1
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
4
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Huang H, Zhao Y, Shang X, Ren H, Zhao Y, Liu X. CAIII expression in skeletal muscle is regulated by Ca2+–CaMKII–MEF2C signaling. Exp Cell Res 2019; 385:111672. [DOI: 10.1016/j.yexcr.2019.111672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
|
6
|
Reduced expression of carbonic anhydrase III in skeletal muscles could be linked to muscle fatigue: A rat muscle fatigue model. J Orthop Translat 2019; 22:116-123. [PMID: 32440507 PMCID: PMC7231961 DOI: 10.1016/j.jot.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Background Carbonic anhydrase III (CAIII) is expressed abundantly in slow skeletal muscles, adipocytes, and the liver. It plays a critical role in maintaining intracellular pH, antioxidation, and energy metabolism, which are further involved in fatigue. However, its function and mechanism in maintaining the physiological function of muscles or antifatigue are still ambiguous. We hypothesized that changes of CAIII in skeletal muscles might be related to the occurrence of muscle fatigue. Method After establishing a rat soleus muscle fatigue model, we measured the protein expression of the CAIII in muscles. And the muscle intracellular biochemical indices [malondialdehyde (MDA), adenosine triphosphate (ATP), and lactic acid] were also measured using assay kits. After transfected by CAIII-overexpressing and knockdown lentiviral vectors, the rat soleus muscles were induced to fatigue to investigate the effects and possible molecular mechanisms of CAIII in antifatigue. Results The expression of CAIII in fatigued soleus muscles was significantly decreased compared with that of the control group (P < 0.001). Moreover, the ATP level in the fatigued muscle also significantly decreased, whereas lactic acid and MDA levels were significantly increased (P < 0.001). After posttransfection for 21 days, CAIII levels in muscles were significantly reduced in the CAIII-interfering lentivirus group, but increased in the CAIII-overexpressed lentivirus group (P < 0.001). In addition, CAIII knockdown muscles showed more reduction of the maximal muscle force and ATP levels and more increase of MDA and lactic acid levels during the fatigue test than the control group, (P < 0.05). On the other hand, CAIII-overexpressed muscles showed less reduction of the maximal muscle force and ATP levels and less increase of MDA and lactic acid levels during muscle fatigue than the control group (P < 0.05). Conclusions Our study showed that soleus muscle fatigue induced by electrical stimulation could result in downregulation of CAIII and ATP levels and accumulation of lactic acid and MDA. Further study showed that CAIII knockdown led to more reduction of the maximal muscle force, whereas CAIII overexpression showed less reduction of the maximal muscle force, which suggested that CAIII levels in muscles might be related to the occurrence of muscle fatigue. Translational potential CAIII plays an important role in muscle fatigue. Up-regulating the expression of CAIII might contribute to dissipating fatigue, which would provide a new method to solve the difficulties in eliminating muscular fatigue.
Collapse
Key Words
- ATP, adenosine triphosphate
- CAIII, carbonic anhydrase III
- CAs, carbonic anhydrases
- Carbonic anhydrase III
- Ct, threshold cycle
- MDA, malondialdehyde
- Muscle fatigue
- NS, saline injection group
- PBS, phosphate-buffered saline
- PBST, PBS with Tween 20
- PVDF, polyvinylidene difluoride
- RIPA, radioimmunoprecipitation assay
- ROS, reactive oxygen species
- SD, Sprague Dawley
- SDS–PAGE gel, sodium dodecyl sulphate–polyacrylamide gel electrophoresis
- Soleus muscle
Collapse
|
7
|
Feng HZ, Jin JP. Transgenic expression of carbonic anhydrase III in cardiac muscle demonstrates a mechanism to tolerate acidosis. Am J Physiol Cell Physiol 2019; 317:C922-C931. [PMID: 31390226 DOI: 10.1152/ajpcell.00130.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase III (CAIII) is abundant in liver, adipocytes, and skeletal muscles, but not heart. A cytosolic enzyme that catalyzes conversions between CO2 and HCO3- in the regulation of intracellular pH, its physiological role in myocytes is not fully understood. Mouse skeletal muscles lacking CAIII showed lower intracellular pH during fatigue, suggesting its function in stress tolerance. We created transgenic mice expressing CAIII in cardiomyocytes that lack endogenous CAIII. The transgenic mice showed normal cardiac development and life span under nonstress conditions. Studies of ex vivo working hearts under normal and acidotic conditions demonstrated that the transgenic and wild-type mouse hearts had similar pumping functions under normal pH. At acidotic pH, however, CAIII transgenic mouse hearts showed significantly less decrease in cardiac function than that of wild-type control as shown by higher ventricular pressure development, systolic and diastolic velocities, and stroke volume via elongating the time of diastolic ejection. In addition to the effect of introducing CAIII into cardiomyocytes on maintaining homeostasis to counter acidotic stress, the results demonstrate the role of carbonic anhydrases in maintaining intracellular pH in muscle cells as a potential mechanism to treat heart failure.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
8
|
Oki K, Wei B, Feng HZ, Jin JP. The loss of slow skeletal muscle isoform of troponin T in spindle intrafusal fibres explains the pathophysiology of Amish nemaline myopathy. J Physiol 2019; 597:3999-4012. [PMID: 31148174 PMCID: PMC6675633 DOI: 10.1113/jp278119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS The pathogenic mechanism and the neuromuscular reflex-related phenotype (e.g. tremors accompanied by clonus) of Amish nemaline myopathy, as well as of other recessively inherited TNNT1 myopathies, remain to be clarified. The truncated slow skeletal muscle isoform of troponin T (ssTnT) encoded by the mutant TNNT1 gene is unable to incorporate into myofilaments and is degraded in muscle cells. By contrast to extrafusal muscle fibres, spindle intrafusal fibres of normal mice contain a significant level of cardiac TnT and a low molecular weight splice form of ssTnT. Intrafusal fibres of ssTnT-knockout mice have significantly increased cardiac TnT. Rotarod and balance beam tests have revealed abnormal neuromuscular co-ordination in ssTnT-knockout mice and a blunted response to a spindle sensitizer, succinylcholine. The loss of ssTnT and a compensatory increase of cardiac TnT in intrafusal nuclear bag fibres may increase myofilament Ca2+ -sensitivity and tension, impairing spindle function, thus identifying a novel mechanism for the development of targeted treatment. ABSTRACT A nonsense mutation at codon Glu180 of TNNT1 gene causes Amish nemaline myopathy (ANM), a recessively inherited disease with infantile lethality. TNNT1 encodes the slow skeletal muscle isoform of troponin T (ssTnT). The truncated ssTnT is unable to incorporate into myofilament and is degraded in muscle cells. The symptoms of ANM include muscle weakness, atrophy, contracture and tremors accompanied by clonus. An ssTnT-knockout (KO) mouse model recapitulates key features of ANM such as atrophy of extrafusal slow muscle fibres and increased fatigability. However, the neuromuscular reflex-related symptoms of ANM have not been explained. By isolating muscle spindles from ssTnT-KO and control mice aiming to examine the composition of myofilament proteins, we found that, in contrast to extrafusal fibres, intrafusal fibres contain a significant level of cardiac TnT and the low molecular weight splice form of ssTnT. Intrafusal fibres from ssTnT-KO mice have significantly increased cardiac TnT. Rotarod and balance beam tests revealed impaired neuromuscular co-ordination in ssTnT-KO mice, indicating abnormality in spindle functions. Unlike the wild-type control, the beam running ability of ssTnT-KO mice had a blunted response to a spindle sensitizer, succinylcholine. Immunohistochemistry detected ssTnT and cardiac TnT in nuclear bag fibres, whereas fast skeletal muscle TnT was detected in nuclear chain fibres, and cardiac α-myosin was present in one of the two nuclear bag fibres. The loss of ssTnT and a compensatory increase of cardiac TnT in nuclear bag fibres would increase myofilament Ca2+ -sensitivity and tension, thus affecting spindle activities. This mechanism provides an explanation for the pathophysiology of ANM, as well as a novel target for treatment.
Collapse
Affiliation(s)
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice. PLoS One 2017; 12:e0176502. [PMID: 28437447 PMCID: PMC5402959 DOI: 10.1371/journal.pone.0176502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.
Collapse
Affiliation(s)
- Sarah W. Renner
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Lauren M. Walker
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jay E. Brenman
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|