1
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024; 257:281-305. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Cervera J, Levin M, Mafe S. Multicellular adaptation to electrophysiological perturbations analyzed by deterministic and stochastic bioelectrical models. Sci Rep 2024; 14:27608. [PMID: 39528615 PMCID: PMC11554804 DOI: 10.1038/s41598-024-79087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Cells can compensate a disruptive change in one ion channel by compensatory changes in other channels. We have simulated the adaptation of a multicellular aggregate of non-excitable cells to the electrophysiological perturbation produced by the external blocking of a cation channel. In the biophysical model employed, we consider that this blocking provokes a cell depolarization that opens a voltage-gated calcium channel, thus allowing toxic Ca2+ levels. The cell adaptation to this externally-induced perturbation is ascribed to the multiplicity of channels available to keep the cell membrane potential within a physiological window. We propose that the cell depolarization provokes the upregulated expression of a compensatory channel protein that resets the cell potential to the correct polarized value, which prevents the calcium entry. To this end, we use two different simulation algorithms based on deterministic and stochastic methods. The simulations suggest that because of the local correlations coupling the cell potential to transcription, short-term bioelectrical perturbations can trigger long-term biochemical adaptations to novel stressors in multicellular aggregates. Previous experimental data on planarian flatworms' adaptation to a barium-containing environment is also discussed.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, Burjassot, 46100, Spain.
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, 02155-4243, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, Burjassot, 46100, Spain
- Allen Discovery Center, Tufts University, Medford, MA, 02155-4243, USA
| |
Collapse
|
3
|
Cervera J, Manzanares JA, Levin M, Mafe S. Oscillatory phenomena in electrophysiological networks: The coupling between cell bioelectricity and transcription. Comput Biol Med 2024; 180:108964. [PMID: 39106669 DOI: 10.1016/j.compbiomed.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Morphogenetic regulation during embryogenesis and regeneration rely on information transfer and coordination between different regions. Here, we explore theoretically the coupling between bioelectrical and transcriptional oscillations at the individual cell and multicellular levels. The simulations, based on a set of ion channels and intercellular gap junctions, show that bioelectrical and transcriptional waves can electrophysiologically couple distant regions of a model network in phase and antiphase oscillatory states that include synchronization phenomena. In this way, different multicellular regionalizations can be encoded by cell potentials that oscillate between depolarized and polarized states, thus allowing a spatio-temporal coding. Because the electric potential patterns characteristic of development and regeneration are correlated with the spatial distributions of signaling ions and molecules, bioelectricity can act as a template for slow biochemical signals following a hierarchy of experimental times. In particular, bioelectrical gradients that couple cell potentials to transcription rates give to each single cell a rough idea of its location in the multicellular ensemble, thus controlling local differentiation processes that switch on and off crucial parts of the genome.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain
| | - Michael Levin
- Dept. of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
5
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Manicka S, Pai VP, Levin M. Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain. iScience 2023; 26:108398. [PMID: 38034358 PMCID: PMC10687303 DOI: 10.1016/j.isci.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Spatiotemporal patterns of cellular resting potential regulate several aspects of development. One key aspect of the bioelectric code is that transcriptional and morphogenetic states are determined not by local, single-cell, voltage levels but by specific distributions of voltage across cell sheets. We constructed and analyzed a minimal dynamical model of collective gene expression in cells based on inputs of multicellular voltage patterns. Causal integration analysis revealed a higher-order mechanism by which information about the voltage pattern was spatiotemporally integrated into gene activity, as well as a division of labor among and between the bioelectric and genetic components. We tested and confirmed predictions of this model in a system in which bioelectric control of morphogenesis regulates gene expression and organogenesis: the embryonic brain of the frog Xenopus laevis. This study demonstrates that machine learning and computational integration approaches can advance our understanding of the information-processing underlying morphogenetic decision-making, with a potential for other applications in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Mathews J, Levin M. Cancer's unique bioelectric properties: From cells to body-wide networks: Comment on: "The distinguishing electrical properties of cancer cells" by Elisabetta Di Gregorio, Simone Israel, Michael Staelens, Gabriella Tankel, Karthik Shankar, and Jack A. Tuszynski (this issue). Phys Life Rev 2023; 47:113-115. [PMID: 37837910 DOI: 10.1016/j.plrev.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/16/2023]
Affiliation(s)
- J Mathews
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - M Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Bory Prevez H, Soutelo Jimenez AA, Roca Oria EJ, Heredia Kindelán JA, Morales González M, Villar Goris NA, Hernández Mesa N, Sierra González VG, Infantes Frometa Y, Montijano JI, Cabrales LEB. Simulations of surface charge density changes during the untreated solid tumour growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220552. [PMID: 36465673 PMCID: PMC9709566 DOI: 10.1098/rsos.220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
Collapse
Affiliation(s)
- Henry Bory Prevez
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Eduardo José Roca Oria
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Narciso Antonio Villar Goris
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana
| | | | | | | | - Juan Ignacio Montijano
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Luis Enrique Bergues Cabrales
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
13
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
14
|
Carvalho J. A computational model of organism development and carcinogenesis resulting from cells' bioelectric properties and communication. Sci Rep 2022; 12:9206. [PMID: 35654933 PMCID: PMC9163332 DOI: 10.1038/s41598-022-13281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
A sound theory of biological organization is clearly missing for a better interpretation of observational results and faster progress in understanding life complexity. The availability of such a theory represents a fundamental progress in explaining both normal and pathological organism development. The present work introduces a computational implementation of some principles of a theory of organism development, namely that the default state of cells is proliferation and motility, and includes the principle of variation and organization by closure of constraints. In the present model, the bioelectric context of cells and tissue is the field responsible for organization, as it regulates cell proliferation and the level of communication driving the system's evolution. Starting from a depolarized (proliferative) cell, the organism grows to a certain size, limited by the increasingly polarized state after successive proliferation events. The system reaches homeostasis, with a depolarized core (proliferative cells) surrounded by a rim of polarized cells (non-proliferative in this condition). This state is resilient to cell death (random or due to injure) and to limited depolarization (potentially carcinogenic) events. Carcinogenesis is introduced through a localized event (a spot of depolarized cells) or by random depolarization of cells in the tissue, which returns cells to their initial proliferative state. The normalization of the bioelectric condition can reverse this out-of-equilibrium state to a new homeostatic one. This simplified model of embryogenesis, tissue organization and carcinogenesis, based on non-excitable cells' bioelectric properties, can be made more realistic with the introduction of other components, like biochemical fields and mechanical interactions, which are fundamental for a more faithful representation of reality. However, even a simple model can give insight for new approaches in complex systems and suggest new experimental tests, focused in its predictions and interpreted under a new paradigm.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:ijms23063157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
- Correspondence: ; Tel.: +39-347-920-6992
| |
Collapse
|
16
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
17
|
Grodstein J, Levin M. A Computational Approach to Explaining Bioelectrically Induced Persistent, Stochastic Changes of Axial Polarity in Planarian Regeneration. Bioelectricity 2022; 4:18-30. [PMID: 39372228 PMCID: PMC11450330 DOI: 10.1089/bioe.2021.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morphogenesis results when cells cooperate to construct a specific anatomical structure. The behavior of such cell swarms exhibits not only robustness but also plasticity with respect to what specific anatomies will be built. Important aspects of evolutionary biology, regenerative medicine, and cancer are impacted by the algorithms by which instructive information guides invariant or stochastic outcomes of such collective activity. Planarian flatworms are an important model system in this field, as flatworms reliably regenerate a primary body axis after diverse kinds of injury. Importantly, the number of heads to which they regenerate is not determined genetically: lines of worms can be produced, which, with no further manipulation, regenerate as two-headed (2H) worms, or as "Cryptic" worms. When cut into pieces, Cryptic worms produce one-headed (1H) and 2H regenerates stochastically. Neural and bioelectric mechanisms have been proposed to explain aspects of the regenerative dataset. However, these models have not been unified and do not explain all of the Cryptic worm data. In this study, we propose a model in which two separate systems (a bioelectric circuit and a neural polarity mechanism) compete to determine the anatomical structure of a regenerate. We show how our model accounts for existing data and provides a consistent synthesis of mechanisms that explain both the robustness of planarian regeneration and its remarkable re-writability toward novel stable and stochastic anatomical states.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| |
Collapse
|
19
|
McMillen P, Oudin MJ, Levin M, Payne SL. Beyond Neurons: Long Distance Communication in Development and Cancer. Front Cell Dev Biol 2021; 9:739024. [PMID: 34621752 PMCID: PMC8491768 DOI: 10.3389/fcell.2021.739024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular communication is important in all aspects of tissue and organism functioning, from the level of single cells, two discreet populations, and distant tissues of the body. Long distance communication networks integrate individual cells into tissues to maintain a complex organism during development, but when communication between cells goes awry, disease states such as cancer emerge. Herein we discuss the growing body of evidence suggesting that communication methods known to be employed by neurons, also exist in other cell types. We identify three major areas of long-distance communication: bioelectric signaling, tunneling nanotubes (TNTs), and macrophage modulation of networks, and draw comparisons about how these systems operate in the context of development and cancer. Bioelectric signaling occurs between cells through exchange of ions and tissue-level electric fields, leading to changes in biochemical gradients and molecular signaling pathways to control normal development and tumor growth and invasion in cancer. TNTs transport key morphogens and other cargo long distances, mediating electrical coupling, tissue patterning, and malignancy of cancer cells. Lastly macrophages maintain long distance signaling networks through trafficking of vesicles during development, providing communication relays and priming favorable microenvironments for cancer metastasis. By drawing comparisons between non-neural long distance signaling in the context of development and cancer we aim to encourage crosstalk between the two fields to cultivate new hypotheses and potential therapeutic strategies.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
20
|
Grodstein J, Levin M. Stability and robustness properties of bioelectric networks: A computational approach. BIOPHYSICS REVIEWS 2021; 2:031305. [PMID: 38505634 PMCID: PMC10903393 DOI: 10.1063/5.0062442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 03/21/2024]
Abstract
Morphogenesis during development and regeneration requires cells to communicate and cooperate toward the construction of complex anatomical structures. One important set of mechanisms for coordinating growth and form occurs via developmental bioelectricity-the dynamics of cellular networks driving changes of resting membrane potential which interface with transcriptional and biomechanical downstream cascades. While many molecular details have been elucidated about the instructive processes mediated by ion channel-dependent signaling outside of the nervous system, future advances in regenerative medicine and bioengineering require the understanding of tissue, organ, or whole body-level properties. A key aspect of bioelectric networks is their robustness, which can drive correct, invariant patterning cues despite changing cell number and anatomical configuration of the underlying tissue network. Here, we computationally analyze the minimal models of bioelectric networks and use the example of the regenerating planarian flatworm, to reveal important system-level aspects of bioelectrically derived patterns. These analyses promote an understanding of the robustness of circuits controlling regeneration and suggest design properties that can be exploited for synthetic bioengineering.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
21
|
A bioelectric model of carcinogenesis, including propagation of cell membrane depolarization and reversal therapies. Sci Rep 2021; 11:13607. [PMID: 34193902 PMCID: PMC8245601 DOI: 10.1038/s41598-021-92951-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
As the main theory of carcinogenesis, the Somatic Mutation Theory, increasingly presents difficulties to explain some experimental observations, different theories are being proposed. A major alternative approach is the Tissue Organization Field Theory, which explains cancer origin as a tissue regulation disease instead of having a mainly cellular origin. This work fits in the latter hypothesis, proposing the bioelectric field, in particular the cell membrane polarization state, and ionic exchange through ion channels and gap junctions, as an important mechanism of cell communication and tissue organization and regulation. Taking into account recent experimental results and proposed bioelectric models, a computational model of cancer initiation was developed, including the propagation of a cell depolarization wave in the tissue under consideration. Cell depolarization leads to a change in its state, with the activation and deactivation of several regulation pathways, increasing cell proliferation and motility, changing its epigenetic state to a more stem cell-like behavior without the requirement of genomic mutation. The intercellular communication via gap junctions leads, in certain circumstances, to a bioelectric state propagation to neighbor cells, in a chain-like reaction, till an electric discontinuity is reached. However, this is a reversible process, and it was shown experimentally that, by implementing a therapy targeted on cell ion exchange channels, it is possible to reverse the state and repolarize cells. This mechanism can be an important alternative way in cancer prevention, diagnosis and therapy, and new experiments are proposed to test the presented hypothesis.
Collapse
|
22
|
Levin M. Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:102-113. [PMID: 33961843 DOI: 10.1016/j.pbiomolbio.2021.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
One lens with which to understand the complex phenomenon of cancer is that of developmental biology. Cancer is the inevitable consequence of a breakdown of the communication that enables individual cells to join into computational networks that work towards large-scale, morphogenetic goals instead of more primitive, unicellular objectives. This perspective suggests that cancer may be a physiological disorder, not necessarily due to problems with the genetically-specified protein hardware. One aspect of morphogenetic coordination is bioelectric signaling, and indeed an abnormal bioelectric signature non-invasively reveals the site of incipient tumors in amphibian models. Functionally, a disruption of resting potential states triggers metastatic melanoma phenotypes in embryos with no genetic defects or carcinogen exposure. Conversely, optogenetic or molecular-biological modulation of bioelectric states can override powerful oncogenic mutations and prevent or normalize tumors. The bioelectrically-mediated information flows that harness cells toward body-level anatomical outcomes represent a very attractive and tractable endogenous control system, which is being targeted by emerging approaches to cancer.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
| |
Collapse
|
23
|
Pezzulo G, LaPalme J, Durant F, Levin M. Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190765. [PMID: 33550952 PMCID: PMC7935058 DOI: 10.1098/rstb.2019.0765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Fallon Durant
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
24
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
25
|
Silver BB, Wolf AE, Lee J, Pang MF, Nelson CM. Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation. Mol Biol Cell 2020; 31:1691-1702. [PMID: 32520653 PMCID: PMC7521849 DOI: 10.1091/mbc.e19-12-0719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patterns of proliferation are templated by both gradients of mechanical stress as well as by gradients in membrane voltage (Vm), which is defined as the electric potential difference between the cytoplasm and the extracellular medium. Either gradient could regulate the emergence of the other, or they could arise independently and synergistically affect proliferation within a tissue. Here, we examined the relationship between endogenous patterns of mechanical stress and the generation of bioelectric gradients in mammary epithelial tissues. We observed that the mechanical stress gradients in the tissues presaged gradients in both proliferation and depolarization, consistent with previous reports correlating depolarization with proliferation. Furthermore, disrupting the Vm gradient blocked the emergence of patterned proliferation. We found that the bioelectric gradient formed downstream of mechanical stresses within the tissues and depended on connexin-43 (Cx43) hemichannels, which opened preferentially in cells located in regions of high mechanical stress. Activation of Cx43 hemichannels was necessary for nuclear localization of Yap/Taz and induction of proliferation. Together, these results suggest that mechanotransduction triggers the formation of bioelectric gradients across a tissue, which are further translated into transcriptional changes that template patterns of growth.
Collapse
Affiliation(s)
- Brian B Silver
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Abraham E Wolf
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Mei-Fong Pang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
26
|
Pai VP, Cervera J, Mafe S, Willocq V, Lederer EK, Levin M. HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Front Cell Neurosci 2020; 14:136. [PMID: 32528251 PMCID: PMC7264377 DOI: 10.3389/fncel.2020.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic exposure to the teratogen nicotine results in brain defects, by disrupting endogenous spatial pre patterns necessary for normal brain size and patterning. Extending prior work in Xenopus laevis that showed that misexpression of ion channels can rescue morphogenesis, we demonstrate and characterize a novel aspect of developmental bioelectricity: channel-dependent repair signals propagate long-range across the embryo. We show that distal HCN2 channel misexpression and distal transplants of HCN2-expressing tissue, non-cell-autonomously reverse profound defects, rescuing brain anatomy, gene expression, and learning. Moreover, such rescue can be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. We present a simple, versatile computational model of bioelectrical signaling upstream of key patterning genes such as OTX2 and XBF1, which predicts long-range repair induced by ion channel activity, and experimentally validate the predictions of this model. Our results and quantitative model identify a powerful morphogenetic control mechanism that could be targeted by future regenerative medicine exploiting ion channel modulating drugs approved for human use.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Javier Cervera
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Salvador Mafe
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Emma K Lederer
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
27
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
28
|
Fields C, Bischof J, Levin M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology (Bethesda) 2020; 35:16-30. [DOI: 10.1152/physiol.00027.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems’ information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, Caunes Minervois, France
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
29
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
30
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
31
|
Pai VP, Adams DS. Preventing Ethanol-Induced Brain and Eye Morphology Defects Using Optogenetics. Bioelectricity 2019; 1:260-272. [PMID: 32685918 DOI: 10.1089/bioe.2019.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Embryonic exposure to the teratogen ethanol leads to dysmorphias, including eye and brain morphology defects associated with fetal alcohol spectrum disorder (FASD). Exposure of Xenopus laevis embryos to ethanol leads to similar developmental defects, including brain and eye dysmorphism, confirming our work and the work of others showing Xenopus as a useful system for studies of the brain and eye birth defects associated with FASD. Several targets of ethanol action have been hypothesized, one being regulation of Kir2.1 potassium channel. Endogenous ion fluxes and membrane voltage variation (bioelectric signals) have been shown to be powerful regulators of embryonic cell behaviors that are required for correct brain and eye morphology. Disruptions to these voltage patterns lead to spatially correlated disruptions in gene expression patterns and corresponding morphology. Materials and Methods: Here, we use controlled membrane voltage modulation to determine when and where voltage modulation is sufficient to rescue ethanol-induced brain and eye defects in Xenopus embryos. Results: We found (1) that modulating membrane voltage using light activation of the channelrhodopsin-2 variant D156A rescues ethanol exposed embryos, resulting in normal brain and eye morphologies; (2) hyperpolarization is required for the full duration of ethanol exposure; (3) hyperpolarization of only superficial ectoderm is sufficient for this effect; and(4) the rescue effect acts at a distance. Conclusions: These results, particularly the last, raise the exciting possibility of using bioelectric modulation to treat ethanol-induced brain and eye birth defects, possibly with extant ion channel drugs already prescribed to pregnant women. This may prove to be a simple and cost-effective strategy for reducing the impact of FASD.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Department of Biology, Tufts University, Medford, Massachusetts.,Ion Diagnostics LLC, Watertown, Massachusetts
| |
Collapse
|
32
|
Herrera-Rincon C, Golding AS, Moran KM, Harrison C, Martyniuk CJ, Guay JA, Zaltsman J, Carabello H, Kaplan DL, Levin M. Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Rep 2019; 25:1593-1609.e7. [PMID: 30404012 PMCID: PMC6317729 DOI: 10.1016/j.celrep.2018.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 08/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The induction of limb repair in adult vertebrates is a pressing, unsolved problem. Here, we characterize the effects of an integrated device that delivers drugs to severed hindlimbs of adult Xenopus laevis, which normally regenerate cartilaginous spikes after amputation. A wearable bioreactor containing a silk protein-based hydrogel that delivered progesterone to the wound site immediately after hindlimb amputation for only 24 hr induced the regeneration of paddle-like structures in adult frogs. Molecular markers, morphometric analysis, X-ray imaging, immunofluorescence, and behavioral assays were used to characterize the differences between the paddle-like structures of successful regenerates and hypomorphic spikes that grew in untreated animals. Our experiments establish a model for testing therapeutic cocktails in vertebrate hindlimb regeneration, identify pro-regenerative activities of progesterone-containing bioreactors, and provide proof of principle of brief use of integrated device-based delivery of small-molecule drugs as a viable strategy to induce and maintain a long-term regenerative response. The complexity of vertebrate limbs drives the search for regenerative treatments that trigger endogenous processes of repair. Herrera-Rincon et al. show that a wearable bioreactor containing progesterone, applied for only 24 hr, induces months of regenerative growth and patterning of amputated hindlimbs in the frog Xenopus laevis.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Annie S Golding
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Kristine M Moran
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Christina Harrison
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Justin A Guay
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Julia Zaltsman
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Hayley Carabello
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
34
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
35
|
Cervera J, Pai VP, Levin M, Mafe S. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:39-53. [PMID: 31255702 DOI: 10.1016/j.pbiomolbio.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous bioelectric patterns within tissues are an important driver of morphogenesis and a tractable component of a number of disease states. Developing system-level understanding of the dynamics by which non-neural bioelectric circuits regulate complex downstream cascades is a key step towards both, an evolutionary understanding of ion channel genes, and novel strategies in regenerative medicine. An important capability gap is deriving rational modulation strategies targeting individual cells' bioelectric states to achieve global (tissue- or organ-level) outcomes. Here, we develop an ion channel-based model that describes multicellular states on the basis of spatio-temporal patterns of electrical potentials in aggregates of non-excitable cells. The model is of biological interest because modern techniques allow to associate bioelectrical signals with specific ion channel proteins in the cell membrane that are central to embryogenesis, regeneration, and tumorigenesis. As a complementary approach to the usual biochemical description, we have studied four biophysical questions: (i) how can single-cell bioelectrical states be established; (ii) how can a change in the cell potential caused by a transient perturbation of the cell state be maintained after the stimulus is gone (bioelectrical memory); (iii) how can a single-cell contribute to the control of multicellular ensembles based on the spatio-temporal pattern of electrical potentials; and (iv) how can oscillatory patterns arise from the single-cell bioelectrical dynamics. Experimentally, endogenous bioelectric gradients have emerged as instructive agents for morphogenetic processes. In this context, the simulations can guide new procedures that may allow a distributed control of the multicellular ensemble.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain.
| | - Vaibhav P Pai
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain
| |
Collapse
|
36
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
37
|
Tuszynski J, Tilli TM, Levin M. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Curr Pharm Des 2019; 23:4827-4841. [PMID: 28554310 PMCID: PMC6340161 DOI: 10.2174/1381612823666170530105837] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
Abstract
The activities of individual cells must be tightly coordinated in order to build and maintain complex 3-dimensional body structures during embryogenesis and regeneration. Thus, one way to view cancer is within systems biology as a network disorder affecting the ability of cells to properly interact with a morphodynamic field of instructive signals that keeps proliferation and migration orchestrated toward the anatomical needs of the host or-ganism. One layer of this set of instructive microenvironmental cues is bioelectrical. Voltage gradients among all somatic cells (not just excitable nerve and muscle) control cell behavior, and the ionic coupling of cells into networks via electrochemical synapses allows them to implement tissue-level patterning decisions. These gradients have been increasingly impli-cated in the induction and suppression of tumorigenesis and metastasis, in the emerging links between developmental bioelectricity to the cancer problem. Consistent with the well-known role of neurotransmitter molecules in transducing electrical activity to downstream cascades in the brain, serotonergic signaling has likewise been implicated in cancer. Here, we review these recent data and propose new approaches for manipulating bioelectric and neurotransmitter pathways in cancer biology based on a bioelectric view of cancer. To sup-port this methodology, we present new data on the effects of the SSRI Prozac and its analog (ZINC ID = ZINC06811610) on survival of both cancer (MCF7) and normal (MCF10A) breast cells exposed to these compounds. We found an IC50 concentration (25 μM for Pro-zac and 100 μM for the Prozac analog) at which these compounds inhibited tumor cell sur-vival and proliferation. Additionally, at these concentrations, we did not observe alterations in a non-tumoral cell line. This constitutes a proof-of-concept demonstration for our hy-pothesis that the use of both existing and novel drugs as electroceuticals could serve as an alternative to highly toxic chemotherapy strategies replacing or augmenting them with less toxic alternatives. We believe this new approach forms an exciting roadmap for future bio-medical advances.
Collapse
Affiliation(s)
- Jack Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta. Canada
| | - Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro. Brazil
| | - Michael Levin
- Biology Department, and Allen Discovery Center, Tufts University, Medford, MA, 02155. United States
| |
Collapse
|
38
|
Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019; 11:42-56. [PMID: 30590250 PMCID: PMC6308252 DOI: 10.1016/j.isci.2018.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.
Collapse
Affiliation(s)
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Cervera J, Manzanares JA, Mafe S. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations. Phys Chem Chem Phys 2019; 20:9343-9354. [PMID: 29564429 DOI: 10.1039/c8cp00648b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Mafe
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
40
|
Ferenc NN, Levin M. Effects of Ivermectin Exposure on Regeneration of D. dorotocephala Planaria: Exploiting Human-Approved Ion Channel Drugs as Morphoceuticals. Macromol Biosci 2018; 19:e1800237. [PMID: 30485697 DOI: 10.1002/mabi.201800237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Indexed: 01/19/2023]
Abstract
Transformative applications in regenerative medicine await increased control of processes implementing repair and remodeling of complex living structures. Recent work reveals ion channel drugs as a powerful toolkit for modulating endogenous bioelectric circuits that control growth and form in vivo and in vitro. It is therefore especially important to develop assays in model systems that will enable the testing of these "morphoceuticals"-compounds with predictable effects on anatomical structure. The regenerative planaria are an ideal model system for this purpose. Several studies have shown a role for bioelectric signaling in planarian regeneration, but these have focused on Dugesia japonica and Schmidtea mediterranea. It is not known how the alterations of ion channel activity would affect regeneration in other species of planaria-an important aspect of building robust computational models of bioelectric circuits. Here, the effect of ivermectin (IVM), a chloride channel opener drug commonly used to combat heartworm is tested, on regeneration in a new species of planaria: Dugesia dorotocephala. Exposure to IVM during regeneration results in patterning abnormalities, such as bifurcated tails with partial heads, as well as delayed regeneration. These data extend our understanding of the effects of human-approved ion channel drugs on regenerative processes.
Collapse
Affiliation(s)
- Nina N Ferenc
- Chemistry Department, Westfield High School, Chantilly, VA, 20151, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| |
Collapse
|
41
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
42
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
43
|
Pietak A, Levin M. Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:52-68. [PMID: 29626560 PMCID: PMC10464501 DOI: 10.1016/j.pbiomolbio.2018.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Positional information describes pre-patterns of morphogenetic substances that alter spatio-temporal gene expression to instruct development of growth and form. A wealth of recent data indicate bioelectrical properties, such as the transmembrane potential (Vmem), are involved as instructive signals in the spatiotemporal regulation of morphogenesis. However, the mechanistic relationships between Vmem and molecular positional information are only beginning to be understood. Recent advances in computational modeling are assisting in the development of comprehensive frameworks for mechanistically understanding how endogenous bioelectricity can guide anatomy in a broad range of systems. Vmem represents an extraordinarily strong electric field (∼1.0 × 106 V/m) active over the thin expanse of the plasma membrane, with the capacity to influence a variety of downstream molecular signaling cascades. Moreover, in multicellular networks, intercellular coupling facilitated by gap junction channels may induce directed, electrodiffusive transport of charged molecules between cells of the network to generate new positional information patterning possibilities and characteristics. Given the demonstrated role of Vmem in morphogenesis, here we review current understanding of how Vmem can integrate with molecular regulatory networks to control single cell state, and the unique properties bioelectricity adds to transport phenomena in gap junction-coupled cell networks to facilitate self-assembly of morphogen gradients and other patterns. Understanding how Vmem integrates with biochemical regulatory networks at the level of a single cell, and mechanisms through which Vmem shapes molecular positional information in multicellular networks, are essential for a deep understanding of body plan control in development, regeneration and disease.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts, USA; Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
44
|
Silver BB, Nelson CM. The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Front Cell Dev Biol 2018; 6:21. [PMID: 29560350 PMCID: PMC5845671 DOI: 10.3389/fcell.2018.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex, heterogeneous group of diseases that can develop through many routes. Broad treatments such as chemotherapy destroy healthy cells in addition to cancerous ones, but more refined strategies that target specific pathways are usually only effective for a limited number of cancer types. This is largely due to the multitude of physiological variables that differ between cells and their surroundings. It is therefore important to understand how nature coordinates these variables into concerted regulation of growth at the tissue scale. The cellular microenvironment might then be manipulated to drive cells toward a desired outcome at the tissue level. One unexpected parameter, cellular membrane voltage (Vm), has been documented to exert control over cellular behavior both in culture and in vivo. Manipulating this fundamental cellular property influences a remarkable array of organism-wide patterning events, producing striking outcomes in both tumorigenesis as well as regeneration. These studies suggest that Vm is not only a key intrinsic cellular property, but also an integral part of the microenvironment that acts in both space and time to guide cellular behavior. As a result, there is considerable interest in manipulating Vm both to treat cancer as well as to regenerate organs damaged or deteriorated during aging. However, such manipulations have produced conflicting outcomes experimentally, which poses a substantial barrier to understanding the fundamentals of bioelectrical reprogramming. Here, we summarize these inconsistencies and discuss how the mechanical microenvironment may impact bioelectric regulation.
Collapse
Affiliation(s)
- Brian B. Silver
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
45
|
Herrera-Rincon C, Levin M. Booting up the organism during development: Pre-behavioral functions of the vertebrate brain in guiding body morphogenesis. Commun Integr Biol 2018; 11:e1433440. [PMID: 29497473 PMCID: PMC5824965 DOI: 10.1080/19420889.2018.1433440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 01/24/2023] Open
Abstract
A recent study in Xenopus laevis embryos showed that the very early brain has important functions long before behavior. While the nascent brain is being constructed, it is required for normal patterning of the muscle and peripheral nerve networks, including those far away from the head. In addition to providing important developmental signals to remote tissues in normal embryogenesis, its presence is also able to render harmless exposure to specific chemicals that normally act as teratogens. These activities of the early brain can be partially compensated for in a brainless embryo by experimental modulation of neurotransmitter and ion channel signaling. Here, we discuss the major findings of this paper in the broader context of developmental physiology, neuroscience, and biomedicine. This novel function of the embryonic brain has significant implications, especially for understanding developmental toxicology and teratogenesis in the context of pharmaceutical and environmental reagents.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
46
|
Levin M, Martyniuk CJ. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems 2018; 164:76-93. [PMID: 28855098 PMCID: PMC10464596 DOI: 10.1016/j.biosystems.2017.08.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
47
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
48
|
Busse SM, McMillen PT, Levin M. Cross-limb communication during Xenopus hind-limb regenerative response: non-local bioelectric injury signals. Development 2018; 145:dev.164210. [DOI: 10.1242/dev.164210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Regeneration of damaged body-parts requires coordination of size, shape, location, and orientation of tissue with the rest of the body. It is not currently known how far injury sites communicate with the remaining soma during repair, or what information may emanate from the injury site to other regions. We examined the bioelectric properties (resting potential gradients in the epidermis) of Xenopus froglets undergoing hind-limb amputation and observed that the contralateral (un-damaged) limb exhibits apparent depolarization signals immediately after the opposite hind-limb is amputated. The pattern of depolarization matches that of the amputated limb and is correlated to the position and type of injury, revealing that information about damage is available to remote body tissues and is detectable non-invasively in vivo by monitoring of the bioelectric state. These data extend knowledge about the electrophysiology of regenerative response, identify a novel communication process via long-range spread of injury signaling, a phenomenon which we call bioelectric injury mirroring (BIM), and suggests revisions to regenerative medicine and diagnostic strategies focused entirely on the wound site and to the use of contralateral limbs as controls.
Collapse
Affiliation(s)
- Sera M. Busse
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Patrick T. McMillen
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
49
|
Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 2017; 7:19575-88. [PMID: 26988909 PMCID: PMC4991402 DOI: 10.18632/oncotarget.8036] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023] Open
Abstract
It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations.
Collapse
|
50
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|