitor NS8593 in rat primary enamel cells and in the murine ameloblast cell line LS8 cells stimulated with thapsigargin. We also measured Ca2+ dynamics in ORAI1/2-deficient (shOrai1/2) LS8 cells and in cells with siRNA knock-down of Trpm7. We found that primary enamel cells stimulated with the TRPM7 activator potentiated Ca2+ influx via SOCE compared to control cells. However, blockade of TRPM7 with NS8593 did not decrease the SOCE peak. Furthermore, activation of TRPM7 in shOrai1/2 LS8 cells lacking SOCE failed to elicit Ca2+ influx, and Trpm7 knock-down had no effect on SOCE. Taken together, our data suggest that TRPM7 is a positive modulator of SOCE potentiating Ca2+ influx in enamel cells, but its function is fully dependent on the prior activation of the ORAI channels.
Collapse
Affiliation(s)
- Guilherme H Souza Bomfim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
23
|
Gao J, Gao Z, Dang F, Li X, Liu H, Liu X, Gao M, Ruan J. Calcium promotes differentiation in ameloblast-like LS8 cells by downregulation of phosphatidylinositol 3 kinase /protein kinase B pathway. Arch Oral Biol 2019; 109:104579. [PMID: 31634727 DOI: 10.1016/j.archoralbio.2019.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the effect and mechanism of calcium on LS8 cell differentiation, especially on phosphatidylinositol 3 kinase (PI3K) /protein kinase B(AKT) pathway. MATERIALS AND METHODS Ameloblast-like LS8 cell line was used and additional 0-3.5 mmol/L calcium chloride was treated for 24 h, 48 h. Cell viability and morphological changes, cell cycle and associated regulatory proteins were analyzed. RESULTS No significant effects on morphological changes were observed. Decreased cell viability and increased S phase cells were accompanied by the significant decrease of cyclin A and cyclin B proteins, and significant increase of cyclin D protein in LS8 cells. Additionally, kallikrein-4 and amelotin expressions were significantly increased. Finally, the levels of PI3K, AKT, p-AKT and forkhead box O3 (FOXO3) significantly downregulated after calcium treatment in LS8 cells. CONCLUSIONS Calcium inhibit proliferation and promotes differentiation in LS8 cells, this is closely related to the downregulation of PI3K/AKT signal in LS8 cells.
Collapse
Affiliation(s)
- Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China
| | - Zhen Gao
- Department of first clinic, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinmei Li
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Liu
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meili Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China.
| |
Collapse
|
24
|
MacDougall M, Mamaeva O, Lu C, Chen S. Establishment and characterization of immortalized mouse ameloblast‐like cell lines. Orthod Craniofac Res 2019; 22 Suppl 1:134-141. [DOI: 10.1111/ocr.12313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Mary MacDougall
- Faculty of Dentistry University of British Columbia Vancouver British Columbia Canada
| | - Olga Mamaeva
- Institute of Oral Health Research University of Alabama at Birmingham School of Dentistry Birmingham Alabama
| | - Changming Lu
- Institute of Oral Health Research University of Alabama at Birmingham School of Dentistry Birmingham Alabama
| | - Shuo Chen
- University of Texas Health Science Center at San Antonio Dental School San Antonio Texas
| |
Collapse
|
25
|
Eckstein M, Vaeth M, Aulestia FJ, Costiniti V, Kassam SN, Bromage TG, Pedersen P, Issekutz T, Idaghdour Y, Moursi AM, Feske S, Lacruz RS. Differential regulation of Ca 2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019; 12:12/578/eaav4663. [PMID: 31015290 DOI: 10.1126/scisignal.aav4663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Store-operated Ca2+ entry (SOCE) channels are highly selective Ca2+ channels activated by the endoplasmic reticulum (ER) sensors STIM1 and STIM2. Their direct interaction with the pore-forming plasma membrane ORAI proteins (ORAI1, ORAI2, and ORAI3) leads to sustained Ca2+ fluxes that are critical for many cellular functions. Mutations in the human ORAI1 gene result in immunodeficiency, anhidrotic ectodermal dysplasia, and enamel defects. In our investigation of the role of ORAI proteins in enamel, we identified enamel defects in a patient with an ORAI1 null mutation. Targeted deletion of the Orai1 gene in mice showed enamel defects and reduced SOCE in isolated enamel cells. However, Orai2-/- mice showed normal enamel despite having increased SOCE in the enamel cells. Knockdown experiments in the enamel cell line LS8 suggested that ORAI2 and ORAI3 modulated ORAI1 function, with ORAI1 and ORAI2 being the main contributors to SOCE. ORAI1-deficient LS8 cells showed altered mitochondrial respiration with increased oxygen consumption rate and ATP, which was associated with altered redox status and enhanced ER Ca2+ uptake, likely due to S-glutathionylation of SERCA pumps. Our findings demonstrate an important role of ORAI1 in Ca2+ influx in enamel cells and establish a link between SOCE, mitochondrial function, and redox homeostasis.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Serena N Kassam
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.,Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA
| | - Pal Pedersen
- Carl Zeiss Microscopy, LLC, Thornwood, NY 10594, USA
| | - Thomas Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amr M Moursi
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
26
|
Pandya M, Diekwisch TGH. Enamel biomimetics-fiction or future of dentistry. Int J Oral Sci 2019. [PMID: 30610185 DOI: 10.1038/s41368-018-0038-6,1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.
Collapse
Affiliation(s)
- Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Thomas G H Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
27
|
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues. Five pathways for tooth enamel engineering hold great promise for developing new technologies, leading to novel biomaterials and biotechnologies to regenerate enamel tissue. Tooth enamel is a unique tissue-specific biomaterial with exceptional structural and mechanical properties. In recent years, many approaches have been adopted to generate or regenerate this complex tissue; Mirali Pandya and Thomas Diekwisch of Texas A&M College of Dentistry, USA conducted a review of the current state and future directions of enamel tissue engineering. In their review, the authors focused on five pathways for enamel tissue engineering: (1) physical synthesis of enamel; (2) biochemical enamel engineering; (3) in situ enamel engineering; (4) cell-based enamel engineering; and (5) whole tooth regeneration. The authors conclude that those five approaches will help identify the biological mechanisms that lead to the generation of tooth enamel.
Collapse
|
28
|
Nirvani M, Khuu C, Tulek A, Utheim TP, Sand LP, Snead ML, Sehic A. Transcriptomic analysis of MicroRNA expression in enamel-producing cells. Gene 2018; 688:193-203. [PMID: 30529249 DOI: 10.1016/j.gene.2018.11.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/29/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023]
Abstract
There is little evidence for the involvement of microRNAs (miRNAs) in the regulation of circadian rhythms during enamel development. Few studies have used ameloblast-like cell line LS8 to study the circadian rhythm of gene activities related to enamel formation. However, the transcriptomic analysis of miRNA expression in LS8 cells has not been established yet. In this study, we analyze the oscillations of miRNAs in LS8 cells during one-day cycle of 24 h by next generation deep sequencing. After removal of low quality reads, contaminants, and ligation products, we obtained a high number of clean reads in all 12 samples from four different time points. The length distribution analysis indicated that 77.5% of clean reads were between 21 and 24 nucleotides (nt), of which 35.81% reads exhibited a length of 22 nt. In total, we identified 1471 miRNAs in LS8 cells throughout all four time-points. 1330 (90.41%) miRNAs were identified as known miRNA sequences, whereas 139 (9.59%) were unannotated and classified as novel miRNA sequences. The differential expression analysis showed that 191 known miRNAs exhibited significantly (P-value < 0.01) different levels of expression across three time-points investigated (T6, T12, and T18) compared to T0. Verification of sequencing data using qRT-PCR on six selected miRNAs suggested good correlation between the two methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of predicted target genes of differentially expressed miRNAs. The present study shows that miRNAs are highly expressed in LS8 cells and that a significant number of them oscillate during one-day cycle of 24 h. This is the first transcriptomic analysis of miRNAs in ameloblast-like cell line LS8 that can be potentially used to further characterize the epigenetic regulation of miRNAs during enamel formation.
Collapse
Affiliation(s)
- Minou Nirvani
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Cuong Khuu
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Amela Tulek
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Lars Peter Sand
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway; Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Song W, Wang Y, Chu Q, Qi C, Gao Y, Gao Y, Xiang L, Zhenzhen X, Gao Y. Loss of transforming growth factor-β1 in epithelium cells affects enamel formation in mice. Arch Oral Biol 2018; 96:146-154. [PMID: 30243146 DOI: 10.1016/j.archoralbio.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES In order to understand the specific in vivo function of transforming growth factor-beta1 (TGF-β1), we successfully established aTGF-β1 deficient mouse model using a conditional knockout method. In the present study, we aimed to further understand the potential role of TGF-β1 in enamel formation. DESIGN Transgenic mice withoutTGF-β1 in epithelial cells were generated. Scanning electron microscopy and micro-computed tomography analysis were used to detect the dental appearance, enamel microstructure and tooth density. Histological analysis was used to examine the residual organic matrix of enamel. Quantitative real-time polymerase chain reaction was used to analyze the expressions of enamel matrix proteins at the mRNA level. RESULTS The enamel of mandibular molars and incisors inTGF-β1 conditional knockout mice displayed severe attrition and lower density compared with the wild-type littermates. A slender microstructure of enamel rod was observed, and enamel matrix proteins were retained in the enamel space at the maturation stage in conditional knockout mice. Moreover, the expressions of enamel matrix protein-encoding genes, such as amelogenin (Amelx), ameloblastin (Ambn), Enamelin (Enam) and matrix metalloproteinase-20 (Mmp-20), were increased in enamel organs of conditional knockout mice. On the other hand, the expressions of Amelotin (Amtn), kallikrein-related peptidase-4 (Klk4), C4orf26 and WD repeat-containing protein 72 (Wdr72) were dramatically decreased at the transition and maturation stages. CONCLUSIONS TGF-β1 played an important role in enamel mineralization through decreasing synthesis ofAmelx, Ambn and Enam and increasing synthesis of Klk4, Amtn, Corf26 and Wdr72.
Collapse
Affiliation(s)
- Wenying Song
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yanli Wang
- Binzhou People's Hospital of Shandong Province, Shandong Binzhou 2566610, People's Republic of China
| | - Qing Chu
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Congcong Qi
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yuehua Gao
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yan Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Lili Xiang
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Xu Zhenzhen
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yuguang Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China.
| |
Collapse
|
30
|
Jiang N, Chen L, Ma Q, Ruan J. Nanostructured Ti surfaces and retinoic acid/dexamethasone present a spatial framework for the maturation and amelogenesis of LS-8 cells. Int J Nanomedicine 2018; 13:3949-3964. [PMID: 30022819 PMCID: PMC6042561 DOI: 10.2147/ijn.s167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the amelogenesis-inductive effects of surface structures at the nanoscale. For this purpose, variable nanostructured titanium dioxide (TiO2) surfaces were used as a framework to regulate the amelogenic behaviors of ameloblasts with the administration of retinoic acid (RA)/dexamethasone (DEX). MATERIALS AND METHODS TiO2 nanotubular (NT) surfaces were fabricated via anodization. Mouse ameloblast-like LS-8 cells were seeded and cultured on NT surfaces in the presence or absence of RA/DEX for 48 h. The amelogenic behaviors and extracellular matrix (ECM) mineralization of LS-8 cells on nanostructured Ti surfaces were characterized using field emission scanning electron microscope, laser scanning confocal microscope, quantitative polymerase chain reaction, MTT assay, and flow cytometry. RESULTS TiO2 NT surfaces (tube size ~30 and ~80 nm) were constructed via anodization at 5 or 20 V and denoted as NT5 and NT20, respectively. LS-8 cells exhibited significantly increased spread and proliferation, and lower rates of apoptosis and necrosis on NT surfaces. The amelogenic gene expression and ECM mineralization differed significantly on the NT20 and the NT5 and polished Ti sample surfaces in standard medium. The amelogenic behaviors of LS-8 cells were further changed by RA/DEX pretreatment, which directly drove maturation of LS-8 cells. CONCLUSION Controlling the amelogenic behaviors of ameloblast-like LS-8 cells by manipulating the nanostructure of biomaterials surfaces represents an effective tool for the establishment of a systemic framework for supporting enamel regeneration. The administration of RA/DEX is an effective approach for driving the amelogenesis and maturation of ameloblasts.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Lu Chen
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Qianli Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, People's Republic of China,
- Department of Prosthodontics, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| | - Jianping Ruan
- Department of Preventive Dentistry, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an JiaoTong University, Xi'an, People's Republic of China,
| |
Collapse
|
31
|
Le Norcy E, Lesieur J, Sadoine J, Rochefort GY, Chaussain C, Poliard A. Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization. Front Physiol 2018; 9:55. [PMID: 29472869 PMCID: PMC5809816 DOI: 10.3389/fphys.2018.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 01/03/2023] Open
Abstract
The Leucine Rich Amelogenin Peptide (LRAP) is a product of alternative splicing of the amelogenin gene. As full length amelogenin, LRAP has been shown, in precipitation experiments, to regulate hydroxyapatite (HAP) crystal formation depending on its phosphorylation status. However, very few studies have questioned the impact of its phosphorylation status on enamel mineralization in biological models. Therefore, we have analyzed the effect of phosphorylated (+P) or non-phosphorylated (−P) LRAP on enamel formation in ameloblast-like cell lines and ex vivo cultures of murine postnatal day 1 molar germs. To this end, the mineral formed was analyzed by micro-computed tomography, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy, Selected Area Electon Diffraction imaging. Amelogenin gene transcription was evaluated by qPCR analysis. Our data show that, in both cells and germ cultures, LRAP is able to induce an up-regulation of amelogenin transcription independently of its phosphorylation status. Mineral formation is promoted by LRAP(+P) in all models, while LRAP(–P) essentially affects HAP crystal formation through an increase in crystal length and organization in ameloblast-like cells. Altogether, these data suggest a differential effect of LRAP depending on its phosphorylation status and on the ameloblast stage at the time of treatment. Therefore, LRAP isoforms can be envisioned as potential candidates for treatment of enamel lesions or defects and their action should be further evaluated in pathological models.
Collapse
Affiliation(s)
- Elvire Le Norcy
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France.,APHP, Hôpital Bretonneau, Service d'Odontologie, Paris, France
| | - Julie Lesieur
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Jeremy Sadoine
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Gaël Y Rochefort
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Catherine Chaussain
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France.,APHP, Hôpital Bretonneau, Service d'Odontologie, Paris, France
| | - Anne Poliard
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| |
Collapse
|
32
|
Qi S, Zhu X, Wang X, Chen F, Yan Y, Shang G, Chen W. Role of protein delta homolog 1 in the proliferation and differentiation of ameloblasts. Mol Med Rep 2017; 17:3537-3544. [PMID: 29257328 PMCID: PMC5802151 DOI: 10.3892/mmr.2017.8290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Protein delta homolog 1 (DLK1) regulates the odontoblastic differentiation of human dental pulp stem cells. It was hypothesized that DLK1 may exert regulatory effects on epithelial‑mesenchymal interactions in tooth development. The present study investigated the expression of DLK1 during the development of mouse enamel and its role in the proliferation and differentiation of ameloblast‑lineage cells (ALCs). DLK1 expression was upregulated in ameloblasts in the first mandibular molar during the entire process of enamel development. The mRNA and protein levels of DLK1 were significantly upregulated following ameloblastic induction in ALCs. In addition, overexpression of DLK1 promoted the proliferation of ALCs, inhibited ameloblastic differentiation, upregulated the expression of amelogenin and enamelin, and downregulated the expression of odontogenic ameloblast‑associated protein and kallikrein 4. The results of the present study suggested that DLK1 may be a potent regulator of ameloblast proliferation and differentiation, and may regulate enamel formation during tooth development.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xueqin Zhu
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yanhong Yan
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
33
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
34
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
35
|
Jia J, Yang F, Yang M, Wang C, Song Y. P38/JNK signaling pathway mediates the fluoride-induced down-regulation of Fam83h. Biochem Biophys Res Commun 2016; 471:386-90. [PMID: 26876574 DOI: 10.1016/j.bbrc.2016.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM The similar clinical and pathological feature in fluorosis and amelogenesis imperfect with FAM83H mutations imply that excess fluoride could have effects on the expression of FAM83H and could elaborate this process by some signal pathways regulation. The present study aims to investigate the effects of fluoride on Fam83h expression and try to explore the molecular signaling regulation between them as well as the association of high concentration fluoride with mineralization in ameloblast lineage cells. METHODS Protein expression and signaling pathways of mouse ameloblast-like LS8 cells, exposed to fluoride or MAPK inhibitors, were compared to control cells without exposure. Fam83h, proteins of MAPK signal pathways (ERK, P38 and JNK) were examined by Quantitative real-time PCR and/or Western-blot. ALP activity and ALP staining were used to detect the mineralization in the cells with exposure during 7-day mineralization inducing differentiation. RESULTS The results showed that Fam83h protein level in LS8 cells decreased in the presence of fluoride and MAPK inhibitors. Down-regulation of Fam83h by fluoride was related to suppression of JNK and P38 phosphorylation, and the descending degree of P38 was more obvious. Fluoride and MAPK inhibitors treatment significantly decreased the mineralization level in LS8 cells. CONCLUSION The findings suggest that JNK and P38 could be key regulatory element for Fam83h expression, and that LS8 cells can respond to fluoride by down-regulating Fam83h expression through the regulation of JNK and p38 signaling pathways.
Collapse
Affiliation(s)
- Jie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China; The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng 471000, China
| | - Fang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Mei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
36
|
Nurbaeva MK, Eckstein M, Snead ML, Feske S, Lacruz RS. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes. J Dent Res 2015; 94:1471-7. [PMID: 26232387 DOI: 10.1177/0022034515598144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs.
Collapse
Affiliation(s)
- M K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - M Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - M L Snead
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Feske
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - R S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|