1
|
Vasileva F, Font-Lladó R, López-Ros V, Barretina J, Noguera-Castells A, Esteller M, López-Bermejo A, Prats-Puig A. An Integrated Neuromuscular Training Intervention Applied in Primary School Induces Epigenetic Modifications in Disease-Related Genes: A Genome-Wide DNA Methylation Study. Scand J Med Sci Sports 2025; 35:e70012. [PMID: 39757698 DOI: 10.1111/sms.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome. Forty children (17 boys and 23 girls) were recruited from schools in Girona, Spain, and allocated into control (N = 20) or INT (N = 20) group. The INT group performed a 3-month INT as a warm-up during the physical education (PE) classes, encompassing strength, coordination, dynamic stabilization, plyometrics, speed, and agility exercises, whereas the control group performed traditional warm-up activities, encompassing aerobic exercises that will prepare the cardiovascular system and increase the joint mobility for the upcoming effort during the class. Genome-wide DNAm analysis was performed with the Illumina 900 K microarray. Core genes were recognized based on the accomplishment of a rigorous and widely accepted 3-point criteria: participation in the enriched pathways, high connectivity (≥ 10), and target genes of key transcription factors. There were 1200 differentially methylated positions (DMPs) in the control group and 414 DMPs in the INT group (FDR < 0.05, p < 0.05, Aβ < |0.1|), suggesting a non-significant trend of epigenetic age acceleration in the control group (1.18 months, p > 0.05) and a non-significant 1-month decrease of the epigenetic age in the INT group (p > 0.05). The genes with DMPs in the control group showed low similarity between enriched pathways and low interconnectivity, encompassing distinct pathways, mostly development and growth-related. Additionally, no core genes were identified in the control group. Interestingly, the genes with DMPs in the INT group showed high similarity between enriched pathways and high interconnectivity, encompassing related pathways involving signaling mechanisms, as well as hormone and protein metabolism pathways. Moreover, 17 DMPs in the children from the INT group were in core genes. The main findings of the present study are suggesting an integrated response to the training stimulus in 7-9-year-old school children that performed a 3-month INT, including epigenetic modifications in 17 genes considered as core genes. Trial Registration: The study protocol was registered in the ISRCTN registry (ISRCTN16744821).
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- University School of Health and Sport, University of Girona, Girona, Spain
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
- Chair of Sport and Physical Education - Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
| | | | - Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group Health and Health Care, Nursing Department, University of Girona, Girona, Spain
| |
Collapse
|
2
|
Hisasaga C, Makagon MM. Increased activity reduces the prevalence of woody breast in Ross 708 and Ranger Gold broilers. Poult Sci 2024; 103:104330. [PMID: 39357234 PMCID: PMC11472612 DOI: 10.1016/j.psj.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Woody or wooden breast (WB) is characterized by hardening and paleness of the Pectoralis major muscle and can affect up to 85% of broilers. We hypothesized that increased locomotor activity would lead to a lower prevalence of WB and increased tibia bone quality, with a greater effect on a faster growing than a slower growing broiler strain. Ross 708 (N = 188) and Ranger Gold (N = 213) broilers were raised in 3.05×3.05 m2 pens in groups of 23 to 24 and 26 to 27, respectively. Target ages for the Ross 708 and Ranger Gold birds were 42 and 56 d. There were 8 pens per strain: 4 assigned to an exercise treatment and 4 unexercised controls. An exercise regimen was applied for 10 min every hour for 6 h during each weekday with the goal of increasing frequency of standing and walking. A perch was placed between the feeder and drinker line in the exercise treatment pens to further promote broiler activity. WB severity was determined by palpation for all birds at the target age. Tibial bone mineral content (BMC) and bone mineral density (BMD) were measured using a dual-energy x-ray absorptiometry. The Fisher's Exact Test was used to determine treatment effects on the prevalence and severity of WB. Both prevalence (Ross 708: 77.5 vs. 90.5% control, P = 0.013; Ranger Gold: 57.9 vs. 76.4% control, P = 0.005) and severity (Ross 708: 12.9 vs. 24.2% control, P = 0.02; Ranger Gold: 4.7 vs. 0.02% control, P = 0.01) were reduced by treatment. The effects of strain, treatment and their interaction on tibial BMC and BMD were analyzed using linear mixed models. Only strain affected BMC (P = 0.003) and BMD (P = 0.03), with Ross 708 broilers having higher BMC (control: 3.246 g ± 0.061; treatment: 3.251 g ± 0.058) and BMD (control: 0.177 g/cm2 ± 0.002; treatment: 0.174 g/cm2 ± 0.002) values compared to Ranger Gold's BMC (control: 2.966 g ± 0.067; treatment: 2.987 g ± 0.064) and BMD (control: 0.168 g/cm2 ± 0.002; treatment: 0.168 g/cm2 ± 0.002) values. However, per unit of final body weight, Ranger Gold birds had a significantly higher BMC (P = 0.006) and BMD (P = 0.01) than Ross 708 broilers. Promoting broiler activity can reduce the prevalence and severity of WB prevalence in fast and slow growing broilers.
Collapse
Affiliation(s)
- Cirenio Hisasaga
- Department of Animal Science, Center for Animal Welfare, University of California, Davis, Davis, CA 95616, USA; Animal Biology Graduate Group, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Maja M Makagon
- Department of Animal Science, Center for Animal Welfare, University of California, Davis, Davis, CA 95616, USA; Animal Biology Graduate Group, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Liao A, Li X, Wang Y, Ding Z, Pan L, Hou Y, Liu Q, Li J, Shang M, Huang J. Wheat Embryo Albumin and Its Peptide Alleviate Acute Exercise Fatigue as Energy Supplement. Foods 2024; 13:3866. [PMID: 39682937 DOI: 10.3390/foods13233866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Wheat embryo albumin (WEA), rich in amino acids with a good balanced proportion, demonstrates plentiful biological activities. The effects of WEA and its peptide with the best antioxidant ability (F3) as a post-workout and pre-workout energy supplement on alleviating acute exercise fatigue were investigated. Under two experimental cases, the exhaustion-to-death swimming time and exhaustion swimming time were determined. Fatigue-related biochemical indexes including lactate dehydrogenase (LDH), the level of blood urea nitrogen (BUN), alanine transaminase (ALT), aspartate transaminase (AST), liver glycogen (LG), and muscle glycogen (MG) were measured with commercial kits. Antioxidant capacity in vivo was analyzed by determining the content of malondialdehyde (MDA), the level of glutathione (GSH), and the activity of superoxide dismutase (SOD) based on colorimetric methods. The results indicated that administration of WEA and F3 post-workout or pre-workout significantly prolonged exhaustive swimming time (p < 0.05) and increased the levels of glycogen in the liver and muscle of mice (p < 0.05). Meanwhile, WEA and F3 significantly reduced the activities of ALT, AST, and LDH and the level of BUN compared with the ones of mice in an exercise fatigue model (p < 0.05). Additionally, in comparison with the model group, supplements of WEA and F3 obviously decreased the content of MDA while enhancing the activity of SOD and the level of GSH both in the liver and muscle of mice. These results demonstrated that WEA and F3 can mitigate exercise fatigue and are conducive to recovery from fatigue in exhausted mice. It suggests that WEA and its peptide F3 could be a promising energy supplementary material against fatigue caused by continuous or high-intensity exercise.
Collapse
Affiliation(s)
- Aimei Liao
- Collaborative Innovation Center of Functional Food by Green Manufacturing, School of Food and Pharmacy, Xuchang University, Xuchang 461002, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxiao Li
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanbing Wang
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhirui Ding
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Long Pan
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Zhengzhou Engineering Research Center of Bioactive Peptides, Zhengzhou 450001, China
| | - Yinchen Hou
- Food Laboratory of Zhongyuan, Luohe 462300, China
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Quanping Liu
- Zhengzhou Engineering Research Center of Bioactive Peptides, Zhengzhou 450001, China
| | - Jianzheng Li
- Henan Houyi Industrial Group Co., Ltd, Zhengzhou 451162, China
| | - Menghui Shang
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jihong Huang
- Collaborative Innovation Center of Functional Food by Green Manufacturing, School of Food and Pharmacy, Xuchang University, Xuchang 461002, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
López-Cervantes SP, Toledo-Pérez R, De Lira-Sánchez JA, García-Cruz G, Esparza-Perusquía M, Luna-López A, Pardo JP, Flores-Herrera O, Konigsberg M. Sedentary Lifestyles and a Hypercaloric Diets During Middle Age, are Binomial Conducive to Fatal Progression, That is Counteracted by the Hormetic Treatment of Exercise, Metformin, and Tert-Butyl Hydroquinone: An Analysis of Female Middle-Aged Rat Liver Mitochondria. Dose Response 2024; 22:15593258241272619. [PMID: 39399210 PMCID: PMC11471012 DOI: 10.1177/15593258241272619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
The world's population continuous to shift towards older, less active and more sedentary lifestyles especially during middle age. In addition consumption of high-caloric diets, increases the risk of metabolic and cardiovascular afflictions. Developing clinical strategies to mitigate those health complications represent a difficult challenge. Our group has previously shown that combining metformin (MTF) and tert-butyl hydroquinone (tBHQ) treatments, in addition to exercise, partially prevents liver damage associated with obesity. Hence, we evaluated the role of exercise in combination with MTF and tBHQ (triple-treatment) to counteract mitochondrial damage in the liver from obese middle-aged female rats. Animals were fed a high-fat diet (HFD) starting at 21 days till 15 months of age. The treated groups performed a Fartlek-type exercise 5 days/week for 30 min/session. MTF and tBHQ were administered at a dose of 250 mg/kg/day, and 10 mg/kg/day, respectively, for 7 days/month from 10 to 15 months of age. Triple-treatment therapeutic approach promoted animal survival, and increased AMPK and PGC1α expression. Treatments increased mitochondrial ATP synthesis and OXPHOS complexes activities, recovered membrane potential, and decreased ROS production. In summary, exercise in combination with intermittent tBHQ and MTF treatments proved to be an excellent intervention to prevent mitochondrial damage caused by HFD.
Collapse
Affiliation(s)
- Stefanie Paola López-Cervantes
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Rafael Toledo-Pérez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | | | - Giovanni García-Cruz
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mercedes Esparza-Perusquía
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de Mexico, México
| | - Juan Pablo Pardo
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Oscar Flores-Herrera
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mina Konigsberg
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
5
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Morabito C, Di Sinno N, Mariggiò MA, Guarnieri S. Impact of Extremely Low-Frequency Electromagnetic Fields on Skeletal Muscle of Sedentary Adult Mice: A Pilot Study. Int J Mol Sci 2024; 25:9857. [PMID: 39337344 PMCID: PMC11432115 DOI: 10.3390/ijms25189857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Extremely low-frequency electromagnetic fields (ELF-EMFs) are ubiquitous in industrialized environments due to the continuous use of electrical devices. Our previous studies demonstrated that ELF-EMFs affect muscle cells by modulating oxidative stress and enhancing myogenesis. This pilot study investigated these effects on the skeletal muscles of sedentary adult mice, assessing physiological responses to ELF-EMF exposure and potential modulation by antioxidant supplementation. Male C57BL/6 mice were exposed to ELF-EMFs (0.1 or 1.0 mT) for 1 h/day for up to 5 weeks and fed a standard diet without or with N-acetyl-cysteine (NAC). The results showed transient increases in muscle strength (after 2 weeks of exposure at 1.0 mT), potentially linked to muscle fiber recruitment and activation, revealed by higher PAX7 and myosin heavy chain (MyH) expression levels. After ELF-EMF exposure, oxidative status assessment revealed transient increases in the expression levels of SOD1 and catalase enzymes, in total antioxidant capacity, and in protein carbonyl levels, markers of oxidative damage. These effects were partially reduced by NAC. In conclusion, ELF-EMF exposure affects skeletal muscle physiology and NAC supplementation partially mitigates these effects, highlighting the complex interactions between ELF-EMFs and antioxidant pathways in vivo. Further investigations on ELF-EMFs as a therapeutic modality for muscle health are necessary.
Collapse
Affiliation(s)
- Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (N.D.S.); (S.G.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Noemi Di Sinno
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (N.D.S.); (S.G.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria A. Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (N.D.S.); (S.G.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (N.D.S.); (S.G.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Rosidi A, Ayuningtyas RA, Jauharany FF, Ekasari SS, Izzatul Millah A, Fauziah SR, Fadhilah J, Dewi L. Pre-exercise supplementation with curcuma xanthorrhiza roxb has minimal impact on red blood cell parameters but reduces oxidative stress: a preliminary study in rats. Phys Act Nutr 2024; 28:52-57. [PMID: 39501694 PMCID: PMC11540990 DOI: 10.20463/pan.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/09/2024] Open
Abstract
PURPOSE This study examined the effects of longterm pre-exercise Curcuma xanthorriza Roxb supplementation on red blood cell indices along with circulating malondialdehyde (MDA) and superoxide dismutase (SOD) levels in response to endurance exercise to address previously inconsistent findings. METHODS Male Wistar rats (Rattus norvegicus; n = 20, aged 12-16 weeks) were divided equally into an exercise-only group (C) and three groups supplemented with Curcuma extract at dosages of 6.75 (T1), 13.50 (T2), and 20.25 mg (T3). Curcuma extract supplementation was administered for 28 d immediately prior to exercise. RESULTS Following 28 d of exhaustive swimming, the hematocrit and erythrocyte count increased by 15% (p = 0.06). Pre-exercise Curcuma supplementation did not significantly affect mean corpuscular volume or mean corpuscular hemoglobin concentration. Longterm exercise intervention resulted in elevated MDA levels by 41% (p <0.001), while Curcuma supplementation (13.50 mg) attenuated this increase by 16.6% (p = 0.09). Additionally, Curcuma supplementation resulted in a dose-dependent increase in SOD levels, with an 82.6% increase observed at 20.25 mg (p = 0.028). CONCLUSION Our preliminary findings indicated that pre-exercise supplementation with Curcuma extract had a negligible effect on changes in red blood cell markers, but it mitigated the increase in oxidative stress induced by exercise training. Our future research direction will involve applying the findings to humans.
Collapse
Affiliation(s)
- Ali Rosidi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | | | - Sella Septi Ekasari
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | - Syfa Rahma Fauziah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Jihan Fadhilah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Luthfia Dewi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
| |
Collapse
|
8
|
Zou H, Gong L, Wang Z, Huang C, Luo Y, Jia X, Yu J, Lin D, Zhang Y. Effects of Trimethylamine N-Oxide in Improving Exercise Performance in Mice: A 1H-NMR-Based Metabolomic Analysis Approach. Molecules 2024; 29:4128. [PMID: 39274977 PMCID: PMC11397221 DOI: 10.3390/molecules29174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
To improve exercise performance, the supplement of nutrients has become a common practice before prolonged exercise. Trimethylamine N-oxide (TMAO) has been shown to ameliorate oxidative stress damage, which may be beneficial in improving exercise capacity. Here, we assessed the effects of TMAO on mice with exhaustive swimming, analyzed the metabolic changes, and identified significantly altered metabolic pathways of skeletal muscle using a nuclear magnetic resonance-based (NMR-based) metabolomics approach to uncover the effects of TMAO improving exercise performance of mice. We found that TMAO pre-administration markedly prolonged the exhaustive time in mice. Further investigation showed that TMAO pre-administration increased levels of 3-hydroxybutyrate, isocitrate, anserine, TMA, taurine, glycine, and glutathione and disturbed the three metabolic pathways related to oxidative stress and protein synthesis in skeletal muscle. Our results provide a metabolic mechanistic understanding of the effects of TMAO supplements on the exercise performance of skeletal muscle in mice. This work may be beneficial in exploring the potential of TMAO to be applied in nutritional supplementation to improve exercise performance. This work will lay a scientific foundation and be beneficial to exploring the potential of TMAO to apply in nutritional supplementation.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhiyuan Wang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Yue Luo
- School of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xiao Jia
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
9
|
Stojiljković S, Gavrilović L, Pejić S, Pajović SB, Macura M, Nikolić D, Bubanj S, Stojiljković V. Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men. Life (Basel) 2024; 14:921. [PMID: 39202664 PMCID: PMC11355762 DOI: 10.3390/life14080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: Physical activity may cause an imbalance in the major functions of the human body. This study aimed to investigate the effects of endurance running training on the parameters of the antioxidant defense system (SOD, CAT, GPx, GR, GSH), LPO (malondialdehyde, MDA), and stress hormones (A, NA) in young healthy, previously untrained men. (2) Methods: The training program was as follows: 8 weeks of running, three times per week; the duration of a single session was 30-70 min, the intensity was twice a week in the so-called extensive endurance zone, and once a week in the anaerobic threshold zone. Blood samples were collected from the subjects, before and after the running program. (3) Results: The training program resulted in a significant increase in maximal oxygen consumption (p < 0.001). The activities of SOD, GPx, and GR also increased significantly (p < 0.05, p < 0.01, and p < 0.05, respectively), while CAT activity and GSH and MDA concentrations remained unchanged. The concentration of A decreased (p < 0.05), while the NA concentration increased significantly (p < 0.05). SOD, GPx, GR, and NA positively correlated with VO2max (p < 0.05, p < 0.001, p < 0.01, p < 0.05, respectively), while a negative correlation was detected between A and VO2max (p < 0.05). (4) Conclusions: These results indicate that there is no persistent oxidative stress in response to the applied 8-week running program, probably due to exercise-induced protective alterations in the antioxidant defense system. Furthermore, adaptations occurred at the hormonal level, making the organism more ready for a new challenge.
Collapse
Affiliation(s)
- Stanimir Stojiljković
- Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia; (S.S.); (M.M.)
| | - Ljubica Gavrilović
- Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (L.G.); (S.P.); (S.B.P.)
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (L.G.); (S.P.); (S.B.P.)
| | - Snežana B. Pajović
- Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (L.G.); (S.P.); (S.B.P.)
| | - Marija Macura
- Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia; (S.S.); (M.M.)
| | - Dragan Nikolić
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic for Endocrinology, Diabetes and Metabolic Diseases (Laboratory for Cells Culture), Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Saša Bubanj
- Faculty of Sport and Physical Education, University of Niš, 18000 Niš, Serbia;
| | - Vesna Stojiljković
- Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (L.G.); (S.P.); (S.B.P.)
| |
Collapse
|
10
|
Yang X, Wang Y, Yang Y. Impact of Pediococcus pentosaceus YF01 on the exercise capacity of mice through the regulation of oxidative stress and alteration of gut microbiota. Front Microbiol 2024; 15:1421209. [PMID: 38989023 PMCID: PMC11233450 DOI: 10.3389/fmicb.2024.1421209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Using treadmill training, this study replicated human exercise conditions and triggered exercise-induced fatigue in mice to examine the potential of Pediococcus pentosaceus YF01 in delaying this fatigue by regulating oxidative stress and its impact on the exercise capacity and gut microbiota of mice. The exercise capacity of mice was tested by conducting exhaustion tests, determining histopathological changes in mouse tissues, detecting the levels of serum biochemical markers, and evaluating the mRNA expression levels of relevant genes. YF01 prolonged the exhaustion time of mice, increased the serum levels of oxidative stress-related markers T-AOC, CAT, and GSH, as well as GLU and LA levels in the mice. YF01 decreased the levels of hepatic-related markers AST and ALT, as well as exercise-related markers LDH, BUN, UA, and CRE in the mice. YF01 upregulated the mRNA expression of MyHc I, SIRT1, and PGC in muscle tissues, as well as SOD1, SOD2, and CAT in both liver and muscle tissues. YF01 also downregulated the mRNA expression of MyHc IIa, MyHc IIb, and MyHc IIx in muscle tissues. Furthermore, YF01 increased the abundance of beneficial bacteria such as Lactobacillus and Lachnospiraceae in the gut microbiota of mice. In conclusion, P. pentosaceus YF01 may affect the exercise capacity of mice by modulating oxidative stress levels, thereby offering novel ideas for developing of sports science and human health.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, China
| | - Yeni Wang
- Ministry of Sports, Xiamen Institute of Technology, Xiamen, Fujian, China
| | - Yuhua Yang
- Department of Social Sports Management, College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
12
|
Kleis-Olsen AS, Farlov JE, Petersen EA, Schmücker M, Flensted-Jensen M, Blom I, Ingersen A, Hansen M, Helge JW, Dela F, Larsen S. Metabolic flexibility in postmenopausal women: Hormone replacement therapy is associated with higher mitochondrial content, respiratory capacity, and lower total fat mass. Acta Physiol (Oxf) 2024; 240:e14117. [PMID: 38404156 DOI: 10.1111/apha.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission. METHODS 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed. RESULTS HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT. CONCLUSION Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.
Collapse
Affiliation(s)
- A S Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J E Farlov
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E A Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Schmücker
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - I Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Hansen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus N, Denmark
| | - J W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - S Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
13
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
14
|
Cao G, Zuo J, Wu B, Wu Y. Polyphenol supplementation boosts aerobic endurance in athletes: systematic review. Front Physiol 2024; 15:1369174. [PMID: 38651044 PMCID: PMC11033476 DOI: 10.3389/fphys.2024.1369174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In recent years, an increasing trend has been observed in the consumption of specific polyphenols, such as flavonoids and phenolic acids, derived from green tea, berries, and other similar sources. These compounds are believed to alleviate oxidative stress and inflammation resulting from exercise, potentially enhancing athletic performance. This systematic review critically examines the role of polyphenol supplementation in improving aerobic endurance among athletes and individuals with regular exercise habits. The review involved a thorough search of major literature databases, including PubMed, Web of Science, SCOPUS, SPORTDiscus, and Embase, covering re-search up to the year 2023. Out of 491 initially identified articles, 11 met the strict inclusion criteria for this review. These studies specifically focused on the incorporation of polyphenols or polyphenol-containing complexes in their experimental design, assessing their impact on aerobic endurance. The methodology adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the risk of bias was evaluated using the Cochrane bias risk assessment tool. While this review suggests that polyphenol supplementation might enhance certain aspects of aerobic endurance and promote fat oxidation, it is important to interpret these findings with caution, considering the limited number of studies available. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023453321.
Collapse
Affiliation(s)
- Gexin Cao
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| | - Jing Zuo
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
- Department of Anatomy Laboratory, School of Sports Science, Beijing Sports University, Beijing, China
| | - Baile Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| |
Collapse
|
15
|
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne) 2024; 11:1353624. [PMID: 38585147 PMCID: PMC10995365 DOI: 10.3389/fmed.2024.1353624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the field of eye health, the profound impact of exercise and physical activity on various ocular diseases has become a focal point of attention. This review summarizes and elucidates the positive effects of exercise and physical activities on common ocular diseases, including dry eye disease (DED), cataracts, myopia, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD). It also catalogues and offers exercise recommendations based on the varying impacts that different types and intensities of physical activities may have on specific eye conditions. Beyond correlations, this review also compiles potential mechanisms through which exercise and physical activity beneficially affect eye health. From mitigating ocular oxidative stress and inflammatory responses, reducing intraocular pressure, enhancing mitochondrial function, to promoting ocular blood circulation and the release of protective factors, the complex biological effects triggered by exercise and physical activities reveal their substantial potential in preventing and even assisting in the treatment of ocular diseases. This review aims not only to foster awareness and appreciation for how exercise and physical activity can improve eye health but also to serve as a catalyst for further exploration into the specific mechanisms and key targets through which exercise impacts ocular health. Such inquiries are crucial for advancing innovative strategies for the treatment of eye diseases, thereby holding significant implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
17
|
Balestra C, Baldelli S, Virgili F, Salvagno M, Mrakic-Sposta S, Fratantonio D. Pulsed Hyperoxia Acts on Plasmatic Advanced Glycation End Products and Advanced Oxidation Protein Products and Modulates Mitochondrial Biogenesis in Human Peripheral Blood Mononuclear Cells: A Pilot Study on the "Normobaric Oxygen Paradox". Int J Mol Sci 2024; 25:2394. [PMID: 38397071 PMCID: PMC10889761 DOI: 10.3390/ijms25042394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Fabio Virgili
- Interuniversitary Consortium "National Institute for Bio-Structures and Bio-Systems"-I.N.B.B., 13, 00136 Rome, Italy
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| |
Collapse
|
18
|
Zou H, Zhou Y, Gong L, Huang C, Liu X, Lu R, Yu J, Kong Z, Zhang Y, Lin D. Trimethylamine N-Oxide Improves Exercise Performance by Reducing Oxidative Stress through Activation of the Nrf2 Signaling Pathway. Molecules 2024; 29:759. [PMID: 38398511 PMCID: PMC10893042 DOI: 10.3390/molecules29040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Trimethylamine N-oxide (TMAO) has attracted interest because of its association with cardiovascular disease and diabetes, and evidence for the beneficial effects of TMAO is accumulating. This study investigates the role of TMAO in improving exercise performance and elucidates the underlying molecular mechanisms. Using C2C12 cells, we established an oxidative stress model and administered TMAO treatment. Our results indicate that TMAO significantly protects myoblasts from oxidative stress-induced damage by increasing the expression of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase (NQO1), and catalase (CAT). In particular, suppression of Nrf2 resulted in a loss of the protective effects of TMAO and a significant decrease in the expression levels of Nrf2, HO-1, and NQO1. In addition, we evaluated the effects of TMAO in an exhaustive swimming test in mice. TMAO treatment significantly prolonged swimming endurance, increased glutathione and taurine levels, enhanced glutathione peroxidase activity, and increased the expression of Nrf2 and its downstream antioxidant genes, including HO-1, NQO1, and CAT, in skeletal muscle. These findings underscore the potential of TMAO to counteract exercise-induced oxidative stress. This research provides new insights into the ability of TMAO to alleviate exercise-induced oxidative stress via the Nrf2 signaling pathway, providing a valuable framework for the development of sports nutrition supplements aimed at mitigating oxidative stress.
Collapse
Affiliation(s)
- Hong Zou
- Physical Education Department, Xiamen University, Xiamen 361005, China;
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
- Affiliated High School of Minnan, Normal University, Zhangzhou 363005, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhenxing Kong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| |
Collapse
|
19
|
Vasileva F, Hristovski R, Font-Lladó R, Georgiev G, Sacot A, López-Ros V, Calleja-González J, Barretina-Ginesta J, López-Bermejo A, Prats-Puig A. Physical Exercise-Induced DNA Methylation in Disease-Related Genes in Healthy Adults-A Systematic Review With Bioinformatic Analysis. J Strength Cond Res 2024; 38:384-393. [PMID: 38088908 DOI: 10.1519/jsc.0000000000004686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT Vasileva, F, Hristovski, R, Font-Lladó, R, Georgiev, G, Sacot, A, López-Ros, V, Calleja-González, J, Barretina-Ginesta, J, López-Bermejo, A, and Prats-Puig, A. Physical exercise-induced DNA methylation in disease-related genes in healthy adults-A systematic review with bioinformatic analysis. J Strength Cond Res 38(2): 384-393, 2024-This study aimed to systematically review the existing literature regarding physical exercise (PE) and DNA methylation (DNAm) in healthy adults. Specific goals were to (a) identify differently methylated genes (DMGs) after PE intervention, their imprinting status, chromosome and genomic location, function, and related diseases; and (b) to screen for core genes and identify methylation changes of the core genes that can be modified by PE intervention. Our search identified 2,869 articles from which 8 were finally included. We identified 1851 DMGs ( p < 0.05) after PE intervention, although 45 of them were imprinted. Aerobic exercise (AE) seems to induce more DNA hypermethylation rather than hypomethylation, whereas anaerobic exercise (AN) seems to induce more DNA hypomethylation rather than hypermethylation. Aerobic exercise induced highest % of methylation changes on chromosome 6, whereas AN and mixed type (MT) on chromosome 1. Mixed type induced higher % of methylation changes close to transcription start site in comparison to AE and AN. After PE intervention, DMGs were mainly involved in fat metabolism, cell growth, and neuronal differentiation, whereas diseases regulated by those genes were mainly chronic diseases (metabolic, cardiovascular, neurodegenerative). Finally, 19 core genes were identified among DMGs, all related to protein metabolism. In conclusion, our findings may shed some light on the mechanisms explaining PE-induced health benefits such as the potential role that PE-induced DNAm may have in disease prevention and disease treatment.
Collapse
Affiliation(s)
- Fidanka Vasileva
- University School of Health and Sport, University of Girona, Girona, Spain
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Girona, Spain
| | - Robert Hristovski
- Faculty of Physical Education, Sport and Health, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group of Culture and Education, Institute of Educational Research, University of Girona, Girona, Spain
| | - Georgi Georgiev
- Faculty of Physical Education, Sport and Health, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Arnau Sacot
- University School of Health and Sport, University of Girona, Girona, Spain
- Basquet Girona, Girona, Spain
| | - Víctor López-Ros
- University School of Health and Sport, University of Girona, Girona, Spain
- Chair of Sport and Physical Education-Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, Vitoria, Spain
| | | | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Girona Hospital, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain; and
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group of Clinical Anatomy, Embryology and Neuroscience, Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
20
|
Carrera-Quintanar L, Funes L, Herranz-López M, Vicente-Salar N, Mielgo-Ayuso J, Moya-Ramón M, Pons A, Micol V, Roche E. Acute Antioxidant Response to Two Types of Exercises: 2000 M Run vs. Burpee Test. Antioxidants (Basel) 2024; 13:144. [PMID: 38397742 PMCID: PMC10886302 DOI: 10.3390/antiox13020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Physical activity results in oxidative stress, as evidenced by the increased production of reactive oxygen, nitrogen species, and inflammatory mediators. The management of these components is instrumental for antioxidant adaptation to exercise and post-exercise recovery. Therefore, the present report aims to study the antioxidant response to two types of exercise (a 2000 m run and a burpee test) in healthy volunteers after a long period of inactivity (1-2 months). Antioxidant enzyme activities and oxidative stress markers (protein carbonyls and malondialdehyde content) were measured in neutrophils, peripheral blood mononuclear cells, and plasma. These parameters were determined under basal conditions and immediately post-exercise. Compared to those in basal state, neutrophil superoxide dismutase (28.3 vs. 22.9 pkat/109 cells), glutathione peroxidase (147.5 vs. 120.1 nkat/109 cells), and catalase (106.3 vs. 57.9 k/109 cells) were activated significantly (p < 0.05) after the burpee test. Peripheral blood mononuclear cells exhibited only significant (p < 0.05) catalase activation (113.6 vs. 89.4 k/109 cells) after the burpee test. Other enzymes, such as glutathione reductase and myeloperoxidase, tended to increase post-exercise, although the differences from baseline were not significant. Finally, compared to basal conditions, the protein carbonyl (24.5 vs. 14.5 mmol/L) and malondialdehyde (39.6 vs. 18.3 mmol/L) contents increased significantly (p < 0.05) in neutrophils and in plasma (115.1 vs. 97.8 and 130.2 vs. 123.4 μmol/L, respectively) after the burpee test. In conclusion, high-intensity exercise seems to induce immediate oxidative stress in inactive individuals, and the acute antioxidant response was slightly greater after the burpee test than after the 2000 m run. Glutathione-dependent antioxidant systems are activated immediately as protective mechanisms.
Collapse
Affiliation(s)
- Lucrecia Carrera-Quintanar
- Doctorate in Translational Nutrition Sciences (DCNT) University Center of Health Sciences (CUCS), University of Guadalajara (UDG), Guadalajara 44340, Mexico
| | - Lorena Funes
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Néstor Vicente-Salar
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Manuel Moya-Ramón
- Department of Sport Sciences, Sports Research Center, Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition/Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
- CIBER Physiopathology of Obesity and Nutrition/Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition/Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
21
|
Park J, Jang J, So B, Lee K, Yeom D, Zhang Z, Shin WS, Kang C. Effects of Particulate Matter Inhalation during Exercise on Oxidative Stress and Mitochondrial Function in Mouse Skeletal Muscle. Antioxidants (Basel) 2024; 13:113. [PMID: 38247536 PMCID: PMC10812725 DOI: 10.3390/antiox13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Particulate matter (PM) has deleterious consequences not only on the respiratory system but also on essential human organs, such as the heart, blood vessels, kidneys, and liver. However, the effects of PM inhalation on skeletal muscles have yet to be sufficiently elucidated. Female C57BL/6 or mt-Keima transgenic mice were randomly assigned to one of the following four groups: control (CON), PM exposure alone (PM), treadmill exercise (EX), or PM exposure and exercise (PME). Mice in the three-treatment group were subjected to treadmill running (20 m/min, 90 min/day for 1 week) and/or exposure to PM (100 μg/m3). The PM was found to exacerbate oxidative stress and inflammation, both at rest and during exercise, as assessed by the levels of proinflammatory cytokines, manganese-superoxide dismutase activity, and the glutathione/oxidized glutathione ratio. Furthermore, we detected significant increases in the levels of in vivo mitophagy, particularly in the PM group. Compared with the EX group, a significant reduction in the level of mitochondrial DNA was recorded in the PME group. Moreover, PM resulted in a reduction in cytochrome c oxidase activity and an increase in hydrogen peroxide generation. However, exposure to PM had no significant effect on mitochondrial respiration. Collectively, our findings in this study indicate that PM has adverse effects concerning both oxidative stress and inflammatory responses in skeletal muscle and mitochondria, both at rest and during exercise.
Collapse
Affiliation(s)
- Jinhan Park
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Junho Jang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Byunghun So
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Kanggyu Lee
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Dongjin Yeom
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Chounghun Kang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
22
|
Babiloni-Lopez C, Gargallo P, Juesas A, Gene-Morales J, Saez-Berlanga A, Jiménez-Martínez P, Casaña J, Benitez-Martinez JC, Sáez GT, Fernández-Garrido J, Alix-Fages C, Colado JC. Long-Term Effects of Microfiltered Seawater and Resistance Training with Elastic Bands on Hepatic Parameters, Inflammation, Oxidative Stress, and Blood Pressure of Older Women: A 32-Week, Double-Blinded, Randomized, Placebo-Controlled Trial. Healthcare (Basel) 2024; 12:204. [PMID: 38255091 PMCID: PMC10815454 DOI: 10.3390/healthcare12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The bulk of research on microfiltered seawater (SW) is based on its short-term effects. However, the long-term physiological adaptations to combining SW and resistance training (RT) are unknown. This study aimed to analyse the impact of an RT program using elastic bands combined with SW intake on hepatic biomarkers, inflammation, oxidative stress, and blood pressure in post-menopausal women. Ninety-three women voluntarily participated (age: 70 ± 6.26 years; body mass index: 22.05 ± 3.20 kg/m2; Up-and-Go Test: 6.66 ± 1.01 s). RT consisted of six exercises (32 weeks, 2 days/week). Nonsignificant differences were reported for hepatic biomarkers except for a reduction in glutamic-pyruvic transaminase (GPT) in both RT groups (RT + SW: p = 0.003, ES = 0.51; RT + Placebo: p = 0.012, ES = 0.36). Concerning oxidative stress, vitamin D increased significantly in RT + SW (p = 0.008, ES = 0.25). Regarding inflammation, interleukin 6 significantly decreased (p = 0.003, ES = 0.69) in RT + SW. Finally, systolic blood pressure significantly decreased in both RT groups (RT + placebo: p < 0.001, ES = 0.79; RT + SW: p < 0.001, ES = 0.71) as did diastolic blood pressure in both SW groups (RT + SW: p = 0.002, ES = 0.51; CON + SW: p = 0.028, ES = 0.50). Therefore, RT + SW or SW alone are safe strategies in the long term with no influences on hepatic and oxidative stress biomarkers. Additionally, SW in combination with RT positively influences vitamin D levels, inflammation, and blood pressure in older women.
Collapse
Affiliation(s)
- Carlos Babiloni-Lopez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Pedro Gargallo
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Alvaro Juesas
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Javier Gene-Morales
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Angel Saez-Berlanga
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- ICEN Institute, 28840 Madrid, Spain
| | - Jose Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), University of Valencia, 46010 Valencia, Spain;
| | - Josep C. Benitez-Martinez
- Research Group in Physiotherapy Technology and Recovering (FTR), University of Valencia, 46010 Valencia, Spain;
| | - Guillermo T. Sáez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- Service of Clinical Analysis, University Hospital Dr. Peset—FISABIO, 46017 Valencia, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Julio Fernández-Garrido
- Nursing Department, Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain;
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- ICEN Institute, 28840 Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Department of Physical Education, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| |
Collapse
|
23
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
24
|
Khabiri P, Rahimi MR, Rashidi I, Nedaei SE. Impacts of an 8-week regimen of aged garlic extract and aerobic exercise on the levels of Fetuin-A and inflammatory markers in the liver and visceral fat tissue of obese male rats. Clin Nutr ESPEN 2023; 58:79-88. [PMID: 38057040 DOI: 10.1016/j.clnesp.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Obesity-induced chronic low-grade systemic inflammation is linked to the development of numerous diseases. Fetuin-A is known to affect inflammation and insulin resistance in obesity conditions. Free fatty acid (FFA)-induced proinflammatory cytokine expression in adipocytes occurs only in the presence of both Fetuin-A and toll-like receptor 4 (TLR4) and removing either of them prevented FFA-induced insulin resistance. Aged garlic extract (AGE) and exercise training have anti-inflammatory effects; however, the impact of AGE on Fetuin-A is unknown. We examined the effects of AGE with or without aerobic training (AT) on Fetuin-A and inflammatory markers. METHODS Forty healthy male Sprague Dawley rats were randomly assigned to normal diet (ND) (n = 8) or high-fat diet (HFD) groups (n = 32) and fed for 9 weeks. After 9 weeks ND group continued normal diet, and the HFD group was randomly assigned to the HFD, HFD + AGE (600 mg/kg, once daily), HFD + AT (5 days/week), and HFD + AGE + AT groups that were continued for 8 weeks (n = 8). The significance of differences among groups was assessed using one-way analysis of variance followed by the post-hoc Tukey test. Statistically significant differences were considered for p < 0.05. RESULTS AGE, AT, and AGE + AT significantly decreased body weight, plasma Fetuin-A, HOMA-IR, mRNA and protein levels of Fetuin-A and NFƙB in the liver and mRNA and Protein levels of Fetuin-A, TLR4 and NFƙB in visceral adipose tissue (VAT) compared to HFD. However, only AGE + AT significantly decreased TLR4 protein levels in the liver. CONCLUSION Although AT and AGE reduce Fetuin-A and inflammatory markers, a combination of the two may be more effective at lowering inflammation.
Collapse
Affiliation(s)
- Parisa Khabiri
- Department of Exercise Physiology, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Mohammad Rahman Rahimi
- Department of Exercise Physiology, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Iraj Rashidi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
| |
Collapse
|
25
|
la Torre ME, Monda A, Messina A, de Stefano MI, Monda V, Moscatelli F, Tafuri F, Saraiello E, Latino F, Monda M, Messina G, Polito R, Tafuri D. The Potential Role of Nutrition in Overtraining Syndrome: A Narrative Review. Nutrients 2023; 15:4916. [PMID: 38068774 PMCID: PMC10708264 DOI: 10.3390/nu15234916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Competition between athletes and an increase in sporting knowledge have greatly influenced training methods while increasing the number of them more and more. As a result, the number of athletes who have increased the number and intensity of their workouts while decreasing recovery times is rising. Positive overtraining could be considered a natural and fundamental process when the result is adaptation and improved performance; however, in the absence of adequate recovery, negative overtraining could occur, causing fatigue, maladaptation, and inertia. One of the earliest forms of fatigue is overreaching. It is considered to be an accumulation of training that leads to reduced sports performance, requiring days or weeks to recover. Overreaching, if followed by adequate recovery, can lead to an increase in athletic performance. Nonetheless, if overreaching becomes extreme, combined with additional stressors, it could lead to overtraining syndrome (OTS). OTS, caused by systemic inflammation, leads to central nervous system (CNS) effects, including depressed mood, further inflammation, central fatigue, and ultimately neurohormonal changes. There are therefore not only physiological, biochemical, and immunological but also psychological symptoms or markers that must be considered, independently or together, being intrinsically linked with overtraining, to fully understand OTS. However, to date, there are very few published studies that have analyzed how nutrition in its specific food aspects, if compromised during OTS, can be both etiology and consequence of the syndrome. To date, OTS has not yet been fully studied, and the topic needs further research. The purpose of this narrative review is therefore to study how a correct diet and nutrition can influence OTS in all its aspects, from prevention to treatment.
Collapse
Affiliation(s)
- Maria Ester la Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Antonietta Monda
- Department of Experimental Medicine, Section of Human Physiology, Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Ida de Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Vincenzo Monda
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| | - Fiorenzo Moscatelli
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy; (F.M.); (F.L.)
| | - Francesco Tafuri
- Heracle Lab Research in Educational Neuroscience, Niccolò Cusano University, 00166 Roma, Italy;
| | - Emma Saraiello
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| | - Francesca Latino
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy; (F.M.); (F.L.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology, Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.l.T.); (M.I.d.S.); (G.M.)
| | - Domenico Tafuri
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80131 Naples, Italy; (V.M.); (E.S.); (D.T.)
| |
Collapse
|
26
|
Sun K, Yuan R, He J, Zhuo Y, Yang M, Hao E, Hou X, Yao C, Yang S, Gao H. Sugarcane leaf polysaccharide exerts a therapeutic effect on cardiovascular diseases through necroptosis. Heliyon 2023; 9:e21889. [PMID: 38027563 PMCID: PMC10658330 DOI: 10.1016/j.heliyon.2023.e21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Necroptosis, a novel form of programmed cell death wherein the necrotic morphology is characterized by swelling of the cells, rupture of the plasma membrane, and dysfunction of the organelle, has been always observed in cardiovascular diseases. Sugarcane leaf polysaccharide (SLP) are primary components present in sugarcane leaves that exert cardiovascular protective effects. However, the positive effect of SLP and underlying mechanisms in myocardial ischemia-reperfusion (MI/R) remain unexplored. Aim In this study, the protective effects of SLP on MI/R injury were investigated under in vitro and in vivo conditions. Methods The protective effects of SLP on MI/R injury were assessed using tertiary butyl hydrogen peroxide (TBHP)-stimulated-H9c2 cells in the in vitro assay and using Sprague Dawley rats in the in vivo assay. Results In vitro, SLP significantly reversed TBHP-induced H9c2 cell death by inhibiting necroptosis and oxidative stress. SLP exerted antioxidant activity through the Nrf2/HO-1 pathway. SLP suppressed necroptosis by decreasing phosphorylation of RIP1, RIP3, and MLKL in TBHP-stimulated H9c2 cells. In vivo, SLP attenuated MI/R injury by decreasing the myocardial infarct area; increasing myeloperoxidase and superoxide dismutase levels; and reducing malondialdehyde, interleukin-6, and tumor necrosis factor-α levels.
Collapse
Affiliation(s)
- Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jia He
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Ming Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Chun Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
27
|
Lisi V, Senesi G, Balbi C. Converging protective pathways: Exploring the linkage between physical exercise, extracellular vesicles and oxidative stress. Free Radic Biol Med 2023; 208:718-727. [PMID: 37739138 DOI: 10.1016/j.freeradbiomed.2023.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Physical Exercise (EXR) has been shown to have numerous beneficial effects on various systems in the human body. It leads to a decrease in the risk of mortality from chronic diseases, such as cardiovascular disease, cancer, metabolic and central nervous system disorders. EXR results in improving cardiovascular fitness, cognitive function, immune activity, endocrine action, and musculoskeletal health. These positive effects make EXR a valuable intervention for promoting overall health and well-being in individuals of all ages. These beneficial effects are partially mediated by the role of the regular EXR in the adaptation to redox homeostasis counteracting the sudden increase of ROS, the hallmark of many chronic diseases. EXR can trigger the release of numerous humoral factors, e.g. protein, microRNA (miRs), and DNA, that can be shuttled as cargo of Extracellular vesicles (EVs). EVs show different cargo modification after oxidative stress stimuli as well as after EXR. In this review, we aim to highlight the main studies on the role of EVs released during EXR and oxidative stress conditions in enhancing the antioxidant enzymes pathway and in the decrease of oxidative stress environment mediated by their cargo.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| |
Collapse
|
28
|
Gussoni M, Moretti S, Vezzoli A, Genitoni V, Giardini G, Balestra C, Bosco G, Pratali L, Spagnolo E, Montorsi M, Mrakic-Sposta S. Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies. J Funct Morphol Kinesiol 2023; 8:146. [PMID: 37873905 PMCID: PMC10594470 DOI: 10.3390/jfmk8040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was to investigate the efficacy of a specific electrical stimulation (ES) treatment (without elicited muscular contraction) on two different scenarios: in the laboratory on eleven healthy volunteers (56.45 ± 4.87 years) after upper limbs eccentric exercise (Study 1) and in the field on fourteen ultra-endurance athletes (age 47.4 ± 10.2 year) after an ultra-running race (134 km, altitude difference of 10,970 m+) by lower exercising limbs (Study 2). Subjects were randomly assigned to two experimental tasks in cross-over: Active or Sham ES treatments. The ES efficacy was assessed by monitoring the oxy-inflammation status: Reactive Oxygen Species production, total antioxidant capacity, IL-6 cytokine levels, and lactate with micro-invasive measurements (capillary blood, urine) and scales for fatigue and recovery assessments. No significant differences (p > 0.05) were found in the time course of recovery and/or pre-post-race between Sham and Active groups in both study conditions. A subjective positive role of sham stimulation (VAS scores for muscle pain assessment) was reported. In conclusion, the effectiveness of ES in treating DOMS and its effects on muscle recovery remain still unclear.
Collapse
Affiliation(s)
- Maristella Gussoni
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy;
| | - Sarah Moretti
- National Research Council (IFC-CNR), 20159 Roma, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
| | | | - Guido Giardini
- Neurology and Neurophysiology Department, Mountain Medicine Center Valle d’ Aosta Regional Hospital Umberto Parini, 11100 Aosta, Italy;
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
| | - Costantino Balestra
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Gerardo Bosco
- Environmental Physiology & Medicine Lab, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Lorenza Pratali
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
| | - Elisabetta Spagnolo
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| |
Collapse
|
29
|
Michel JM, Godwin JS, Plotkin DL, Mesquita PHC, McIntosh MC, Ruple BA, Libardi CA, Mobley CB, Kavazis AN, Roberts MD. Proteolytic markers associated with a gain and loss of leg muscle mass with resistance training followed by high-intensity interval training. Exp Physiol 2023; 108:1268-1281. [PMID: 37589512 PMCID: PMC10543615 DOI: 10.1113/ep091286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
We recently reported that vastus lateralis (VL) cross-sectional area (CSA) increases after 7 weeks of resistance training (RT, 2 days/week), with declines occurring following 7 weeks of subsequent treadmill high-intensity interval training (HIIT) (3 days/week). Herein, we examined the effects of this training paradigm on skeletal muscle proteolytic markers. VL biopsies were obtained from 11 untrained college-aged males at baseline (PRE), after 7 weeks of RT (MID), and after 7 weeks of HIIT (POST). Tissues were analysed for proteolysis markers, and in vitro experiments were performed to provide additional insights. Atrogene mRNAs (TRIM63, FBXO32, FOXO3A) were upregulated at POST versus both PRE and MID (P < 0.05). 20S proteasome core protein abundance increased at POST versus PRE (P = 0.031) and MID (P = 0.049). 20S proteasome activity, and protein levels for calpain-2 and Beclin-1 increased at MID and POST versus PRE (P < 0.05). Ubiquitinated proteins showed model significance (P = 0.019) with non-significant increases at MID and POST (P > 0.05). in vitro experiments recapitulated the training phenotype when stimulated with a hypertrophic stimulus (insulin-like growth factor 1; IGF1) followed by a subsequent AMP-activated protein kinase activator (5-aminoimidazole-4-carboxamide ribonucleotide; AICAR), as demonstrated by larger myotube diameter in IGF1-treated cells versus IGF1 followed by AICAR treatments (I+A; P = 0.017). Muscle protein synthesis (MPS) levels were also greater in IGF1-treated versus I+A myotubes (P < 0.001). In summary, the loss in RT-induced VL CSA with HIIT coincided with increases in several proteolytic markers, and sustained proteolysis may have driven this response. Moreover, while not measured in humans, we interpret our in vitro data to suggest that (unlike RT) HIIT does not stimulate MPS. NEW FINDINGS: What is the central question of this study? Determining if HIIT-induced reductions in muscle hypertrophy following a period of resistance training coincided with increases in proteolytic markers. What is the main finding and its importance? Several proteolytic markers were elevated during the HIIT training period implying that increases in muscle proteolysis may have played a role in HIIT-induced reductions in muscle hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cleiton A. Libardi
- Department of Physical EducationFederal University of Sao CarlosSao CarlosBrazil
| | | | | | - Michael D. Roberts
- School of KinesiologyAuburn UniversityAuburnALUSA
- Edward Via College of Osteopathic MedicineAuburnALUSA
| |
Collapse
|
30
|
Gentile A, Punziano C, Calvanese M, De Falco R, Gentile L, D’Alicandro G, Miele C, Capasso F, Pero R, Mazzaccara C, Lombardo B, Frisso G, Borrelli P, Mennitti C, Scudiero O, Faraonio R. Evaluation of Antioxidant Defence Systems and Inflammatory Status in Basketball Elite Athletes. Genes (Basel) 2023; 14:1891. [PMID: 37895240 PMCID: PMC10606456 DOI: 10.3390/genes14101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Intense physical activity can induce metabolic changes that modify specific biochemical biomarkers. In this scenario, the purpose of our study was to evaluate how intense physical activity can affect oxidative metabolism. Following this, fifteen professional basketball players and fifteen sedentary controls were recruited and subjected to two samplings of serum and urine in the pre-season (September) and two months after the start of the competitive season (November). Our results have shown an increase in athletes compared to controls in CK and LDH in September (respectively, p-value 0.003 and p-value < 0.001) and in November (both p-value < 0.001), whereas ALT is increased only in November (p-value 0.09). GGT serum levels were decreased in athletes compared to controls in both months (in September p-value 0.001 and in November p-value < 0.001). A gene expression analysis, carried out using RT-PCR, has revealed that IL-2, IL-6, IL-8, xCT and GCLM are increased in athletes in both months (p-value < 0.0001), while IL-10 and CHAC1 are increased only in September if compared to the controls (respectively, p-value 0.040 and p-value < 0.001). In conclusion, physical activity creates an adaptation of the systems involved in oxidative metabolism but without causing damage to the liver or kidney. This information could be of help to sports doctors for the prevention of injuries and illnesses in professional athletes for the construction of the athlete's passport.
Collapse
Affiliation(s)
- Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Mariella Calvanese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Renato De Falco
- Division of Laboratory Medicine, Istituto Nazionale Tumori—IRCCS Fondazione Pascale, 80129 Naples, Italy;
| | - Luca Gentile
- Integrated Department of Laboratory and Transfusion Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Ciro Miele
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- UOC Laboratory Medicine, Hematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Filomena Capasso
- UOC Laboratory Medicine, Hematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Paola Borrelli
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University G. d’Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| |
Collapse
|
31
|
Halappa NG, Jha K, U V, Singh H. Impact of Yoga as an Add-On Intervention on Neurocognitive Functions Among Adult Athletes: A Pilot Study. Cureus 2023; 15:e44797. [PMID: 37809141 PMCID: PMC10558629 DOI: 10.7759/cureus.44797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Athletes are vulnerable to musculoskeletal injuries and psychiatric conditions. Previous studies have reported the benefits of yoga on cognitive functions among healthy children, adults, and the elderly. This pilot study aimed to test the neurocognitive functions among athletes with/without yoga intervention. METHODS A non-randomized, two-armed parallel-group, single-blind comparative trial was used. The participants were grouped into (i) yoga with sports activity (YSA, n = 15) and (ii) sports activity alone (SA, n = 14). The subjects were assessed at the baseline and after a one-month intervention using digit span forward (DSF), digit span backward (DSB), Trail Making Test (TMT) A & B, and Rey Auditory Verbal Learning Test (RAVLT). A comprehensive one-hour yoga training three days a week for two months constitutes selected asanas (postures), pranayama (breathing techniques), relaxation techniques, and meditation techniques. The control group constitutes the routine sports activity for the same period. RESULTS A paired sample t-test showed a significant improvement in cognitive performance on TMT A & B duration and RAVLT total score in the YSA group compared with the SA group. However, a significant trend was observed for DSF, DSB, and RAVLT immediate recall. Independent sample t-test (pre-post change scores) showed no significant group difference in cognitive performance, except there was a significant trend observed related to DSF (p = 0.053) and RAVLT distraction (p = 0.09), where the yoga group showed better performance in cognitive functions. CONCLUSION The results suggest that yoga may be integrated with sports to enhance neurocognitive functions.
Collapse
Affiliation(s)
- Naveen G Halappa
- Department of Yoga, School of Yoga, Naturopathy and Cognitive Studies, Babasaheb Bhimrao Ambedkar University, Lucknow, IND
| | - Kamlesh Jha
- Department of Physiology, All India Institute of Medical Sciences, Patna, IND
| | - Vijayabanu U
- Department of Psychology, School of Social Sciences and Languages, Vellore Institute of Technology, Chennai, IND
| | - Harishankar Singh
- Department of Yoga, School of Yoga, Naturopathy and Cognitive Studies, Babasaheb Bhimrao Ambedkar University, Lucknow, IND
| |
Collapse
|
32
|
Cheng C, Zhang S, Gong Y, Wang X, Tang S, Wan J, Ding K, Yuan C, Sun W, Yao LH. Cordycepin inhibits myogenesis via activating the ERK1/2 MAPK signalling pathway in C2C12 cells. Biomed Pharmacother 2023; 165:115163. [PMID: 37453196 DOI: 10.1016/j.biopha.2023.115163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Cordycepin (with a molecular formula of C10H13N5O3), a natural adenosine isolated from Cordyceps militaris, has an important regulatory effect on skeletal muscle remodelling and quality maintenance. The aim of this study was to investigate the effect of cordycepin on myoblast differentiation and explore the underlying molecular mechanisms of this effect. Our results showed that cordycepin inhibited myogenesis by downregulating myogenic differentiation (MyoD) and myogenin (MyoG), preserved undifferentiated reserve cell pools by upregulating myogenic factor 5 (Myf5) and retinoblastoma-like protein p130 (p130), and enhanced energy reserves by decreasing intracellular reactive oxygen species (ROS) and enhancing mitochondrial membrane potential, mitochondrial mass, and ATP content. The effect of cordycepin on myogenesis was associated with increased phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2). PD98059 (a specific inhibitor of p-ERK1/2) attenuated the inhibitory effect of cordycepin on C2C12 differentiation. The present study reveals that cordycepin inhibits myogenesis through ERK1/2 MAPK signalling activation accompanied by an increase in skeletal muscle energy reserves and improving skeletal muscle oxidative stress, which may have implications for its further application for the prevention and treatment of degenerative muscle diseases caused by the depletion of depleted muscle stem cells.
Collapse
Affiliation(s)
- Chunfang Cheng
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shasha Zhang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yanchun Gong
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Xuanyu Wang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shan Tang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Juan Wan
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Kaizhi Ding
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Chunhua Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wei Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Li-Hua Yao
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
33
|
Nagai M, Förster CY. Exercise in treatment-resistant hypertension. A natural neuromodulation therapy? Hypertens Res 2023; 46:2231-2234. [PMID: 37452156 DOI: 10.1038/s41440-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Michiaki Nagai
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Carola Yvette Förster
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg, Germany
| |
Collapse
|
34
|
Toriumi T, Ohmori H, Nagasaki Y. Design of Antioxidant Nanoparticle, which Selectively Locates and Scavenges Reactive Oxygen Species in the Gastrointestinal Tract, Increasing The Running Time of Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301159. [PMID: 37526346 PMCID: PMC10520625 DOI: 10.1002/advs.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 08/02/2023]
Abstract
Excess reactive oxygen species (ROS) produced during strong or unfamiliar exercise cause exercise-induced gastrointestinal syndrome (EIGS), leading to poor health and decreased exercise performance. The application of conventional antioxidants can neither ameliorate EIGS nor improve exercise performance because of their rapid elimination and severe side effects on the mitochondria. Hence, a self-assembling nanoparticle-type antioxidant (RNPO ) that is selectively located in the gastrointestinal (GI) tract for an extended time after oral administration is developed. Interestingly, orally administered RNPO significantly enhances the running time until exhaustion in mice with increasing dosage, whereas conventional antioxidants (TEMPOL) tends to reduce the running time with increasing dosage. The running (control) and TEMPOL groups show severe damage in the GI tract and increased plasma lipopolysaccharide (LPS) levels after 80 min of running, resulting in fewer red blood cells (RBCs) and severe damage to the skeletal muscles and liver. However, the RNPO group is protected against GI tract damage and elevation of plasma LPS levels, similar to the nonrunning (sedentary) group, which prevents damage to the whole body, unlike in the control and TEMPOL groups. Based on these results, it is concluded that continuous scavenging of excessive intestinal ROS protects against gut damage and further improves exercise performance.
Collapse
Affiliation(s)
- Takuto Toriumi
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
| | - Hajime Ohmori
- University of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Faculty of Business Information SciencesJobu UniversityToyazukamachi 634‐1IsesakiGunma372‐8588Japan
| | - Yukio Nagasaki
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Master's School of Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Center for Research in Radiation, Isotope and Earth System Sciences (CRiES)University of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Department of ChemistryGraduate School of ScienceThe University of TokyoHongo 7‐3‐1Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
35
|
Dun Y, Hu Z, You B, Du Y, Zeng L, Zhao Y, Liu Y, Wu S, Cui N, Yang F, Liu S. Exercise prevents fatal stress-induced myocardial injury in obese mice. Front Endocrinol (Lausanne) 2023; 14:1223423. [PMID: 37711889 PMCID: PMC10497866 DOI: 10.3389/fendo.2023.1223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction This study aimed to explore whether aerobic exercise (AE) can prevent fatal stress-induced myocardial injury. Methods Thirty C57BL/6J mice were divided into either a normal diet, high-fat diet, or high-fat diet plus AE (n=10 per group). The AE protocol consisted of eight weeks of swimming. At the end of the diet and AE interventions, the mice were stimulated with fatal stress caused by exhaustive exercise (forced weight-loaded swimming until exhaustion), after which cardiac function was evaluated using echocardiography, myocardial ultrastructure was examined using transmission electron microscopy, and myocardial apoptosis was assessed using western blotting and TUNEL. Mitophagy, mitochondrial biogenesis and dynamics, and activation of the macrophage migration inhibitor factor (MIF)/AMP-activated protein kinase (AMPK) pathway were evaluated using quantitative PCR and western blotting. Obesity phenotypes were assessed once per week. Results AE reversed high-fat diet-induced obesity as evidenced by reductions in body weight and visceral fat compared to obese mice without AE. Obesity exacerbated fatal stress-induced myocardial damage, as demonstrated by impaired left ventricular ejection fraction and myocardial structure. The apoptotic rate was also elevated upon fatal stress, and AE ameliorated this damage. Obesity suppressed mitophagy, mitochondrial fission and fusion, and mitochondrial biogenesis, and these effects were accompanied by suppression of the MIF/AMPK pathway in the myocardium of mice subjected to fatal stress. AE alleviated or reversed these effects. Conclusion This study provides evidence that AE ameliorated fatal stress-induced myocardial injury in obese mice. The cardioprotective effect of AE in obese mice might be attributed to improved mitochondrial quality.
Collapse
Affiliation(s)
- Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zihang Hu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Du
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Shaoping Wu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
36
|
Moir HJ, Maciejczyk M, Maciejczyk M, Aidar FJ, Arazi H. Editorial: Exercise-induced oxidative stress and the role of antioxidants in sport and exercise. Front Sports Act Living 2023; 5:1269826. [PMID: 37654804 PMCID: PMC10466035 DOI: 10.3389/fspor.2023.1269826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Hannah J. Moir
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University, London, United Kingdom
- EMJ, London, United Kingdom
| | - Marcin Maciejczyk
- Faculty of Physical Education and Sport, University School of Physical Education, Kraków, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristóvão, Brazil
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
37
|
Matei B, Winters-Stone KM, Raber J. Examining the Mechanisms behind Exercise's Multifaceted Impacts on Body Composition, Cognition, and the Gut Microbiome in Cancer Survivors: Exploring the Links to Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:1423. [PMID: 37507961 PMCID: PMC10376047 DOI: 10.3390/antiox12071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
This review focuses on the effects of exercise on various health-related outcomes in cancer survivors, encompassing body composition, cognitive function (including sleep), and gut microbiome health. By analyzing multiple studies, we aimed to summarize the existing evidence and shed light on underlying mechanisms. The findings strongly suggest that exercise serves as a multifaceted non-pharmacological strategy, playing a significant role in improving the overall health of cancer survivors by effectively reducing inflammation and oxidative stress. Exercise plays a crucial role in preventing muscle wasting, diminishing the presence of reactive oxygen species and pro-inflammatory cytokines, and enhancing antioxidant systems. Furthermore, exercise displays notable benefits in terms of executive cognitive functioning and fatigue alleviation, largely attributed to its anti-inflammatory impact on the central nervous system and its ability to induce neurogenesis via growth factors. Additionally, exercise positively influences microbial diversity, reduces gut inflammation, and enhances neurogenesis through the gut-brain axis. Our key findings underscore the reduction of oxidative stress and inflammation as primary mechanisms by which exercise effectively enhances health outcomes in cancer survivors. By delving deeper into these candidate mechanisms, we aim to provide valuable guidance for future research and interventions targeting the symptoms experienced by cancer survivors.
Collapse
Affiliation(s)
- Benjamin Matei
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kerri M Winters-Stone
- Division of Oncological Sciences, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
38
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
39
|
Prashad SV, Prajapati K, Moharir G, Ojeh N, Sinha S, Kumar S, Haque M, Bharatha A. The Protective Effect of Oxitard on Sperm Function and Antioxidant Status in Rats Exposed to Swimming Stress. Cureus 2023; 15:e40381. [PMID: 37325690 PMCID: PMC10264260 DOI: 10.7759/cureus.40381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Infertility is a significant public health issue, but its impact on quality of life and treatment efficacy is limited. Modern medicine lacks safe and effective drugs for male infertility, while traditional medicine has explored herbal extracts like Oxitard, which contains multiple extracts and oils. This study aimed to investigate the effects of Oxitard on male rats exposed to swimming (SW) stress. METHODS Albino rats weighing 220-250 g were divided into five groups: control, SW stress, and SW treated with Oxitard at low, medium, and high doses of 250, 500, and 750 mg/kg/day, respectively. The rats were subjected to SW stress for 15 days and then assessed for body weight, reproductive organ weight, testosterone, antioxidant status, sperm function, and histological changes in the testes, seminal vesicles, and vas deferens. RESULTS The results showed that SW stress significantly reduced body weight, seminal vesicle weight, testosterone levels, superoxide dismutase (SOD), catalase (CAT), sperm count, sperm motility, sperm viability, and significantly increased malondialdehyde (MDA) levels. The testes of the SW-stress group rats also showed a significant decrease in spermatogenesis and the number of seminiferous tubules containing sperm. In contrast, treatment with Oxitard, especially at the highest dose, demonstrated potent free radical scavenging activity, recovering antioxidant status, and sperm function. CONCLUSION SW stress led to decreased sperm function, antioxidant status, and increased lipid peroxidation (LPO) in male rats. Oxitard treatment, particularly in high doses, showed a potential role as a free radical scavenger in treating oxidative stress (OS)-associated male infertility. Further studies are needed to investigate the individual components of Oxitard and conduct clinical trials in human subjects.
Collapse
Affiliation(s)
| | | | - Gurudatta Moharir
- Pharmacology and Therapeutics, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, IND
| | - Nkemcho Ojeh
- Preclinical and Health Science, Faculty of Medical Sciences, The University of West Indies, Cave Hill, BRB
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Ambadasu Bharatha
- Department of Preclinical and Health Sciences, The University of West Indies, Cave Hill, BRB
| |
Collapse
|
40
|
Caballero-García A, Noriega-González DC, Roche E, Drobnic F, Córdova A. Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review. Nutrients 2023; 15:nu15112587. [PMID: 37299549 DOI: 10.3390/nu15112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise-induced muscle damage results in decreased physical performance that is accompanied by an inflammatory response in muscle tissue. The inflammation process occurs with the infiltration of phagocytes (neutrophils and macrophages) that play a key role in the repair and regeneration of muscle tissue. In this context, high intensity or long-lasting exercise results in the breakdown of cell structures. The removal of cellular debris is performed by infiltrated phagocytes, but with the release of free radicals as collateral products. L-carnitine is a key metabolite in cellular energy metabolism, but at the same time, it exerts antioxidant actions in the neuromuscular system. L-carnitine eliminates reactive oxygen and nitrogen species that, in excess, alter DNA, lipids and proteins, disturbing cell function. Supplementation using L-carnitine results in an increase in serum L-carnitine levels that correlates positively with the decrease in cell alterations induced by oxidative stress situations, such as hypoxia. The present narrative scoping review focuses on the critical evaluation of the efficacy of L-carnitine supplementation on exercise-induced muscle damage, particularly in postexercise inflammatory and oxidative damage. Although both concepts appear associated, only in two studies were evaluated together. In addition, other studies explored the effect of L-carnitine in perception of fatigue and delayed onset of muscle soreness. In view of the studies analyzed and considering the role of L-carnitine in muscle bioenergetics and its antioxidant potential, this supplement could help in postexercise recovery. However, further studies are needed to conclusively clarify the mechanisms underlying these protective effects.
Collapse
Affiliation(s)
- Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - David C Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Franchek Drobnic
- Medical Services Wolverhampton Wanderers FC, Wolverhampton WV3 9BF, UK
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| |
Collapse
|
41
|
Fernández-Lázaro D, Domínguez-Ortega C, Busto N, Santamaría-Peláez M, Roche E, Gutiérez-Abejón E, Mielgo-Ayuso J. Influence of N-Acetylcysteine Supplementation on Physical Performance and Laboratory Biomarkers in Adult Males: A Systematic Review of Controlled Trials. Nutrients 2023; 15:nu15112463. [PMID: 37299425 DOI: 10.3390/nu15112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
N-acetylcysteine (NAC) is used as a sports supplement for its ability to modulate exercise-induced oxidative damage through its antioxidant actions and maintenance of glutathione homeostasis, positioning NAC as a strategy to improve physical performance. We aimed to evaluate the current evidence on the benefits of NAC supplementation on physical performance and laboratory biomarkers in adult men. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in the Web of Science, Scopus, and PubMed to assess the effects of NAC on physical performance, laboratory biomarkers, and adverse effects in adult men. Original articles published up to 30 April 2023 with a controlled trial design comparing NAC supplementation with a control group were included. The modified McMaster Critical Review Form for Quantitative Studies was used as an assessment tool and the Cochrane Risk of Bias was applied. Of the 777 records identified in the search, 16 studies met the inclusion and exclusion criteria. Overall, most of the trials reported beneficial effects of NAC supplementation and no serious adverse events were reported. Participants supplemented with NAC showed significant improvements in exercise performance, antioxidant capacity, and glutathione homeostasis. However, there was no clear evidence of beneficial effects of NAC supplementation on haematological markers, inflammatory response, and muscle behaviour. NAC supplementation appears to be safe and may regulate glutathione homeostasis, have antioxidant effects, and improve exercise performance. However, further studies are needed to clarify the relevance of its use.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
| | - Carlos Domínguez-Ortega
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Hematology Service of "Santa Bárbara Hospital", Castile and Leon Health (SACyL), 42003 Soria, Spain
- Hematology Service of "Latorre Hospital", 42004 Soria, Spain
| | - Natalia Busto
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Mirian Santamaría-Peláez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Enrique Roche
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Eduardo Gutiérez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castilla y León Health Council, 47007 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
42
|
Tuell DS, Los EA, Ford GA, Stone WL. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants (Basel) 2023; 12:1139. [PMID: 37371869 DOI: 10.3390/antiox12061139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and prediabetes is rapidly increasing, particularly in children, adolescents, and young adults. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Natural antioxidant products may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. Natural antioxidant products should also be evaluated in the context of the complex physiological processes that modulate T2D-OxS such as glycemic control, postprandial OxS, the polyol pathway, high-calorie, high-fat diets, exercise, and sleep. Minimizing processes that induce chronic damaging OxS and maximizing the intake of natural antioxidant products may provide a means of preventing or slowing T2D progression. This "optimal redox" (OptRedox) approach also provides a framework in which to discuss the potential benefits of natural antioxidant products such as vitamin E, vitamin C, beta-carotene, selenium, and manganese. Although there is a consensus that early effective intervention is critical for preventing or reversing T2D progression, most research has focused on adults. It is critical, therefore, that future research include pediatric populations.
Collapse
Affiliation(s)
- Dawn S Tuell
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - Evan A Los
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - George A Ford
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
43
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
44
|
Boy E, Lelo A, Sagiran. Salat dhuha effect on oxidative stress in elderly women: A randomized controlled trial. Saudi J Biol Sci 2023; 30:103603. [PMID: 36852007 PMCID: PMC9946778 DOI: 10.1016/j.sjbs.2023.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Background The aging process and a chronic sedentary lifestyle in the elderly as a result of physical restrictions during the COVID-19 pandemic, induces oxidative stress through oxygen supply and antioxidant activity imbalance which in turn induce degenerative diseases. Salat dhuha as a prayer and mind-body medicine which is practiced by the Muslim community can hopefully be a solution to decrease oxidative stress in the elderly. Objective To evaluate the acute physiological effects of salat dhuha on Glutathione Peroxidase activity (GPx) as an antioxidant and Malondialdehyde (MDA) as an oxidant in healthy elderly Muslim women population who have done salat dhuha regularly. Method A randomized controlled study was done on elderly women (aged 60-74 years old) who are treated in the North Sumatra Government's Nursing Home in Binjai and who routinely do 2 rakaat of salat dhuha every day. Several physical, clinical, and blood examinations were done pre and post-intervention. 101 elderly Muslim women in the nursing home were selected, 26 met the study criteria and were included in the study. The volunteers were randomized into 2 groups using lottery papers, the "2-rakaat salat dhuha group" (n = 13) and the "8-rakaat salat dhuha group" (n = 13). All volunteers did salat dhuha for at least 5 days per week for 6 weeks. Result 24 elderly women completed the study, and one volunteer from each group dropped out. The characteristics of participants from both groups were homogenous. Results of the t-independent analysis showed that MDA concentrations in both groups in the pre and post-test were not significantly different (p > 0,05). Mann Whitney analysis showed that GPx on both groups in the pre and post-test were not significantly different (p > 0,05). Paired sample t-test analysis on the MDA concentrations pre and post-test in the 8-rakaat group showed a significant difference in MDA levels (p < 0,05). The 8-rakaat salat dhuha group showed that GPx activity increases as much as 8,9% and MDA levels decrease as much as 48,35 % after 6 weeks. Conclusion Salat dhuha promotes redox homeostasis and has the potential to prevent oxidative stress in elderly women.
Collapse
Affiliation(s)
- Elman Boy
- Department of Public Health, Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Medicine and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sagiran
- Department of Surgery, Faculty of Medicine, Universitas Muhammadiyah Yogyakarta, Yogya, Indonesia
| |
Collapse
|
45
|
Halappa NG. Integration of yoga within exercise and sports science as a preventive and management strategy for musculoskeletal injuries/disorders and mental disorders - A review of the literature. J Bodyw Mov Ther 2023; 34:34-40. [PMID: 37301554 DOI: 10.1016/j.jbmt.2023.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Exercise-induced musculoskeletal injuries/disorders and associated mental disorders are prevalent among athletes. The main objective of this review is to analyze the prospects of Yoga practices as a preventive and management strategy for musculoskeletal injuries/disorders and associated mental disorders often encountered in exercise and sports activities. METHODS A review of the literature was performed using electronic databases such as MEDLINE/PubMed and google scholar published between January 1991 and December 2021 which yielded 88 research articles. The keywords used were yoga OR exercise AND musculoskeletal injuries OR disorders, yoga OR exercise AND mental disorders, yoga AND sports injuries, yoga AND stress, yoga OR exercise AND oxidative stress, yoga OR exercise AND inflammation, yoga OR exercise AND diet. RESULTS The moderate and regular exercises are beneficial to health. However, high intensity and overtraining physical activities lead to immune suppression, oxidative stress, muscle damage/fatigue, coronary risk, psychiatric disorders and so on due to enormous strain on various physiological functions. Yoga seems to undermine these adverse activities through up-regulating the functions of the parasympathetic nervous system (PNS) and down-regulating the activities of hypothalamohypophysial axis (HPA) which are conducive to healing, recovery, regeneration, reduction in stress, relaxation of mind, better cognitive functions, promotion of mental health, reduction in inflammation and oxidative stress, and so on. CONCLUSION Literature suggests that Yoga should be integrated within exercise and sports sciences mainly to prevent & manage musculoskeletal injuries/disorders and associated mental disorders.
Collapse
Affiliation(s)
- Naveen G Halappa
- School of Public Health & School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Bihar, India.
| |
Collapse
|
46
|
Effects of Different Hydration Strategies in Young Men during Prolonged Exercise at Elevated Ambient Temperatures on Pro-Oxidative and Antioxidant Status Markers, Muscle Damage, and Inflammatory Status. Antioxidants (Basel) 2023; 12:antiox12030642. [PMID: 36978890 PMCID: PMC10045838 DOI: 10.3390/antiox12030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Physical exercise is associated with an increase in the speed of metabolic processes to supply energy to working muscles and endogenous heat production. Intense sweating caused by the work performed at high ambient temperatures is associated with a significant loss of water and electrolytes, leading to dehydration. This study aimed to examine the effectiveness of different hydration strategies in young men during prolonged exercise at elevated ambient temperatures on levels of pro-oxidative and antioxidant status, oxidative status markers (TAC/TOC), muscle cell damage (Mb, LDH), and inflammatory status (WBC, CRP, IL-1β). The study was conducted on a group of 12 healthy men with average levels of aerobic capacity. The intervention consisted of using various hydration strategies: no hydration; water; and isotonic drinks. The examination was di-vided into two main stages. The first stage was a preliminary study that included medical exami-nations, measurements of somatic indices, and exercise tests. The exercise test was performed on a cycle ergometers. Their results were used to determine individual relative loads for the main part of the experiment. In the second stage, the main study was conducted, involving three series of weekly experimental tests using a cross-over design. The change in plasma volume (∆PV) measured im-mediately and one hour after the exercise test was significantly dependent on the hydration strategy (p = 0.003 and p = 0.002, respectively). The mean values of oxidative status did not differ signifi-cantly between the hydration strategy used and the sequence in which the test was performed. Using isotonic drinks, due to the more efficient restoration of the body’s water and electrolyte balance compared to water or no hydration, most effectively protects muscle cells from the negative effects of exercise, leading to heat stress of exogenous and endogenous origin.
Collapse
|
47
|
Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells 2023; 12:cells12050753. [PMID: 36899889 PMCID: PMC10001353 DOI: 10.3390/cells12050753] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The world population is aging rapidly, and increasing lifespan exacerbates the burden of age-related health issues. On the other hand, premature aging has begun to be a problem, with increasing numbers of younger people suffering aging-related symptoms. Advanced aging is caused by a combination of factors: lifestyle, diet, external and internal factors, as well as oxidative stress (OS). Although OS is the most researched aging factor, it is also the least understood. OS is important not only in relation to aging but also due to its strong impact on neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Parkinson's disease (PD). In this review, we will discuss the aging process in relation to OS, the function of OS in neurodegenerative disorders, and prospective therapeutics capable of relieving neurodegenerative symptoms associated with the pro-oxidative condition.
Collapse
|
48
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
49
|
Chronic Resistance Training Effects on Serum Adipokines in Type 2 Diabetes Mellitus: A Systematic Review. Healthcare (Basel) 2023; 11:healthcare11040594. [PMID: 36833129 PMCID: PMC9957256 DOI: 10.3390/healthcare11040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Non-communicable diseases (NCD) are an important concern for public health because of their high rates of morbidity and mortality. A prevalent lifestyle-linked NCD is type 2 diabetes mellitus (T2D). Recently, molecular biomarkers secreted by adipocytes, called adipokines, have been linked with T2D and muscle function disturbances. However, the effects of resistance training (RT) interventions on adipokine levels in patients with T2D have not been systematically studied. (2) Methods: The PRISMA guidelines were followed. Searches for the studies were performed in the PubMed/MEDLINE and Web of Science electronic databases. Eligibility criteria included: (i) participants with T2D; (ii) RT interventions; (iii) randomized controlled trials; and (iv) measurement of serum adipokines. The PEDro scale was used to assess the methodological quality of the selected studies. Significant differences (p ≤ 0.05) and effect size were screened for each variable. (3) Results: Of the initial 2166 records, database search extraction yielded 14 studies to be included. The methodological quality of the included data was high (median PEDro score of 6.5). Analyzed adipokines in the included studies were leptin, adiponectin, visfatin, apelin, resistin, retinol-binding protein 4 (RBP4), vaspin, chemerin, and omentin. RT interventions (6-52 weeks; minimal effective duration >12 weeks) exert a meaningful effect on serum adipokine, (e.g., leptin) levels in T2D patients. (4) Conclusions: RT may be an alternative, but not an optimal, option in adipokine disruptions in T2D. Combined (i.e., aerobic and RT) long-term training may be considered the optimal intervention for treating adipokine level disturbances.
Collapse
|
50
|
Kholghi G, Alipour V, Rezaie M, Zarrindast MR, Vaseghi S. The Interaction Effect of Sleep Deprivation and Treadmill Exercise in Various Durations on Spatial Memory with Respect to the Oxidative Status of Rats. Neurochem Res 2023; 48:2077-2092. [PMID: 36786943 DOI: 10.1007/s11064-023-03890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|