1
|
Tavitian A, Somech J, Chamlian B, Liberman A, Galindez C, Schipper HM. Craniofacial anomalies in schizophrenia-relevant GFAP.HMOX1 0-12m mice. Anat Rec (Hoboken) 2024; 307:3529-3547. [PMID: 38606671 DOI: 10.1002/ar.25449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Subtle craniofacial dysmorphology has been reported in schizophrenia patients. This dysmorphology includes midline facial elongation, frontonasal anomalies and a sexually dimorphic deviation from normal directional asymmetry of the face, with male patients showing reduced and female patients showing enhanced facial asymmetry relative to healthy control subjects. GFAP.HMOX10-12m transgenic mice (Mus musculus) that overexpress heme oxygenase-1 in astrocytes recapitulate many schizophrenia-relevant neurochemical, neuropathological and behavioral features. As morphogenesis of the brain, skull and face are highly interrelated, we hypothesized that GFAP.HMOX10-12m mice may exhibit craniofacial anomalies similar to those reported in persons with schizophrenia. We examined craniofacial anatomy in male GFAP.HMOX10-12m mice and wild-type control mice at the early adulthood age of 6-8 months. We used computer vision techniques for the extraction and analysis of mouse head shape parameters from systematically acquired 2D digital images, and confirmed our results with landmark-based geometric morphometrics. We performed skull bone morphometry using digital calipers to take linear distance measurements between known landmarks. Relative to controls, adult male GFAP.HMOX10-12m mice manifested craniofacial dysmorphology including elongation of the nasal bones, alteration of head shape anisotropy and reduction of directional asymmetry in facial shape features. These findings demonstrate that GFAP.HMOX10-12m mice exhibit craniofacial anomalies resembling those described in schizophrenia patients, implicating heme oxygenase-1 in their development. As a preclinical mouse model, GFAP.HMOX10-12m mice provide a novel opportunity for the study of the etiopathogenesis of craniofacial and other anomalies in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Joseph Somech
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Badrouyk Chamlian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
3
|
Ağaç DK, Onuk B, Gündemir O, Kabak M, Manuta N, Çakar B, Janeczek M, Crampton DA, Szara T. Comparative Cranial Geometric Morphometrics among Wistar Albino, Sprague Dawley, and WAG/Rij Rat Strains. Animals (Basel) 2024; 14:1274. [PMID: 38731278 PMCID: PMC11083316 DOI: 10.3390/ani14091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This research utilizes geometric morphometrics to investigate shape variation in the skull, mandible, and teeth among three rat strains: Wistar Albino (WA), Sprague Dawley (SD), and WAG/Rij (WR). Through the analysis of 48 rats using 2D geometric morphometric techniques, significant differences in their skull morphology were identified. This study indicates a shift from a rectangular to an oval cranial shape across strains, with notable size and morphological variances. Particularly, the WR strain's skull shape significantly differs from the SD and WA strains, suggesting distinct ecological or genetic pathways. Compared to the skull, mandible shape differences are less pronounced, but still significant. The WR strain exhibits a distinct mandible shape, potentially reflecting ecological adaptations like dietary habits. The teeth shape of WR rats is the most distinct. SD rats consistently exhibited larger sizes in both skull and mandible measurements, while WR rats were notably smaller. Interestingly, sexual dimorphism was not statistically significant in skull and teeth sizes, aligning with findings from previous studies. However, the mandible showed clear size differences between sexes, underscoring its potential for adaptive or behavioral studies. In summary, this study provides a comprehensive analysis of morphological variations in rat strains, highlighting the intricate interplay of size, shape, and ecological factors. These findings lay a foundation for deeper explorations into the adaptive, ecological, or genetic narratives influencing rat morphology.
Collapse
Affiliation(s)
- Duygu Küçük Ağaç
- Department of Veterinary, Şiran Mustafa Beyaz Vocational School, Gümüşhane University, 29700 Gümüşhane, Türkiye;
| | - Burcu Onuk
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55270 Samsun, Türkiye; (B.O.); (M.K.)
| | - Ozan Gündemir
- Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Türkiye
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55270 Samsun, Türkiye; (B.O.); (M.K.)
| | - Nicoleta Manuta
- Institute of Graduate Studies, Istanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye; (N.M.); (B.Ç.)
| | - Buket Çakar
- Institute of Graduate Studies, Istanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye; (N.M.); (B.Ç.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Denise Amber Crampton
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Tomasz Szara
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Goovaerts S, Hoskens H, Eller RJ, Herrick N, Musolf AM, Justice CM, Yuan M, Naqvi S, Lee MK, Vandermeulen D, Szabo-Rogers HL, Romitti PA, Boyadjiev SA, Marazita ML, Shaffer JR, Shriver MD, Wysocka J, Walsh S, Weinberg SM, Claes P. Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape. Nat Commun 2023; 14:7436. [PMID: 37973980 PMCID: PMC10654897 DOI: 10.1038/s41467-023-43237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.
Collapse
Affiliation(s)
- Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
| | - Hanne Hoskens
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Noah Herrick
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, NHGRI, NIH, MD, Baltimore, USA
| | - Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meng Yuan
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dirk Vandermeulen
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Heather L Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatchewan, Canada
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Percival CJ, Devine J, Hassan CR, Vidal‐Garcia M, O'Connor‐Coates CJ, Zaffarini E, Roseman C, Katz D, Hallgrimsson B. The genetic basis of neurocranial size and shape across varied lab mouse populations. J Anat 2022; 241:211-229. [PMID: 35357006 PMCID: PMC9296060 DOI: 10.1111/joa.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
Brain and skull tissues interact through molecular signalling and mechanical forces during head development, leading to a strong correlation between the neurocranium and the external brain surface. Therefore, when brain tissue is unavailable, neurocranial endocasts are often used to approximate brain size and shape. Evolutionary changes in brain morphology may have resulted in secondary changes to neurocranial morphology, but the developmental and genetic processes underlying this relationship are not well understood. Using automated phenotyping methods, we quantified the genetic basis of endocast variation across large genetically varied populations of laboratory mice in two ways: (1) to determine the contributions of various genetic factors to neurocranial form and (2) to help clarify whether a neurocranial variation is based on genetic variation that primarily impacts bone development or on genetic variation that primarily impacts brain development, leading to secondary changes in bone morphology. Our results indicate that endocast size is highly heritable and is primarily determined by additive genetic factors. In addition, a non-additive inbreeding effect led to founder strains with lower neurocranial size, but relatively large brains compared to skull size; suggesting stronger canalization of brain size and/or a general allometric effect. Within an outbred sample of mice, we identified a locus on mouse chromosome 1 that is significantly associated with variation in several positively correlated endocast size measures. Because the protein-coding genes at this locus have been previously associated with brain development and not with bone development, we propose that genetic variation at this locus leads primarily to variation in brain volume that secondarily leads to changes in neurocranial globularity. We identify a strain-specific missense mutation within Akt3 that is a strong causal candidate for this genetic effect. Whilst it is not appropriate to generalize our hypothesis for this single locus to all other loci that also contribute to the complex trait of neurocranial skull morphology, our results further reveal the genetic basis of neurocranial variation and highlight the importance of the mechanical influence of brain growth in determining skull morphology.
Collapse
Affiliation(s)
| | - Jay Devine
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | | | - Marta Vidal‐Garcia
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | | | - Eva Zaffarini
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | - Charles Roseman
- Department of Evolution, Ecology, and BehaviorUniversity of IllinoisUrbanaIllinoisUSA
| | - David Katz
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | - Benedikt Hallgrimsson
- Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| |
Collapse
|
6
|
Parmenter MD, Nelson JP, Gray MM, Weigel S, Vinyard CJ, Payseur BA. A complex genetic architecture underlies mandibular evolution in big mice from Gough Island. Genetics 2022; 220:iyac023. [PMID: 35137059 PMCID: PMC8982026 DOI: 10.1093/genetics/iyac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 01/29/2023] Open
Abstract
Some of the most compelling examples of morphological evolution come from island populations. Alterations in the size and shape of the mandible have been repeatedly observed in murid rodents following island colonization. Despite this pattern and the significance of the mandible for dietary adaptation, the genetic basis of island-mainland divergence in mandibular form remains uninvestigated. To fill this gap, we examined mandibular morphology in 609 F2s from a cross between Gough Island mice, the largest wild house mice on record, and mice from a mainland reference strain (WSB). Univariate genetic mapping identifies 3 quantitative trait loci (QTL) for relative length of the temporalis lever arm and 2 distinct QTL for relative condyle length, 2 traits expected to affect mandibular function that differ between Gough Island mice and WSB mice. Multivariate genetic mapping of coordinates from geometric morphometric analyses identifies 27 QTL contributing to overall mandibular shape. Quantitative trait loci show a complex mixture of modest, additive effects dispersed throughout the mandible, with landmarks including the coronoid process and the base of the ascending ramus frequently modulated by QTL. Additive effects of most shape quantitative trait loci do not align with island-mainland divergence, suggesting that directional selection played a limited role in the evolution of mandibular shape. In contrast, Gough Island mouse alleles at QTL for centroid size and QTL for jaw length increase these measures, suggesting selection led to larger mandibles, perhaps as a correlated response to the evolution of larger bodies.
Collapse
Affiliation(s)
| | - Jacob P Nelson
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Melissa M Gray
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Sara Weigel
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
7
|
Savriama Y, Tautz D. Testing the accuracy of 3D automatic landmarking via genome-wide association studies. G3 (BETHESDA, MD.) 2022; 12:jkab443. [PMID: 35100368 PMCID: PMC9210295 DOI: 10.1093/g3journal/jkab443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022]
Abstract
Various advances in 3D automatic phenotyping and landmark-based geometric morphometric methods have been made. While it is generally accepted that automatic landmarking compromises the capture of the biological variation, no studies have directly tested the actual impact of such landmarking approaches in analyses requiring a large number of specimens and for which the precision of phenotyping is crucial to extract an actual biological signal adequately. Here, we use a recently developed 3D atlas-based automatic landmarking method to test its accuracy in detecting QTLs associated with craniofacial development of the house mouse skull and lower jaws for a large number of specimens (circa 700) that were previously phenotyped via a semiautomatic landmarking method complemented with manual adjustment. We compare both landmarking methods with univariate and multivariate mapping of the skull and the lower jaws. We find that most significant SNPs and QTLs are not recovered based on the data derived from the automatic landmarking method. Our results thus confirm the notion that information is lost in the automated landmarking procedure although somewhat dependent on the analyzed structure. The automatic method seems to capture certain types of structures slightly better, such as lower jaws whose shape is almost entirely summarized by its outline and could be assimilated as a 2D flat object. By contrast, the more apparent 3D features exhibited by a structure such as the skull are not adequately captured by the automatic method. We conclude that using 3D atlas-based automatic landmarking methods requires careful consideration of the experimental question.
Collapse
Affiliation(s)
- Yoland Savriama
- Department Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
8
|
Hassan MG, Chen C, Ismail HA, Zaher AR, Cox TC, Goodwin AF, Jheon AH. Altering calcium and phosphorus supplementation in pregnancy and lactation affects offspring craniofacial morphology in a sex-specific pattern. Am J Orthod Dentofacial Orthop 2022; 161:e446-e455. [DOI: 10.1016/j.ajodo.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022]
|
9
|
Aponte JD, Katz DC, Roth DM, Vidal-García M, Liu W, Andrade F, Roseman CC, Murray SA, Cheverud J, Graf D, Marcucio RS, Hallgrímsson B. Relating multivariate shapes to genescapes using phenotype-biological process associations for craniofacial shape. eLife 2021; 10:68623. [PMID: 34779766 PMCID: PMC8631940 DOI: 10.7554/elife.68623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Realistic mappings of genes to morphology are inherently multivariate on both sides of the equation. The importance of coordinated gene effects on morphological phenotypes is clear from the intertwining of gene actions in signaling pathways, gene regulatory networks, and developmental processes underlying the development of shape and size. Yet, current approaches tend to focus on identifying and localizing the effects of individual genes and rarely leverage the information content of high-dimensional phenotypes. Here, we explicitly model the joint effects of biologically coherent collections of genes on a multivariate trait – craniofacial shape – in a sample of n = 1145 mice from the Diversity Outbred (DO) experimental line. We use biological process Gene Ontology (GO) annotations to select skeletal and facial development gene sets and solve for the axis of shape variation that maximally covaries with gene set marker variation. We use our process-centered, multivariate genotype-phenotype (process MGP) approach to determine the overall contributions to craniofacial variation of genes involved in relevant processes and how variation in different processes corresponds to multivariate axes of shape variation. Further, we compare the directions of effect in phenotype space of mutations to the primary axis of shape variation associated with broader pathways within which they are thought to function. Finally, we leverage the relationship between mutational and pathway-level effects to predict phenotypic effects beyond craniofacial shape in specific mutants. We also introduce an online application that provides users the means to customize their own process-centered craniofacial shape analyses in the DO. The process-centered approach is generally applicable to any continuously varying phenotype and thus has wide-reaching implications for complex trait genetics.
Collapse
Affiliation(s)
- Jose D Aponte
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - David C Katz
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Andrade
- Department of Biology, Loyola University Chicago, Chicago, United States
| | - Charles C Roseman
- Department of Biology, Loyola University Chicago, Chicago, United States
| | | | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, United States
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Francisco, San Francisco, United States
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Animal Biology, University of Illinois Urbana Champaign, Urbana, United States
| |
Collapse
|
10
|
Xiao D, Forys BJ, Vanni MP, Murphy TH. MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning. Nat Commun 2021; 12:5992. [PMID: 34645817 PMCID: PMC8514445 DOI: 10.1038/s41467-021-26255-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Understanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images. A deep learning model identifies nine cortical landmarks using only a single raw fluorescent image. Another fully convolutional network was adapted to delimit brain boundaries. This anatomical alignment approach was extended by adding three functional alignment approaches that use sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet, a robust and user-friendly analysis pipeline using pre-trained models to segment brain regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be combined with existing methods to facilitate high-throughput data analysis.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Brandon J Forys
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthieu P Vanni
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Université de Montréal, École d'Optométrie, 3744 Jean Brillant H3T 1P1, Montréal, Québec, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada.
| |
Collapse
|
11
|
Rolfe S, Pieper S, Porto A, Diamond K, Winchester J, Shan S, Kirveslahti H, Boyer D, Summers A, Maga AM. SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara Rolfe
- Friday Harbor Marine LaboratoriesUniversity of Washington San Juan WA USA
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
| | | | - Arthur Porto
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Center for Computation and Technology Louisiana State University Baton Rouge LA USA
| | - Kelly Diamond
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
| | - Julie Winchester
- Department of Evolutionary Anthropology Duke University Durham NC USA
| | - Shan Shan
- Department of Mathematics Mount Holyoke College South Hadley MA USA
| | | | - Doug Boyer
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Adam Summers
- Friday Harbor Marine LaboratoriesUniversity of Washington San Juan WA USA
| | - A. Murat Maga
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
- Department of Pediatrics Division of Craniofacial Medicine University of Washington Seattle WA USA
| |
Collapse
|
12
|
Buchberger E, Bilen A, Ayaz S, Salamanca D, Matas de las Heras C, Niksic A, Almudi I, Torres-Oliva M, Casares F, Posnien N. Variation in Pleiotropic Hub Gene Expression Is Associated with Interspecific Differences in Head Shape and Eye Size in Drosophila. Mol Biol Evol 2021; 38:1924-1942. [PMID: 33386848 PMCID: PMC8097299 DOI: 10.1093/molbev/msaa335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Revealing the mechanisms underlying the breathtaking morphological diversity observed in nature is a major challenge in Biology. It has been established that recurrent mutations in hotspot genes cause the repeated evolution of morphological traits, such as body pigmentation or the gain and loss of structures. To date, however, it remains elusive whether hotspot genes contribute to natural variation in the size and shape of organs. As natural variation in head morphology is pervasive in Drosophila, we studied the molecular and developmental basis of differences in compound eye size and head shape in two closely related Drosophila species. We show differences in the progression of retinal differentiation between species and we applied comparative transcriptomics and chromatin accessibility data to identify the GATA transcription factor Pannier (Pnr) as central factor associated with these differences. Although the genetic manipulation of Pnr affected multiple aspects of dorsal head development, the effect of natural variation is restricted to a subset of the phenotypic space. We present data suggesting that this developmental constraint is caused by the coevolution of expression of pnr and its cofactor u-shaped (ush). We propose that natural variation in expression or function of highly connected developmental regulators with pleiotropic functions is a major driver for morphological evolution and we discuss implications on gene regulatory network evolution. In comparison to previous findings, our data strongly suggest that evolutionary hotspots are not the only contributors to the repeated evolution of eye size and head shape in Drosophila.
Collapse
Affiliation(s)
- Elisa Buchberger
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Anıl Bilen
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Sanem Ayaz
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - David Salamanca
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | | | - Armin Niksic
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Isabel Almudi
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Montserrat Torres-Oliva
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fernando Casares
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Nico Posnien
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Corresponding author: E-mail:
| |
Collapse
|
13
|
Fruciano C, Franchini P, Jones JC. Capturing the rapidly evolving study of adaptation. J Evol Biol 2021; 34:856-865. [PMID: 34145685 DOI: 10.1111/jeb.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Research on the genomics of adaptation is rapidly changing. In the last few decades, progress in this area has been driven by methodological advances, not only in the way increasingly large amounts of molecular data are generated (e.g. with high-throughput sequencing), but also in the way these data are analysed. This includes a growing appreciation and quantitative treatment of covariation among units within the same data type (e.g. genes) or across data types (e.g. genes and phenotypes). The development and adoption of more and more integrative tools have resulted in richer and more interesting empirical work. This special issue - comprising methodological, empirical, and review papers - aims to capture a 'snapshot' of this rapidly evolving field. We discuss in particular three important themes in the study of adaptation: the genetic architecture of adaptive variation, protein-coding and regulatory changes, and parallel evolution. We highlight how more traditional key themes in the study of genetic architecture (e.g. the number of loci underlying adaptive traits and the distribution of their effects) are now being complemented by other factors (e.g. how patterns of linkage and number of loci interact to affect the ability to adapt). Similarly, apart from addressing the relative importance of protein-coding and regulatory changes, we now have the tools to look in-depth at specific types of regulatory variation to gain a clearer picture of regulatory networks. Finally, parallel evolution has always been central to the study of adaptation, but now we are often able to address the question of whether - and to what extent - parallelism at the organismal or phenotypic level is matched by parallelism at the genetic level. Perhaps most importantly, we can now determine what mechanisms are driving parallelism (or lack thereof) across levels of biological organization. All these recent methodological developments open up new directions for future studies of adaptive changes across traits, levels of biological organization, demographic contexts and time scales.
Collapse
Affiliation(s)
- Carmelo Fruciano
- National Research Council - Institute of Marine Biological Resources and Biotechnologies, Messina, Italy.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France.,School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia C Jones
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol Ecol 2021; 30:955-972. [PMID: 33305470 PMCID: PMC8607476 DOI: 10.1111/mec.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.
Collapse
Affiliation(s)
- Peiwen Xiong
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Carmelo Fruciano
- Department of BiologyUniversity of KonstanzKonstanzGermany
- National Research Council (CNR) – IRBIMMessinaItaly
| | - Wai Y. Wong
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | | | - Andreas F. Kautt
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Oleg Simakov
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | |
Collapse
|
15
|
Abstract
Chronic cranial window surgery is a critical procedure for in vivo imaging in neuroscience. Here, we describe our surgical protocol with several subtle improvements that increase the success rate significantly. The window allows high-quality imaging in head-fixed behaving mice within the first week after the surgical procedure and remains clear for months. We used this procedure to prepare mice for intrinsic signal imaging and two-photon imaging of layer 6 neurons in visual cortex. For complete details on the use and execution of this protocol, please refer to Augustinaite and Kuhn (2020). Long-term, high-quality chronic cranial window for imaging applications Instructions for craniotomy and mounting of a cranial window with headplate Instructions for tracer, dye, and/or virus injection during the surgery Specific instructions for surgeries over primary visual cortex (V1) in mice
Collapse
|
16
|
Bainbridge HE, Brien MN, Morochz C, Salazar PA, Rastas P, Nadeau NJ. Limited genetic parallels underlie convergent evolution of quantitative pattern variation in mimetic butterflies. J Evol Biol 2020; 33:1516-1529. [DOI: 10.1111/jeb.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hannah E. Bainbridge
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Melanie N. Brien
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Carlos Morochz
- Biology & Research Department Mashpi Lodge Mashpi Ecuador
| | - Patricio A. Salazar
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Pasi Rastas
- Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| |
Collapse
|
17
|
McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020; 11:541050. [PMID: 33101170 PMCID: PMC7554632 DOI: 10.3389/fneur.2020.541050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Approaches to furthering our understanding of the bioeffects, behavioral changes, and treatment options following exposure to blast are a worldwide priority. Of particular need is a more concerted effort to employ animal models to determine possible sex differences, which have been reported in the clinical literature. In this review, clinical and preclinical reports concerning blast injury effects are summarized in relation to sex as a biological variable (SABV). The review outlines approaches that explore the pertinent role of sex chromosomes and gonadal steroids for delineating sex as a biological independent variable. Next, underlying biological factors that need exploration for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular, and inflammation factors that all have evidence as having important SABV relevance. A major second consideration for the study of SABV and preclinical blast effects is the notable lack of consistent model design—a wide range of devices have been employed with questionable relevance to real-life scenarios—as well as poor standardization for reporting of blast parameters. Hence, the review also provides current views regarding optimal design of shock tubes for approaching the problem of primary blast effects and sex differences and outlines a plan for the regularization of reporting. Standardization and clear description of blast parameters will provide greater comparability across models, as well as unify consensus for important sex difference bioeffects.
Collapse
Affiliation(s)
- Joseph T McCabe
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B Tucker
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
18
|
Katz DC, Aponte JD, Liu W, Green RM, Mayeux JM, Pollard KM, Pomp D, Munger SC, Murray SA, Roseman CC, Percival CJ, Cheverud J, Marcucio RS, Hallgrímsson B. Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One 2020; 15:e0233377. [PMID: 32502155 PMCID: PMC7274373 DOI: 10.1371/journal.pone.0233377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.
Collapse
Affiliation(s)
- David C. Katz
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - J. David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Rebecca M. Green
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Daniel Pomp
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Charles C. Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States of America
| | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
19
|
Sex differences in cued fear responses and parvalbumin cell density in the hippocampus following repetitive concussive brain injuries in C57BL/6J mice. PLoS One 2019; 14:e0222153. [PMID: 31487322 PMCID: PMC6728068 DOI: 10.1371/journal.pone.0222153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
There is strong evidence to suggest a link between repeated head trauma and cognitive and emotional disorders, and Repetitive concussive brain injuries (rCBI) may also be a risk factor for depression and anxiety disorders. Animal models of brain injury afford the opportunity for controlled study of the effects of injury on functional outcomes. In this study, male and cycling female C57BL/6J mice sustained rCBI (3x) at 24-hr intervals and were tested in a context and cued fear conditioning paradigm, open field (OF), elevated zero maze and tail suspension test. All mice with rCBI showed less freezing behavior than sham control mice during the fear conditioning context test. Injured male, but not female mice also froze less in response to the auditory cue (tone). Injured mice were hyperactive in an OF environment and spent more time in the open quadrants of the elevated zero maze, suggesting decreased anxiety, but there were no differences between injured mice and sham-controls in depressive-like activity on the tail suspension test. Pathologically, injured mice showed increased astrogliosis in the injured cortex and white matter tracts (optic tracts and corpus callosum). There were no changes in the number of parvalbumin-positive interneurons in the cortex or amygdala, but injured male mice had fewer parvalbumin-positive neurons in the hippocampus. Parvalbumin-reactive interneurons of the hippocampus have been previously demonstrated to be involved in hippocampal-cortical interactions required for memory consolidation, and it is possible memory changes in the fear-conditioning paradigm following rCBI are the result of more subtle imbalances in excitation and inhibition both within the amygdala and hippocampus, and between more widespread brain regions that are injured following a diffuse brain injury.
Collapse
|
20
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
21
|
Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH, Ryoo HM. PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet 2019; 27:3827-3839. [PMID: 30007339 PMCID: PMC6216213 DOI: 10.1093/hmg/ddy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptors (FGFRs) cause congenital skeletal anomalies, including craniosynostosis (CS), which is characterized by the premature closure of craniofacial sutures. Apert syndrome (AS) is one of the severest forms of CS, and the only treatment is surgical expansion of prematurely fused sutures in infants. Previously, we demonstrated that the prolyl isomerase peptidyl-prolyl cis-trans isomerase interacting 1 (PIN1) plays a critical role in mediating FGFR signaling and that Pin1+/- mice exhibit delayed closure of cranial sutures. In this study, using both genetic and pharmacological approaches, we tested whether PIN1 modulation could be used as a therapeutic regimen against AS. In the genetic approach, we crossbred Fgfr2S252W/+, a mouse model of AS, and Pin1+/- mice. Downregulation of Pin1 gene dosage attenuated premature cranial suture closure and other phenotypes of AS in Fgfr2S252W/+ mutant mice. In the pharmacological approach, we intraperitoneally administered juglone, a PIN1 enzyme inhibitor, to pregnant Fgfr2S252W/+ mutant mice and found that this treatment successfully interrupted fetal development of AS phenotypes. Primary cultured osteoblasts from Fgfr2S252W/+ mutant mice expressed high levels of FGFR2 downstream target genes, but this phenotype was attenuated by PIN1 inhibition. Post-translational stabilization and activation of Runt-related transcription factor 2 (RUNX2) in Fgfr2S252W/+ osteoblasts were also attenuated by PIN1 inhibition. Based on these observations, we conclude that PIN1 enzyme activity is important for FGFR2-induced RUNX2 activation and craniofacial suture morphogenesis. Moreover, these findings highlight that juglone or other PIN1 inhibitors represent viable alternatives to surgical intervention for treatment of CS and other hyperostotic diseases.
Collapse
Affiliation(s)
- H R Shin
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H S Bae
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H I Yoon
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K Y Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Y S Lee
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K M Woo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Baek
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Varón-González C, Navarro N. Epistasis regulates the developmental stability of the mouse craniofacial shape. Heredity (Edinb) 2019; 122:501-512. [PMID: 30209292 PMCID: PMC6461946 DOI: 10.1038/s41437-018-0140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Fluctuating asymmetry is a classic concept linked to organismal development. It has traditionally been used as a measure of developmental instability, which is the inability of an organism to buffer environmental fluctuations during development. Developmental stability has a genetic component that influences the final phenotype of the organism and can lead to congenital disorders. According to alternative hypotheses, this genetic component might be either the result of additive genetic effects or a by-product of developmental gene networks. Here we present a genome-wide association study of the genetic architecture of fluctuating asymmetry of the skull shape in mice. Geometric morphometric methods were applied to quantify fluctuating asymmetry: we estimated fluctuating asymmetry as Mahalanobis distances to the mean asymmetry, correcting first for genetic directional asymmetry. We applied the marginal epistasis test to study epistasis among genomic regions. Results showed no evidence of additive effects but several interacting regions significantly associated with fluctuating asymmetry. Among the candidate genes overlapping these interacting regions we found an over-representation of genes involved in craniofacial development. A gene network is likely to be associated with skull developmental stability, and genes originally described as buffering genes (e.g., Hspa2) might occupy central positions within these networks, where regulatory elements may also play an important role. Our results constitute an important step in the exploration of the molecular roots of developmental stability and the first empirical evidence about its genetic architecture.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - Nicolas Navarro
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.
- EPHE, PSL University, 6 Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
23
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
24
|
Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Sci Rep 2018; 8:16531. [PMID: 30410001 PMCID: PMC6224569 DOI: 10.1038/s41598-018-34848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates.
Collapse
|
25
|
Küchler EC, Nascimento MAD, Matsumoto MAN, Romano FL, da Silva RAB, Ayumi Omori M, Antunes LA, Antunes LS, da Silva LAB, Nelson-Filho P. Genetic polymorphism in RANK is associated with mandibular size. J Orthod 2018; 45:157-162. [DOI: 10.1080/14653125.2018.1476018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Erika Calvano Küchler
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Mariele Andrade do Nascimento
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, Orthodontic Clinic, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Fabio Lourenço Romano
- Department of Pediatric Dentistry, Orthodontic Clinic, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Marjorie Ayumi Omori
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Lívia Azeredo Antunes
- Department of Specific Formation, School of Dentistry, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Leonardo Santos Antunes
- Department of Specific Formation, School of Dentistry, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of RibeirãoPreto, University of São Paulo, RibeirãoPreto, Brazil
| |
Collapse
|
26
|
Roosenboom J, Lee MK, Hecht JT, Heike CL, Wehby GL, Christensen K, Feingold E, Marazita ML, Maga AM, Shaffer JR, Weinberg SM. Mapping genetic variants for cranial vault shape in humans. PLoS One 2018; 13:e0196148. [PMID: 29698431 PMCID: PMC5919379 DOI: 10.1371/journal.pone.0196148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/07/2018] [Indexed: 01/17/2023] Open
Abstract
The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10−8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10−9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology.
Collapse
Affiliation(s)
- Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, United States of America
| | - Carrie L. Heike
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, WA, United States of America
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, United States of America
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - A. Murat Maga
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, WA, United States of America
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute Seattle, WA, United States of America
| | - John R. Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, Lee MK, Zaidi A, Mattern BC, Liebowitz C, Pearson L, González T, Leslie EJ, Carlson JC, Orlova E, Suetens P, Vandermeulen D, Feingold E, Marazita ML, Shaffer JR, Wysocka J, Shriver MD, Weinberg SM. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat Genet 2018; 50:414-423. [PMID: 29459680 PMCID: PMC5937280 DOI: 10.1038/s41588-018-0057-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/03/2018] [Indexed: 11/08/2022]
Abstract
Genome-wide association scans of complex multipartite traits like the human face typically use preselected phenotypic measures. Here we report a data-driven approach to phenotyping facial shape at multiple levels of organization, allowing for an open-ended description of facial variation while preserving statistical power. In a sample of 2,329 persons of European ancestry, we identified 38 loci, 15 of which replicated in an independent European sample (n = 1,719). Four loci were completely new. For the others, additional support (n = 9) or pleiotropic effects (n = 2) were found in the literature, but the results reported here were further refined. All 15 replicated loci highlighted distinctive patterns of global-to-local genetic effects on facial shape and showed enrichment for active chromatin elements in human cranial neural crest cells, suggesting an early developmental origin of the facial variation captured. These results have implications for studies of facial genetics and other complex morphological traits.
Collapse
Affiliation(s)
- Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, MIRC, UZ Leuven, Leuven, Belgium.
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie D White
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dzemila Sero
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, MIRC, UZ Leuven, Leuven, Belgium
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, MIRC, UZ Leuven, Leuven, Belgium
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arslan Zaidi
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Brooke C Mattern
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Corey Liebowitz
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Laurel Pearson
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Tomás González
- Department of Anthropology, Penn State University, University Park, PA, USA
| | - Elizabeth J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna C Carlson
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ekaterina Orlova
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Suetens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, MIRC, UZ Leuven, Leuven, Belgium
| | - Dirk Vandermeulen
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, MIRC, UZ Leuven, Leuven, Belgium
| | - Eleanor Feingold
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark D Shriver
- Department of Anthropology, Penn State University, University Park, PA, USA.
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Percival CJ, Green R, Roseman CC, Gatti DM, Morgan JL, Murray SA, Donahue LR, Mayeux JM, Pollard KM, Hua K, Pomp D, Marcucio R, Hallgrímsson B. Developmental constraint through negative pleiotropy in the zygomatic arch. EvoDevo 2018; 9:3. [PMID: 29423138 PMCID: PMC5787316 DOI: 10.1186/s13227-018-0092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous analysis suggested that the relative contribution of individual bones to regional skull lengths differ between inbred mouse strains. If the negative correlation of adjacent bone lengths is associated with genetic variation in a heterogeneous population, it would be an example of negative pleiotropy, which occurs when a genetic factor leads to opposite effects in two phenotypes. Confirming negative pleiotropy and determining its basis may reveal important information about the maintenance of overall skull integration and developmental constraint on skull morphology. RESULTS We identified negative correlations between the lengths of the frontal and parietal bones in the midline cranial vault as well as the zygomatic bone and zygomatic process of the maxilla, which contribute to the zygomatic arch. Through gene association mapping of a large heterogeneous population of Diversity Outbred (DO) mice, we identified a quantitative trait locus on chromosome 17 driving the antagonistic contribution of these two zygomatic arch bones to total zygomatic arch length. Candidate genes in this region were identified and real-time PCR of the maxillary processes of DO founder strain embryos indicated differences in the RNA expression levels for two of the candidate genes, Camkmt and Six2. CONCLUSIONS A genomic region underlying negative pleiotropy of two zygomatic arch bones was identified, which provides a mechanism for antagonism in component bone lengths while constraining overall zygomatic arch length. This type of mechanism may have led to variation in the contribution of individual bones to the zygomatic arch noted across mammals. Given that similar genetic and developmental mechanisms may underlie negative correlations in other parts of the skull, these results provide an important step toward understanding the developmental basis of evolutionary variation and constraint in skull morphology.
Collapse
Affiliation(s)
| | - Rebecca Green
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Charles C. Roseman
- Program in Ecology Evolution and Conservation Biology, University of Illinois, Urbana, IL USA
| | | | | | | | | | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF School of Medicine, San Francisco, CA USA
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
29
|
Navarro N, Murat Maga A. Genetic mapping of molar size relations identifies inhibitory locus for third molars in mice. Heredity (Edinb) 2018; 121:1-11. [PMID: 29302051 DOI: 10.1038/s41437-017-0033-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Molar size in Mammals shows considerable disparity and exhibits variation similar to that predicted by the Inhibitory Cascade model. The importance of such developmental systems in favoring evolutionary trajectories is also underlined by the fact that this model can predict macroevolutionary patterns. Using backcross mice, we mapped QTL for molar sizes controlling for their sequential development. Genetic controls for upper and lower molars appear somewhat similar, and regions containing genes implied in dental defects drive this variation. We mapped three relationship QTLs (rQTL) modifying the control of the mesial molars on the focal third molar. These regions overlap Shh, Sostdc1, and Fst genes, which have pervasive roles in development and should be buffered against new variation. It has theoretically been shown that rQTL produces new variation channeled in the direction of adaptive changes. Our results provide evidence that evolutionary/disease patterns of tooth size variation could result from such a non-random generating process.
Collapse
Affiliation(s)
- Nicolas Navarro
- EPHE, PSL Research University Paris, F-21000, Dijon, France. .,Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
30
|
Maga AM, Tustison NJ, Avants BB. A population level atlas of Mus musculus craniofacial skeleton and automated image-based shape analysis. J Anat 2017; 231:433-443. [PMID: 28656622 PMCID: PMC5554826 DOI: 10.1111/joa.12645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 02/04/2023] Open
Abstract
Laboratory mice are staples for evo/devo and genetics studies. Inbred strains provide a uniform genetic background to manipulate and understand gene-environment interactions, while their crosses have been instrumental in studies of genetic architecture, integration and modularity, and mapping of complex biological traits. Recently, there have been multiple large-scale studies of laboratory mice to further our understanding of the developmental basis, evolution, and genetic control of shape variation in the craniofacial skeleton (i.e. skull and mandible). These experiments typically use micro-computed tomography (micro-CT) to capture the craniofacial phenotype in 3D and rely on manually annotated anatomical landmarks to conduct statistical shape analysis. Although the common choice for imaging modality and phenotyping provides the potential for collaborative research for even larger studies with more statistical power, the investigator (or lab-specific) nature of the data collection hampers these efforts. Investigators are rightly concerned that subtle differences in how anatomical landmarks were recorded will create systematic bias between studies that will eventually influence scientific findings. Even if researchers are willing to repeat landmark annotation on a combined dataset, different lab practices and software choices may create obstacles for standardization beyond the underlying imaging data. Here, we propose a freely available analysis system that could assist in the standardization of micro-CT studies in the mouse. Our proposal uses best practices developed in biomedical imaging and takes advantage of existing open-source software and imaging formats. Our first contribution is the creation of a synthetic template for the adult mouse craniofacial skeleton from 25 inbred strains and five F1 crosses that are widely used in biological research. The template contains a fully segmented cranium, left and right hemi-mandibles, endocranial space, and the first few cervical vertebrae. We have been using this template in our lab to segment and isolate cranial structures in an automated fashion from a mixed population of mice, including craniofacial mutants, aged 4-12.5 weeks. As a secondary contribution, we demonstrate an application of nearly automated shape analysis, using symmetric diffeomorphic image registration. This approach, which we call diGPA, closely approximates the popular generalized Procrustes analysis (GPA) but negates the collection of anatomical landmarks. We achieve our goals by using the open-source advanced normalization tools (ANT) image quantification library, as well as its associated R library (ANTsR) for statistical image analysis. Finally, we make a plea to investigators to commit to using open imaging standards and software in their labs to the extent possible to increase the potential for data exchange and improve the reproducibility of findings. Future work will incorporate more anatomical detail (such as individual cranial bones, turbinals, dentition, middle ear ossicles) and more diversity into the template.
Collapse
Affiliation(s)
- A. Murat Maga
- Department of PediatricsDivision of Craniofacial MedicineUniversity of WashingtonSeattleWAUSA
- Seattle Children's Research InstituteCenter for Developmental Biology and Regenerative MedicineSeattleWAUSA
| | - Nicholas J. Tustison
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVAUSA
| | | |
Collapse
|
31
|
Variability of brain anatomy for three common mouse strains. Neuroimage 2016; 142:656-662. [DOI: 10.1016/j.neuroimage.2016.03.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 11/23/2022] Open
|
32
|
A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish. G3-GENES GENOMES GENETICS 2016; 6:3389-3398. [PMID: 27558670 PMCID: PMC5068958 DOI: 10.1534/g3.116.032201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies.
Collapse
|
33
|
Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, Cunningham ML, Hecht JT, Kau CH, Nidey NL, Moreno LM, Wehby GL, Murray JC, Laurie CA, Laurie CC, Cole J, Ferrara T, Santorico S, Klein O, Mio W, Feingold E, Hallgrimsson B, Spritz RA, Marazita ML, Weinberg SM. Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genet 2016; 12:e1006149. [PMID: 27560520 PMCID: PMC4999139 DOI: 10.1371/journal.pgen.1006149] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10−8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis. There is a great deal of evidence that genes influence facial appearance. This is perhaps most apparent when we look at our own families, since we are more likely to share facial features in common with our close relatives than with unrelated individuals. Nevertheless, little is known about how variation in specific regions of the genome relates to the kinds of distinguishing facial characteristics that give us our unique identities, e.g., the size and shape of our nose or how far apart our eyes are spaced. In this paper, we investigate this question by examining the association between genetic variants across the whole genome and a set of measurements designed to capture key aspects of facial form. We found evidence of genetic associations involving measures of eye, nose, and facial breadth. In several cases, implicated regions contained genes known to play roles in embryonic face formation or in syndromes in which the face is affected. Our ability to connect specific genetic variants to ubiquitous facial traits can inform our understanding of normal and abnormal craniofacial development, provide potential predictive models of evolutionary changes in human facial features, and improve our ability to create forensic facial reconstructions from DNA.
Collapse
Affiliation(s)
- John R. Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth J. Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zachary D. Raffensperger
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carrie L. Heike
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, Washington, United States of America
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, Texas, United States of America
| | - Chung How Kau
- Department of Orthodontics, University of Alabama, Birmingham, Alabama, United States of America
| | - Nichole L. Nidey
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Lina M. Moreno
- Department of Orthodontics, University of Iowa, Iowa City, Iowa, United States of America
- Dows Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Cecelia A. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Joanne Cole
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Tracey Ferrara
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Stephanie Santorico
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, Denver, Colorado, United States of America
| | - Ophir Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Craniofacial Biology, University of California, San Francisco, California, United States of America
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard A. Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Holmes MW, Hammond TT, Wogan GOU, Walsh RE, LaBarbera K, Wommack EA, Martins FM, Crawford JC, Mack KL, Bloch LM, Nachman MW. Natural history collections as windows on evolutionary processes. Mol Ecol 2016; 25:864-81. [PMID: 26757135 DOI: 10.1111/mec.13529] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Abstract
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations.
Collapse
Affiliation(s)
- Michael W Holmes
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA.,Department of Biology, Coastal Carolina University, Conway, SC, 29528, USA
| | - Talisin T Hammond
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Guinevere O U Wogan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Rachel E Walsh
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Katie LaBarbera
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Elizabeth A Wommack
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA.,Department of Zoology and Physiology, University of Wyoming Museum of Vertebrates, Laramie, WY, 82071, USA
| | - Felipe M Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Jeremy C Crawford
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Katya L Mack
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Luke M Bloch
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| |
Collapse
|
35
|
Pallares LF, Turner LM, Tautz D. Craniofacial shape transition across the house mouse hybrid zone: implications for the genetic architecture and evolution of between-species differences. Dev Genes Evol 2016; 226:173-86. [PMID: 27216933 PMCID: PMC4896993 DOI: 10.1007/s00427-016-0550-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
Craniofacial shape differences between taxa have often been linked to environmental adaptation, e.g., new food sources, or have been studied in the context of domestication. Evidence for the genetic basis of such phenotypic differences to date suggests that between-species as well as between-population variation has an oligogenic basis, i.e., few loci of large effect explain most of the variation. In mice, it has been shown that within-population craniofacial variation has a highly polygenic basis, but there are no data regarding the genetic basis of between-species differences in natural populations. Here, we address this question using a phenotype-focused approach. Using 3D geometric morphometrics, we phenotyped a panel of mice derived from a natural hybrid zone between Mus musculus domesticus and Mus mus musculus and quantify the transition of craniofacial shape along the hybridization gradient. We find a continuous shape transition along the hybridization gradient and unaltered developmental stability associated with hybridization. This suggests that the morphospace between the two subspecies is continuous despite reproductive isolation and strong barriers to gene flow. We show that quantitative changes in overall genome composition generate quantitative changes in craniofacial shape; this supports a highly polygenic basis for between-species craniofacial differences in the house mouse. We discuss our findings in the context of oligogenic versus polygenic models of the genetic architecture of morphological traits.
Collapse
Affiliation(s)
- Luisa F Pallares
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Leslie M Turner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany.
| |
Collapse
|
36
|
Navarro N, Maga AM. Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape? G3 (BETHESDA, MD.) 2016; 6:1153-63. [PMID: 26921296 PMCID: PMC4856069 DOI: 10.1534/g3.115.024372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
We describe the application of high-resolution 3D microcomputed tomography, together with 3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imaging techniques, artificial flattening of the mandible by 2D imaging techniques seems at first an acceptable compromise for large-scale phenotyping protocols, thanks to an abundance of low-cost digital imaging systems such as microscopes or digital cameras. We evaluated the gain of information from considering explicitly this additional third dimension, and also from capturing variation on the bone surface where no precise anatomical landmark can be marked. Multivariate QTL mapping conducted with different landmark configurations (2D vs. 3D; manual vs. semilandmarks) broadly agreed with the findings of previous studies. Significantly more QTL (23) were identified and more precisely mapped when the mandible shape was captured with a large set of semilandmarks coupled with manual landmarks. It appears that finer phenotypic characterization of the mandibular shape with 3D landmarks, along with higher density genotyping, yields better insights into the genetic architecture of mandibular development. Most of the main variation is, nonetheless, preferentially embedded in the natural 2D plane of the hemi-mandible, reinforcing the results of earlier influential investigations.
Collapse
Affiliation(s)
- Nicolas Navarro
- Biogéosciences, UMR CNRS 6282, Univ Bourgogne Franche-Comté, EPHE, PSL Research University, F-21000 Dijon, France
| | - A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105 Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington 98101
| |
Collapse
|
37
|
Schultz NG, Ingels J, Hillhouse A, Wardwell K, Chang PL, Cheverud JM, Lutz C, Lu L, Williams RW, Dean MD. The Genetic Basis of Baculum Size and Shape Variation in Mice. G3 (BETHESDA, MD.) 2016; 6:1141-51. [PMID: 26935419 PMCID: PMC4856068 DOI: 10.1534/g3.116.027888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.
Collapse
Affiliation(s)
- Nicholas G Schultz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jesse Ingels
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Andrew Hillhouse
- Texas A & M, Veterinary Medicine and Biomedical Sciences, College Station, Texas 77845
| | | | - Peter L Chang
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - James M Cheverud
- Loyola University, Department of Biology, Chicago, Illinois 60626
| | | | - Lu Lu
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Robert W Williams
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
38
|
Maga AM. Postnatal Development of the Craniofacial Skeleton in Male C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2016; 55:131-6. [PMID: 27025802 PMCID: PMC4783629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/01/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
C57BL/6J is one of the most commonly used inbred mouse strains in biomedical research, including studies of craniofacial development and teratogenic studies of craniofacial malformation. The current study quantitatively assessed the development of the skull in male C57BL/6J mice by using high-resolution 3D imaging of 55 landmarks from 48 male mice over 10 developmental time points from postnatal day 0 to 90. The growth of the skull plateaued at approximately postnatal day 60, and the shape of the skull did not change markedly thereafter. The amount of asymmetry in the craniofacial skeleton seemed to peak at birth, but considerable variation persisted in all age groups. For C57BL/6J male mice, postnatal day 60 is the earliest time point at which the skull achieves its adult shape and proportions. In addition, C57BL/6J male mice appear to have an inherent susceptibility to craniofacial malformation.
Collapse
Affiliation(s)
- A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, and Department of Oral Biology, University of Washington, and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.
| |
Collapse
|
39
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Young R, Maga AM. Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles. Front Zool 2015; 12:33. [PMID: 26628903 PMCID: PMC4666065 DOI: 10.1186/s12983-015-0127-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Here we present an application of advanced registration and atlas building framework DRAMMS to the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation paradigms and compare the outcomes to the current gold standard, manual annotation. RESULTS Our results showed multi-atlas annotation procedure yields landmark precisions within the human observer error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis (Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates from both methods with larger sample sizes. CONCLUSION Multi-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.
Collapse
Affiliation(s)
- Ryan Young
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
| | - A. Murat Maga
- />Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA USA
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
- />Department of Oral Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
41
|
Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genet 2015; 11:e1005607. [PMID: 26523602 PMCID: PMC4629907 DOI: 10.1371/journal.pgen.1005607] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. Formation of the face, mandible, and skull is determined in part by genetic factors, but the relationship between genetic variation and craniofacial development is not well understood. We demonstrate how recent advances in mouse genomics and statistical methods can be used to identify genes involved in craniofacial development. We use outbred mice together with a dense panel of genetic markers to identify genetic loci affecting craniofacial shape. Some of the loci we identify are also known from past studies to contribute to craniofacial development and bone formation. For example, the top candidate gene identified in this study, Mn1, is a gene that appeared at a time when animals started to form bony skulls, suggesting that it may be a key gene in this evolutionary innovation. This further suggests that Mn1 and other genes involved in head formation are also responsible for more fine-grained regulation of its shape. Our results confirm that the outbred mouse population used in this study is suitable to identify single genetic factors even under conditions where many genes cooperate to generate a complex phenotype.
Collapse
|
42
|
Weiss K, Buchanan A, Richtsmeier J. How are we made?: Even well-controlled experiments show the complexity of our traits. Evol Anthropol 2015; 24:130-6. [PMID: 26267434 DOI: 10.1002/evan.21454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|