1
|
Han Y, Tu W, Zhang Y, Huang J, Meng X, Wu Q, Li S, Liu B, Michal JJ, Jiang Z, Tan Y, Zhou X, Wang H. Comprehensive analysis of single-nucleotide variants and alternative polyadenylation between inbred and outbred pigs. Int J Biol Macromol 2024; 278:134416. [PMID: 39098700 DOI: 10.1016/j.ijbiomac.2024.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Inbreeding can lead to the accumulation of homozygous single nucleotide polymorphisms (SNPs) in the genome, which can significantly affect gene expression and phenotype. In this study, we examined the impact of homozygous SNPs resulting from inbreeding on alternative polyadenylation (APA) site selection and the underlying genetic mechanisms using inbred Luchuan pigs. Genome resequencing revealed that inbreeding results in a high accumulation of homozygous SNPs within the pig genome. 3' mRNA-seq on leg muscle, submandibular lymph node, and liver tissues was performed to identify differences in APA events between inbred and outbred Luchuan pigs. We revealed different tissue-specific APA usage caused by inbreeding, which were associated with different biological processes. Furthermore, we explored the role of polyadenylation signal (PAS) SNPs in APA regulation under inbreeding and identified key genes such as PUM1, SCARF1, RIPOR2, C1D, and LRRK2 that are involved in biological processes regulation. This study provides resources and sheds light on the impact of genomic homozygosity on APA regulation, offering insights into genetic characteristics and biological processes associated with inbreeding.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilong Tu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yingying Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ji Huang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Songyu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jennifer J Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Yongsong Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Hongyang Wang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
2
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
3
|
Anastasiou K, Morris M, Akam L, Mastana S. The Genetic Profile of Combat Sport Athletes: A Systematic Review of Physiological, Psychological and Injury Risk Determinants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1019. [PMID: 39200631 PMCID: PMC11353526 DOI: 10.3390/ijerph21081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
This systematic review aims to assess the genetic determinants influencing combat sports performance and address potential gaps in previous reviews. Twenty-four selected studies were analysed, investigating genetic influences on physiological performance, psychological traits, psychophysiological factors like pain perception, and injury susceptibility in combat sport athletes. The systematic literature search, using keywords, encompassed PubMed, Scopus, SportDiscus, Medline, and Google Scholar. The Covidence systematic review management software facilitated the screening process and the creation of the PRISMA flow diagram. The quality assessment complied with the PRISMA guidelines, featuring a custom 10-point scale and the STREGA criteria for more reliable study inclusion. Collectively, the 24 studies incorporated 18,989 participants, of which 3323 were combat athletes of majority European ancestry (71.7%) from various combat sports disciplines. Twenty-five unique genetic variants were significantly associated with combat sports performance across diverse domains. These included physiological performance (nine genetic variants), psychological traits (ten genetic variants), psychophysiological factors (one genetic variant), and injury susceptibility (four genetic variants). In conclusion, this systematic review lays the foundation for a more comprehensive exploration of the association between genetics and athletic performance in the demanding arena of combat sports, offering valuable insights for talent identification, training optimisation, and injury prevention.
Collapse
Affiliation(s)
| | | | | | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (K.A.); (M.M.); (L.A.)
| |
Collapse
|
4
|
Senevirathne G, Shubin NH. Molecular basis of urostyle development in frogs: genes and gene regulation underlying an evolutionary novelty. Open Biol 2024; 14:240111. [PMID: 39191278 DOI: 10.1098/rsob.240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle. This feature is composed of a coccyx and a hypochord, both of which ossify during metamorphosis. To elucidate the genetic basis of these features, we used laser capture microdissection of these tissues and did RNA-seq and ATAC-seq at three developmental stages in tadpoles of Xenopus tropicalis. RNA-seq reveals that the coccyx and hypochord have two different molecular signatures. Neuronal (TUBB3) and muscle markers (MYH3) are upregulated in coccygeal tissues, whereas T-box genes (TBXT, TBXT.2), corticosteroid stress hormones (CRCH.1) and matrix metallopeptidases (MMP1, MMP8 and MMP13) are upregulated in the hypochord. ATAC-seq reveals potential regulatory regions that are observed in proximity to candidate genes that regulate ossification identified from RNA-seq. Even though an ossifying hypochord is only present in anurans, this ossification between the vertebral column and the notochord resembles a congenital vertebral anomaly seen prenatally in humans caused by an ectopic expression of the TBXT/TBXT.2 gene. This work opens the way to functional studies that can elucidate anuran bauplan evolution.
Collapse
Affiliation(s)
- Gayani Senevirathne
- Human Evolutionary Biology, Harvard University , Cambridge, MA 02138, USA
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| | - Neil H Shubin
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| |
Collapse
|
5
|
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024; 16:2511. [PMID: 39125391 PMCID: PMC11313812 DOI: 10.3390/nu16152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
6
|
Liu T. The roles of ACE I/D and ACTN3 R577X gene variants in heat acclimation. Heliyon 2024; 10:e33172. [PMID: 38984309 PMCID: PMC11231590 DOI: 10.1016/j.heliyon.2024.e33172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.
Collapse
Affiliation(s)
- Tao Liu
- Special Operations Experiment Center, Chinese People's Liberation Army Special Warfare School, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Day NJ, Kelly SS, Lui L, Mansfield TA, Gaffrey MJ, Trejo JB, Sagendorf TJ, Attah IK, Moore RJ, Douglas CM, Newman AB, Kritchevsky SB, Kramer PA, Marcinek DJ, Coen PM, Goodpaster BH, Hepple RT, Cawthon PM, Petyuk VA, Esser KA, Qian W, Cummings SR. Signatures of cysteine oxidation on muscle structural and contractile proteins are associated with physical performance and muscle function in older adults: Study of Muscle, Mobility and Aging (SOMMA). Aging Cell 2024; 23:e14094. [PMID: 38332629 PMCID: PMC11166363 DOI: 10.1111/acel.14094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (R = 0.48) between a higher oxidation level of eight Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impairs muscle power and strength, walking speed, and cardiopulmonary fitness with aging.
Collapse
Affiliation(s)
- Nicholas J. Day
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Shane S. Kelly
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Li‐Yung Lui
- San Francisco Coordinating CenterCalifornia Pacific Medical Center Research InstituteSan FranciscoCaliforniaUSA
| | - Tyler A. Mansfield
- San Francisco Coordinating CenterCalifornia Pacific Medical Center Research InstituteSan FranciscoCaliforniaUSA
| | - Matthew J. Gaffrey
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Jesse B. Trejo
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Tyler J. Sagendorf
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Isaac K. Attah
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Ronald J. Moore
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Collin M. Douglas
- Department of Physiology and AgingUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Anne B. Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Philip A. Kramer
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Paul M. Coen
- Translational Research InstituteAdventHealthOrlandoFloridaUSA
| | | | - Russell T. Hepple
- Department of Physical TherapyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Peggy M. Cawthon
- San Francisco Coordinating CenterCalifornia Pacific Medical Center Research InstituteSan FranciscoCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Vladislav A. Petyuk
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Karyn A. Esser
- Department of Physiology and AgingUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Wei‐Jun Qian
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Steven R. Cummings
- San Francisco Coordinating CenterCalifornia Pacific Medical Center Research InstituteSan FranciscoCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset M, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes B, Toien O, Drew K, Sprenger RJ, Ochala J. Remodeling of skeletal muscle myosin metabolic states in hibernating mammals. eLife 2024; 13:RP94616. [PMID: 38752835 PMCID: PMC11098559 DOI: 10.7554/elife.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
Affiliation(s)
| | | | - Marija M Ognjanovic
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Mathilde S Olsen
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jenni Laitila
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Robert AE Seaborne
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King’s College LondonLondonUnited Kingdom
| | - Magnus Gronset
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
| | - Changxin Zhang
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Hiroyuki Iwamoto
- Spring-8, Japan Synchrotron Radiation Research InstituteHyogoJapan
| | - Anthony L Hessel
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | - Michel N Kuehn
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | | | | | - Ole Frobert
- Department of Clinical Medicine, Faculty of Health, Aarhus UniversityAarhusDenmark
- Faculty of Health, Department of Cardiology, Örebro UniversityÖrebroSweden
| | - Sylvain Giroud
- Energetics Lab, Department of Biology, Northern Michigan UniversityMarquetteUnited States
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine ViennaViennaAustria
| | - James F Staples
- Department of Biology, University of Western OntarioLondonCanada
| | - Anna V Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Vadim B Fedorov
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Brian Barnes
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Oivind Toien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Ryan J Sprenger
- Department of Zoology, University of British ColumbiaVancouverCanada
| | - Julien Ochala
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
El Ouali EM, Barthelemy B, Del Coso J, Hackney AC, Laher I, Govindasamy K, Mesfioui A, Granacher U, Zouhal H. A Systematic Review and Meta-analysis of the Association Between ACTN3 R577X Genotypes and Performance in Endurance Versus Power Athletes and Non-athletes. SPORTS MEDICINE - OPEN 2024; 10:37. [PMID: 38609671 PMCID: PMC11014841 DOI: 10.1186/s40798-024-00711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Previous studies reported differences in genotype frequency of the ACTN3 R577X polymorphisms (rs1815739; RR, RX and XX) in athletes and non-athletic populations. This systematic review with meta-analysis assessed ACTN3 R577X genotype frequencies in power versus endurance athletes and non-athletes. METHODS Five electronic databases (PubMed, Web of Science, Scopus, Science Direct, SPORTDiscus) were searched for research articles published until December 31st, 2022. Studies were included if they reported the frequency of the ACTN3 R577X genotypes in power athletes (e.g., weightlifters) and if they included a comparison with endurance athletes (e.g., long-distance runners) or non-athletic controls. A meta-analysis was then performed using either fixed or random-effects models. Pooled odds ratios (OR) were determined. Heterogeneity was detected using I2 and Cochran's Q tests. Publication bias and sensitivity analysis tests were computed. RESULTS After screening 476 initial registrations, 25 studies were included in the final analysis (13 different countries; 14,541 participants). In power athletes, the RX genotype was predominant over the two other genotypes: RR versus RX (OR 0.70; 95% CI 0.57-0.85, p = 0.0005), RR versus XX (OR 4.26; 95% CI 3.19-5.69, p < 0.00001), RX versus XX (OR 6.58; 95% CI 5.66-7.67, p < 0.00001). The R allele was higher than the X allele (OR 2.87; 95% CI 2.35-3.50, p < 0.00001) in power athletes. Additionally, the frequency of the RR genotype was higher in power athletes than in non-athletes (OR 1.48; 95% CI 1.25-1.75, p < 0.00001). The RX genotype was similar in both groups (OR 0.84; 95% CI 0.71-1.00, p = 0.06). The XX genotype was lower in power athletes than in controls (OR 0.73; 95% CI 0.64-0.84, p < 0.00001). Furthermore, the R allele frequency was higher in power athletes than in controls (OR 1.28; 95% CI 1.19-1.38, p < 0.00001). Conversely, a higher frequency of X allele was observed in the control group compared to power athletes (OR 0.78; 95% CI 0.73-0.84, p < 0.00001). On the other hand, the frequency of the RR genotype was higher in power athletes than in endurance athletes (OR 1.27; 95% CI 1.09-1.49, p = 0.003). The frequency of the RX genotype was similar in both groups (OR 1.07; 95% CI 0.93-1.24, p = 0.36). In contrast, the frequency of the XX genotype was lower in power athletes than in endurance athletes (OR 0.63; 95% CI 0.52-0.76, p < 0.00001). In addition, the R allele was higher in power athletes than in endurance athletes (OR 1.32; 95% CI 1.11-1.57, p = 0.002). However, the X allele was higher in endurance athletes compared to power athletes (OR 0.76; 95% CI 0.64-0.90, p = 0.002). Finally, the genotypic and allelic frequency of ACTN3 genes were similar in male and female power athletes. CONCLUSIONS The pattern of the frequencies of the ACTN3 R577X genotypes in power athletes was RX > RR > XX. However, the RR genotype and R allele were overrepresented in power athletes compared to non-athletes and endurance athletes. These data suggest that the RR genotype and R allele, which is associated with a normal expression of α-actinin-3 in fast-twitch muscle fibers, may offer some benefit in improving performance development in muscle strength and power.
Collapse
Affiliation(s)
- El Mokhtar El Ouali
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Benjamin Barthelemy
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | | | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education and Sports Sciences, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France.
- Institut International des Sciences du Sport (2IS), 35850, Irodouer, France.
| |
Collapse
|
10
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset MN, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes BM, Toien O, Drew KL, Sprenger RJ, Ochala J. Remodelling of Skeletal Muscle Myosin Metabolic States in Hibernating Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.566992. [PMID: 38014200 PMCID: PMC10680686 DOI: 10.1101/2023.11.14.566992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
|
11
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Day NJ, Kelly SS, Lui LY, Mansfield TA, Gaffrey MJ, Trejo JB, Sagendorf TJ, Attah K, Moore RJ, Douglas CM, Newman AB, Kritchevsky SB, Kramer PA, Marcinek DJ, Coen PM, Goodpaster BH, Hepple RT, Cawthon PM, Petyuk VA, Esser KA, Qian WJ, Cummings SR. Signatures of Cysteine Oxidation on Muscle Structural and Contractile Proteins Are Associated with Physical Performance and Muscle Function in Older Adults: Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298224. [PMID: 37986748 PMCID: PMC10659491 DOI: 10.1101/2023.11.07.23298224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (r = 0.48) between a higher oxidation level of 8 Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impair muscle power and strength, walking speed, and cardiopulmonary fitness with aging.
Collapse
Affiliation(s)
- Nicholas J. Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shane S. Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Tyler A. Mansfield
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jesse B. Trejo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J. Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Collin M. Douglas
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | | | - Russell T. Hepple
- Department of Physical Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Karyn A. Esser
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| |
Collapse
|
13
|
Bulgay C, Cepicka L, Dalip M, Yıldırım S, Ceylan Hİ, Yılmaz ÖÖ, Ulucan K, Badicu G, Cerit M. The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players. BMC Sports Sci Med Rehabil 2023; 15:121. [PMID: 37749582 PMCID: PMC10518950 DOI: 10.1186/s13102-023-00733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingöl, 12000 Türkiye
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, Pilsen, 30100 Czech Republic
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200 Republic of North Macedonia
| | - Selin Yıldırım
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| | - Halil İ. Ceylan
- Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240 Türkiye
| | - Özlem Ö. Yılmaz
- Institute of Health Sciences Marmara University, İstanbul, 34722 Türkiye
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Marmara University, İstanbul, 34722 Türkiye
| | - Georgian Badicu
- Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Brasov, 500068 Romania
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| |
Collapse
|
14
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Demirci B, Bulgay C, Ceylan Hİ, Öztürk ME, Öztürk D, Kazan HH, Ergun MA, Cerit M, Semenova EA, Larin AK, Generozov EV, Ahmetov II, Cepicka L. Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses. Genes (Basel) 2023; 14:1190. [PMID: 37372374 DOI: 10.3390/genes14061190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The α-actinin-3 (ACTN3) gene rs1815739 (C/T, R577X) polymorphism is a variant frequently associated with athletic performance among different populations. However, there is limited research on the impact of this variant on athlete status and physical performance in basketball players. Therefore, the aim of this study was twofold: (1) to determine the association of ACTN3 rs1815739 polymorphism with changes in physical performance in response to six weeks of training in elite basketball players using 30 m sprint and Yo-Yo Intermittent Recovery Test Level 2 (IR 2) tests, and (2) to compare ACTN3 genotype and allelic frequencies between elite basketball players and controls. The study included a total of 363 individuals, comprising 101 elite basketball players and 262 sedentary individuals. Genomic DNA was isolated from oral epithelial cells or leukocytes, and genotyping was performed by real-time PCR using KASP genotyping method or by microarray analysis. We found that the frequency of the ACTN3 rs1815739 XX genotype was significantly lower in basketball players compared to controls (10.9 vs. 21.4%, p = 0.023), suggesting that RR/RX genotypes were more favorable for playing basketball. Statistically significant (p = 0.045) changes were observed in Yo-Yo IRT 2 performance measurement tests in basketball players with the RR genotype only. In conclusion, our findings suggest that the carriage of the ACTN3 rs1815739 R allele may confer an advantage in basketball.
Collapse
Affiliation(s)
- Berkay Demirci
- Sports Science Faculty, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Celal Bulgay
- Sports Science Faculty, Bingol University, 12000 Bingol, Türkiye
| | - Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Türkiye
| | - Mehmet Ertuğrul Öztürk
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Türkiye
| | - Deniz Öztürk
- Vocational School of Health Services, Ataturk University, 25240 Erzurum, Türkiye
| | - Hasan Huseyin Kazan
- Department of Medical Genetics, Near East University, Nicosia 99138, Cyprus
- DESAM Institute, Near East University, Nicosia 99138, Cyprus
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, 06560 Ankara, Türkiye
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| |
Collapse
|
16
|
Zouhal H, Coso JD, Jayavel A, Tourny C, Ravé G, Jebabli N, Clark CCT, Barthélémy B, Hackney AC, Abderrahman AB. Association between ACTN3 R577X genotype and risk of non-contact injury in trained athletes: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:359-368. [PMID: 34284153 PMCID: PMC10199131 DOI: 10.1016/j.jshs.2021.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
PURPOSE The aim of this study was to review, systematically, evidence concerning the link between the ACTN3 R577X polymorphism and the rates and severity of non-contact injuries and exercise-induced muscle damage in athletes and individuals enrolled in exercise training programs. METHODS A computerized literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus, from inception until November 2020. All included studies compared the epidemiological characteristics of non-contact injury between the different genotypes of the ACTN3 R577X polymorphism. RESULTS Our search identified 492 records. After the screening of titles, abstracts, and full texts, 13 studies examining the association between the ACTN3 genotypes and the rate and severity of non-contact injury were included in the analysis. These studies were performed in 6 different countries (Spain, Japan, Brazil, China, the Republic of Korea, and Italy) and involved a total participant pool of 1093 participants. Of the studies, 2 studies involved only women, 5 studies involved only men, and 6 studies involved both men and women. All the studies included were classified as high-quality studies (≥6 points in the Physiotherapy Evidence Database (PEDro) scale score). Overall, evidence suggests there is an association between the ACTN3 R577X genotype and non-contact injury in 12 investigations. Six studies observed a significant association between ACTN3 R577X polymorphism and exercise induced muscle damage: 2 with non-contact ankle injury, 3 with non-contact muscle injury, and 1 with overall non-contact injury. CONCLUSION The present findings support the premise that possessing the ACTN3 XX genotype may predispose athletes to a higher probability of some non-contact injuries, such as muscle injury, ankle sprains, and higher levels of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Department of Sport Sciences, University of Rennes, Rennes F-35000, France.
| | - Juan Del Coso
- Rey Juan Carlos University, Centre for Sport Studies, Madrid 28032, Spain
| | - Ayyappan Jayavel
- SRM College of Physiotherapy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India
| | - Claire Tourny
- Department of Sport Sciences, University of Rouen, Mont Saint Aignan, CETAPS EA 3832, F-76821, France
| | | | - Nidhal Jebabli
- Higher Institute of Sport and Physical Education, Ksar-Said, University of Manouba, Tunis 2010, Tunisia
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK
| | | | - Anthony C Hackney
- Department of Exercise & Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27514, USA
| | | |
Collapse
|
17
|
Peña-Vázquez O, Enriquez-del Castillo LA, González-Chávez SA, Güereca-Arvizuo J, Candia Lujan R, Carrasco Legleu CE, Cervantes Hernández N, Pacheco-Tena C. Prevalence of Polymorphism and Post-Training Expression of ACTN3 (R/X) and ACE (I/D) Genes in CrossFit Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4404. [PMID: 36901413 PMCID: PMC10001917 DOI: 10.3390/ijerph20054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND CrossFit is known as a functional fitness training high-intensity exercise to improve physical performance. The most studied polymorphisms are the ACTN3 R577X gene, known for speed, power, and strength, and ACE I/D, related to endurance and strength. The present investigation analyzed the effects of training on ACTN3 and ACE gene expression in CrossFit athletes for 12 weeks. METHODS the studies included 18 athletes from the Rx category, where ACTN3 (RR, RX, XX) and ACE (II, ID, DD) characterization of genotypes and tests of maximum strength (NSCA), power (T-Force), and aerobic endurance (Course Navette) were performed. The technique used was the reverse transcription-quantitative PCR real-time polymerase chain reaction (RT-qPCR) for the relative expression analysis. RESULTS the relative quantification (RQ) values for the ACTN3 gene increased their levels 2.3 times (p = 0.035), and for ACE, they increased 3.0 times (p = 0.049). CONCLUSIONS there is an overexpression of the ACTN3 and ACE genes due to the effect of training for 12 weeks. Additionally, the correlation of the expression of the ACTN3 (p = 0.040) and ACE (p = 0.030) genes with power was verified.
Collapse
Affiliation(s)
- Omar Peña-Vázquez
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | | | - Susana Aideé González-Chávez
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31109, Mexico
| | - Jaime Güereca-Arvizuo
- Department of Health Sciences, Multidisciplinary Division of Ciudad Universitaria, Autonomous University of Cd. Juárez, Ciudad Juárez 32310, Mexico
| | - Ramon Candia Lujan
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Claudia Esther Carrasco Legleu
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Natanael Cervantes Hernández
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - César Pacheco-Tena
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Campus II, Circuito Universitario S/N, Chihuahua 31109, Mexico
| |
Collapse
|
18
|
Spanbauer C, Pan W. Sparse prediction informed by genetic annotations using the logit normal prior for Bayesian regression tree ensembles. Genet Epidemiol 2023; 47:26-44. [PMID: 36349692 PMCID: PMC9892284 DOI: 10.1002/gepi.22505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Using high-dimensional genetic variants such as single nucleotide polymorphisms (SNP) to predict complex diseases and traits has important applications in basic research and other clinical settings. For example, predicting gene expression is a necessary first step to identify (putative) causal genes in transcriptome-wide association studies. Due to weak signals, high-dimensionality, and linkage disequilibrium (correlation) among SNPs, building such a prediction model is challenging. However, functional annotations at the SNP level (e.g., as epigenomic data across multiple cell- or tissue-types) are available and could be used to inform predictor importance and aid in outcome prediction. Existing approaches to incorporate annotations have been based mainly on (generalized) linear models. Bayesian additive regression trees (BART), in contrast, is a reliable method to obtain high-quality nonlinear out of sample predictions without overfitting. Unfortunately, the default prior from BART may be too inflexible to handle sparse situations where the number of predictors approaches or surpasses the number of observations. Motivated by our real data application, this article proposes an alternative prior based on the logit normal distribution because it provides a framework that is adaptive to sparsity and can model informative functional annotations. It also provides a framework to incorporate prior information about the between SNP correlations. Computational details for carrying out inference are presented along with the results from a simulation study and a genome-wide prediction analysis of the Alzheimer's Disease Neuroimaging Initiative data.
Collapse
Affiliation(s)
- Charles Spanbauer
- Division of Biostatistics, University of Minnesota, MN, USA,Corresponding author;
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, MN, USA
| | - The Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| |
Collapse
|
19
|
Genotype Distribution of the ACTN3 p.R577X Polymorphism in Elite Badminton Players: A Preliminary Study. Genes (Basel) 2022; 14:genes14010050. [PMID: 36672791 PMCID: PMC9858904 DOI: 10.3390/genes14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
α-Actinin-3 is a protein with a structural role at the sarcomeric Z-line in skeletal muscle. As it is only present in fast-type muscle fibers, α-actinin-3 is considered a key mechanical component to produce high-intensity muscle contractions and to withstand external tension applied to the skeletal muscle. α-Actinin-3 is encoded by the gene ACTN3, which has a single-nucleotide polymorphism (p.R577X; rs1815739) that affects the expression of α-actinin-3 due to the presence of a stop codon. Individuals homozygous for the 577R allele (i.e., RR genotype) and RX heterozygotes express functional α-actinin-3, while those homozygous for the 577X (i.e., XX genotype) express a non-functional protein. There is ample evidence to support the associations between the ACTN3 genotype and athletic performance, with higher frequencies of the 577R allele in elite and professional sprint and power athletes than in control populations. This suggests a beneficial influence of possessing functional α-actinin-3 to become an elite athlete in power-based disciplines. However, no previous investigation has determined the frequency of the ACTN3 genotypes in elite badminton players, despite this sport being characterized by high-intensity actions of intermittent nature such as changes of direction, accelerations, jumps and smashes. The purpose of this study was to analyze ACTN3 R577X genotype frequencies in professional badminton players to establish whether this polymorphism is associated with elite athlete status. A total of 53 European Caucasian professional badminton players competing in the 2018 European Badminton Championships volunteered to participate in the study. Thirty-one were men (26.2 ± 4.4 years) and twenty-two were women (23.4 ± 4.5 years). Chi-squared tests were used to analyze the differences in the distribution of ACTN3 genotypes (RR, RX and XX) between categories and sexes. The ACTN3 RR genotype was the most frequent in the sample of professional badminton players (RR = 49.1%, RX = 22.6% and XX = 28.3%). None of the badminton players ranked in the world's top ten possessed the XX genotype (RX = 60%, RR = 40%). The distribution of the ACTN3 genotypes was similar between male and female professional badminton players (men: RR = 45.2%, RX = 25.8% and XX = 29.0%; women: RR = 54.5%, RX = 18.2% and XX = 27.3%; χ2 = 0.58; p = 0.750). The distribution of the ACTN3 genotypes in badminton players was different from the 1000 genome database for the European population (χ2 = 15.5; p < 0.001), with an overrepresentation of the RR genotype (p < 0.05) and an underrepresentation of the RX genotype (p < 0.01). In conclusion, the expression of functional α-actinin-3, associated with RR and RX genotypes in the ACTN3 gene may confer an advantage for reaching the status of elite athlete in badminton, and especially the world's top-ten ranking. Large-scale studies with different ethnic backgrounds are needed to confirm the association of the R allele of ACTN3 with badminton performance.
Collapse
|
20
|
Influence of Alpha-Actinin-3 R577X Polymorphism on Muscle Damage and the Inflammatory Response after an Acute Strength Training Session. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5447100. [PMID: 36567902 PMCID: PMC9788900 DOI: 10.1155/2022/5447100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
The objective of this study was to verify the influence of the ACTN3 R577X polymorphism on muscle damage and the inflammatory response after an acute strength training (ST) session. Twenty-seven healthy male individuals (age: 25 ± 4.3 years) participated in the study, including 18 RR/RX and 9 XX individuals. The participants were divided into two groups (RR/RX and XX groups) and subjected to an acute ST session, which consisted of a series of leg press, leg extension machine, and seated leg curl machine. The volunteers were instructed to perform the greatest volume of work until concentric muscle failure. Each volunteer's performance was analyzed as the load and total volume of training, and the blood concentrations of C-C motif chemokine ligand 2 (CCL2), interleukin-8 (IL-8), creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin, testosterone, and cortisol were measured before the ST session and 30 min and 24 h postsession. The ACTN3 R577X polymorphism effect was observed, with increased concentrations of CCL2 (p < 0.01), IL-8 (p < 0.01), and LDH (p < 0.001) in XX individuals. There was an increase in the concentration of CK in the RR/RX group compared to XX at 24 h after training (p > 0.01). The testosterone/cortisol ratio increased more markedly in the XX group (p < 0.001). Regarding performance, the RR/RX group presented higher load and total volume values in the training exercises when compared to the XX group (p < 0.05). However, the XX group presented higher values of delayed onset muscle soreness (DOMS) than the RR/RX group (p < 0.05). The influence of ACTN3 R577X polymorphism on muscle damage and the inflammatory response was observed after an acute ST session, indicating that the RR/RX genotype shows more muscle damage and a catabolic profile due to a better performance in this activity, while the XX genotype shows more DOMS.
Collapse
|
21
|
Bays HE, Gonsahn-Bollie S, Younglove C, Wharton S. Obesity Pillars Roundtable: Body mass index and body composition in Black and Female individuals. Race-relevant or racist? Sex-relevant or sexist? OBESITY PILLARS 2022; 4:100044. [PMID: 37990673 PMCID: PMC10662008 DOI: 10.1016/j.obpill.2022.100044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2023]
Abstract
Background Body mass index (BMI or weight in kilograms/height in meters2) is the most common metric to diagnose overweight and obesity. However, a body composition analysis more thoroughly assesses adiposity, percent body fat, lean body mass (i.e., including skeletal muscle), and sometimes bone mineral density. BMI is not an accurate assessment of body fat in individuals with increased or decreased muscle mass; the diagnostic utility of BMI in individuals is also influenced by race and sex. Methods Previous Obesity Pillars Roundtables addressed the diagnostic limitations of BMI, the importance of android and visceral fat (especially among those with South and East Asian ancestry), and considerations of obesity among individuals who identify as Hispanic, diverse in sexual-orientation, Black, Native American, and having ancestry from the Mediterranean and Middle East regions. This roundtable examines considerations of BMI in Black and female individuals. Results The panelists agreed that body composition assessment was a more accurate measure of adiposity and muscle mass than BMI. When it came to matters of race and sex, one panelist felt: "race is a social construct and not a defining biology." Another felt that: "BMI should be a screening tool to prompt further evaluation of adiposity that utilizes better diagnostic tools for body composition." Regarding bias and misperceptions of resistance training in female individuals, another panelist stated: "I have spent my entire medical career taking care of women and have never seen a woman unintentionally gain 'too much' muscle mass and bulk up from moderate strength training." Conclusions Conveying the importance of race and sex regarding body composition has proven challenging, with the discussion sometimes devolving into misunderstandings or misinformation that may be perceived as racist or sexist. Body composition analysis is the ultimate diagnostic equalizer in addressing the inaccuracies and biases inherent in the exclusive use of BMI.
Collapse
Affiliation(s)
- Harold Edward Bays
- American Board of Obesity Medicine, Medical Director / President Louisville Metabolic and Atherosclerosis Research Center Clinical Associate Professor / University of Louisville Medical School, 3288 Illinois Avenue Louisville KY, 40213, USA
| | - Sylvia Gonsahn-Bollie
- American Board of Obesity Medicine, Embrace You Weight & Wellness Founder, Black Physicians Healthcare Network, Council of Black Obesity Physicians Founding Member, 8705 Colesville Rd Suite 103, Silver Spring, MD, 20910, USA
| | - Courtney Younglove
- American Board of Obesity Medicine, Founder/Medical Director: Heartland Weight Loss, 14205 Metcalf Avenue Overland Park, KS, 66223, USA
| | - Sean Wharton
- McMaster University, York University, University of Toronto Wharton Medical Clinic 2951 Walker’s Line, Burlington,Ontario, Canada
| |
Collapse
|
22
|
Maestro A, Del Coso J, Aguilar-Navarro M, Gutiérrez-Hellín J, Morencos E, Revuelta G, Ruiz Casares E, Perucho T, Varillas-Delgado D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front Genet 2022; 13:1035899. [DOI: 10.3389/fgene.2022.1035899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Many causes define injuries in professional soccer players. In recent years, the study of genetics in association with injuries has been of great interest. The purpose of this study was to examine the relationship between muscle injury-related genes, injury risk and injury etiology in professional soccer players. In a cross-sectional cohort study, one hundred and twenty-two male professional football players were recruited. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK (rs2849757 and rs2700352) polymorphisms were genotyped by using Single Nucleotide Primer Extension (SNPE). The combined influence of the six polymorphisms studied was calculated using a total genotype score (TGS). A genotype score (GS) of 2 was assigned to the “protective” genotype for injuries, a GS of 1 was assigned to the heterozygous genotype while a GS of 0 was assigned to the “worst” genotype. Injury characteristics and etiology during the 2021/2022 season were classified following a Consensus Statement for injuries recording. The distribution of allelic frequencies in the AMPD1 and MLCK c.37885C>A polymorphisms were different between non-injured and injured soccer players (p < 0.001 and p = 0.003, respectively). The mean total genotype score (TGS) in non-injured soccer players (57.18 ± 14.43 arbitrary units [a.u.]) was different from that of injured soccer players (51.71 ± 12.82 a.u., p = 0.034). There was a TGS cut-off point (45.83 a.u.) to discriminate non-injured from injured soccer players. Players with a TGS beyond this cut-off had an odds ratio of 1.91 (95%CI: 1.14–2.91; p = 0.022) to suffer an injury when compared with players with lower TGS. In conclusion, TGS analysis in muscle injury-related genes presented a relationship with professional soccer players at increased risk of injury. Future studies will help to develop this TGS as a potential tool to predict injury risk and perform prevention methodology in this cohort of football players.
Collapse
|
23
|
de Almeida KY, Cetolin T, Marrero AR, Aguiar Junior AS, Mohr P, Kikuchi N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes (Basel) 2022; 13:2009. [PMID: 36360246 PMCID: PMC9690673 DOI: 10.3390/genes13112009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/28/2023] Open
Abstract
Muscle injuries are among the main reasons for medical leavings of soccer athletes, being a major concern within professional teams and their prevention associated with sport success. Several factors are associated with a greater predisposition to injury, and genetic background is increasingly being investigated. The aim of this study was to analyze whether ACTN3 R577X and ACE I/D polymorphisms are predictors of the incidence and severity of muscle injury in professional soccer athletes from Brazil, individually and in association. Eighty-three professional athletes from the first and second divisions of the Brazilian Championship were evaluated regarding the polymorphisms through blood samples. Nighty-nine muscle injuries were identified during the seasons of 2018, 2019 and 2020 and categorized according to severity. ACTN3 XX individuals had a higher frequency of severe injuries compared to the RX and RR genotypes (p = 0.001), and in the dominant model (compared to RX+RR), with p < 0.001. The trend p-value test showed an increased number of injuries/season following the order XX > RX > RR (p = 0.045). Those with the ACE II genotype had almost 2 fold the number of injuries per season compared to those with the ID+DD genotypes (p = 0.03). Logistic regression showed that the polymorphisms are predictors of the development of severe injury (ACTN3 R577X model with p = 0.004, R2: 0.259; ACE I/D model with p = 0.045, R2: 0.163), where ACTN3 XX individuals were more likely to suffer from severe injury (OR: 5.141, 95% CI: 1.472-17.961, p = 0.010). The combination of the ACTN3 577X allele and the ACE II genotype showed an increased number of injuries per season, enhanced by 100% (1.682 injuries/season versus 0.868 injuries/season, p = 0.016). Our findings suggest that both polymorphisms ACTN3 R577X and ACE I/D (and their interaction) are associated with the susceptibility and severity of non-contact muscle injury in soccer players.
Collapse
Affiliation(s)
- Kathleen Y. de Almeida
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Tiago Cetolin
- Graduate Program in Neurosciences, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | - Andrea Rita Marrero
- Graduate Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Pedro Mohr
- Sports Center, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| |
Collapse
|
24
|
Lin W, Hu S, Wu Z, Xu Z, Zhong Y, Lv Z, Qiu W, Xiao X. iCancer-Pred: A tool for identifying cancer and its type using DNA methylation. Genomics 2022; 114:110486. [PMID: 36126833 DOI: 10.1016/j.ygeno.2022.110486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
DNA methylation is an important epigenetics, which occurs in the early stages of tumor formation. And it also is of great significance to find the relationship between DNA methylation and cancer. This paper proposes a novel model, iCancer-Pred, to identify cancer and classify its types further. The datasets of DNA methylation information of 7 cancer types have been collected from The Cancer Genome Atlas (TCGA). The coefficient of variation firstly is used to reduce the number of features, and then the elastic network is applied to select important features. Finally, a fully connected neural network is constructed with these selected features. In predicting seven types of cancers, iCancer-Pred has achieved an overall accuracy of over 97% accuracy with 5-fold cross-validation. For the convenience of the application, a user-friendly web server: http://bioinfo.jcu.edu.cn/cancer or http://121.36.221.79/cancer/ is available. And the source codes are freely available for download at https://github.com/Huerhu/iCancer-Pred.
Collapse
Affiliation(s)
- Weizhong Lin
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China.
| | - Siqin Hu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhicheng Wu
- Wuhan Ammunition Life Science & Technology Co., Ltd., Wuhan 430000, China
| | - Zhaochun Xu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Yu Zhong
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhe Lv
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Wangren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Xuan Xiao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| |
Collapse
|
25
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hince D, Hart NH. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. SPORTS MEDICINE - OPEN 2022; 8:126. [PMID: 36219268 PMCID: PMC9554075 DOI: 10.1186/s40798-022-00522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Australian Football is a dynamic team sport that requires many athletic traits to succeed. Due to this combination of traits, as well as technical skill and physicality, there are many types of injuries that could occur. Injuries are not only a hindrance to the individual player, but to the team as a whole. Many strength and conditioning personnel strive to minimise injuries to players to accomplish team success. PURPOSE To investigate whether selected polymorphisms have an association with injury occurrence in elite male Australian Football players. METHODS Using DNA obtained from 46 elite male players, we investigated the associations of injury-related polymorphisms across multiple genes (ACTN3, CCL2, COL1A1, COL5A1, COL12A1, EMILIN1, IGF2, NOGGIN, SMAD6) with injury incidence, severity, type (contact and non-contact), and tissue (muscle, bone, tendon, ligament) over 7 years in one Australian Football League team. RESULTS A significant association was observed between the rs1372857 variant in NOGGIN (p = 0.023) and the number of total muscle injuries, with carriers of the GG genotype having a higher estimated number of injuries, and moderate, or combined moderate and high severity rated total muscle injuries. The COL5A1 rs12722TT genotype also had a significant association (p = 0.028) with the number of total muscle injuries. The COL5A1 variant also had a significant association with contact bone injuries (p = 0.030), with a significant association being found with moderate rated injuries. The IGF2 rs3213221-CC variant was significantly associated with a higher estimated number of contact tendon injuries per game (p = 0.028), while a higher estimated number of total ligament (p = 0.019) and non-contact ligament (p = 0.002) injuries per game were significantly associated with carriage of the COL1A1 rs1800012-TT genotype. CONCLUSIONS Our preliminary study is the first to examine associations between genetic variants and injury in Australian Football. NOGGIN rs1372857-GG, COL5A1 rs12722-TT, IGF2 rs3213221-CC, and COL1A1 rs1800012-TT genotypes held various associations with muscle-, bone-, tendon- and ligament-related injuries of differing severities. To further increase our understanding of these, and other, genetic variant associations with injury, competition-wide AFL studies that use more players and a larger array of gene candidates is essential.
Collapse
Affiliation(s)
- Ysabel Jacob
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Ryan S. Anderton
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.266886.40000 0004 0402 6494School of Health Science, University of Notre Dame Australia, Perth, WA Australia
| | - Jodie L. Cochrane Wilkie
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia
| | | | - Simon M. Laws
- grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1032.00000 0004 0375 4078School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth, WA Australia
| | - Tania Spiteri
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Dana Hince
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia
| | - Nicolas H. Hart
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia ,grid.1014.40000 0004 0367 2697Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA Australia ,grid.1024.70000000089150953Faculty of Health, School of Nursing, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
26
|
Hsu K, Tseng WC. What Decides Your Athletic Career?-Reflection from Our Study of GP.Mur-Associated Sports Talents during the COVID-19 Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12691. [PMID: 36231989 PMCID: PMC9566733 DOI: 10.3390/ijerph191912691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This opinion article discusses the factors that attract children and teens to athletic careers. The most important attribute for the making of athletes is polished sports talent, followed by psychological, environmental, and incentive factors. Our laboratory studies a red blood cell (RBC) type called GP.Mur, which is rare in most parts of the world besides Southeast Asia. Intriguingly, the prevalence of the GP.Mur blood type is relatively high among Taiwanese elite athletes. The highest frequency of the GP.Mur blood type worldwide is found among Taiwan's Ami people (88-95% from hospital blood bank surveys in the 1980s). Though the Ami constitute only 0.6-0.8% of the Taiwanese population, from records of national track-and-field games in the past century, 10-60% of the medalists were Ami. Biologically, GP.Mur expression supports blood CO2 metabolism, which may have implications for athleticism. As many of our study subjects are elite college athletes with the GP.Mur blood type, we contemplated their upbringings and career dilemmas, especially during the difficult COVID-19 pandemic. Beyond individual sports talent, the pandemic particularly tests personal characteristics and socioeconomic support for becoming an athlete.
Collapse
Affiliation(s)
- Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, Mackay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 25245, Taiwan
- Department of Exercise & Health Sciences, University of Taipei, Taipei 100234, Taiwan
| | - Wei-Chin Tseng
- Department of Physical Education, University of Taipei, Taipei 111036, Taiwan
| |
Collapse
|
27
|
Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS One 2022; 17:e0274880. [PMID: 36112609 PMCID: PMC9480996 DOI: 10.1371/journal.pone.0274880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
The genetic profile that is needed to identify talents has been studied extensively in recent years. The main objective of this investigation was to approach, for the first time, the study of genetic variants in several polygenic profiles and their role in elite endurance and professional football performance by comparing the allelic and genotypic frequencies to the non-athlete population. In this study, genotypic and allelic frequencies were determined in 452 subjects: 292 professional athletes (160 elite endurance athletes and 132 professional football players) and 160 non-athlete subjects. Genotyping of polymorphisms in liver metabolisers (CYP2D6, GSTM1, GSTP and GSTT), iron metabolism and energy efficiency (HFE, AMPD1 and PGC1a), cardiorespiratory fitness (ACE, NOS3, ADRA2A, ADRB2 and BDKRB2) and muscle injuries (ACE, ACTN3, AMPD1, CKM and MLCK) was performed by Polymerase Chain Reaction-Single Nucleotide Primer Extension (PCR-SNPE). The combination of the polymorphisms for the “optimal” polygenic profile was quantified using the genotype score (GS) and total genotype score (TGS). Statistical differences were found in the genetic distributions between professional athletes and the non-athlete population in liver metabolism, iron metabolism and energy efficiency, and muscle injuries (p<0.001). The binary logistic regression model showed a favourable OR (odds ratio) of being a professional athlete against a non-athlete in liver metabolism (OR: 1.96; 95% CI: 1.28–3.01; p = 0.002), iron metabolism and energy efficiency (OR: 2.21; 95% CI: 1.42–3.43; p < 0.001), and muscle injuries (OR: 2.70; 95% CI: 1.75–4.16; p < 0.001) in the polymorphisms studied. Genetic distribution in professional athletes as regards endurance (professional cyclists and elite runners) and professional football players shows genetic selection in these sports disciplines.
Collapse
|
28
|
Wang Z, Emmerich A, Pillon NJ, Moore T, Hemerich D, Cornelis MC, Mazzaferro E, Broos S, Ahluwalia TS, Bartz TM, Bentley AR, Bielak LF, Chong M, Chu AY, Berry D, Dorajoo R, Dueker ND, Kasbohm E, Feenstra B, Feitosa MF, Gieger C, Graff M, Hall LM, Haller T, Hartwig FP, Hillis DA, Huikari V, Heard-Costa N, Holzapfel C, Jackson AU, Johansson Å, Jørgensen AM, Kaakinen MA, Karlsson R, Kerr KF, Kim B, Koolhaas CM, Kutalik Z, Lagou V, Lind PA, Lorentzon M, Lyytikäinen LP, Mangino M, Metzendorf C, Monroe KR, Pacolet A, Pérusse L, Pool R, Richmond RC, Rivera NV, Robiou-du-Pont S, Schraut KE, Schulz CA, Stringham HM, Tanaka T, Teumer A, Turman C, van der Most PJ, Vanmunster M, van Rooij FJA, van Vliet-Ostaptchouk JV, Zhang X, Zhao JH, Zhao W, Balkhiyarova Z, Balslev-Harder MN, Baumeister SE, Beilby J, Blangero J, Boomsma DI, Brage S, Braund PS, Brody JA, Bruinenberg M, Ekelund U, Liu CT, Cole JW, Collins FS, Cupples LA, Esko T, Enroth S, Faul JD, Fernandez-Rhodes L, Fohner AE, Franco OH, Galesloot TE, Gordon SD, Grarup N, Hartman CA, Heiss G, Hui J, Illig T, Jago R, James A, Joshi PK, Jung T, Kähönen M, Kilpeläinen TO, Koh WP, Kolcic I, Kraft PP, Kuusisto J, Launer LJ, Li A, Linneberg A, Luan J, Vidal PM, Medland SE, Milaneschi Y, Moscati A, Musk B, Nelson CP, Nolte IM, Pedersen NL, Peters A, Peyser PA, Power C, Raitakari OT, Reedik M, Reiner AP, Ridker PM, Rudan I, Ryan K, Sarzynski MA, Scott LJ, Scott RA, Sidney S, Siggeirsdottir K, Smith AV, Smith JA, Sonestedt E, Strøm M, Tai ES, Teo KK, Thorand B, Tönjes A, Tremblay A, Uitterlinden AG, Vangipurapu J, van Schoor N, Völker U, Willemsen G, Williams K, Wong Q, Xu H, Young KL, Yuan JM, Zillikens MC, Zonderman AB, Ameur A, Bandinelli S, Bis JC, Boehnke M, Bouchard C, Chasman DI, Smith GD, de Geus EJC, Deldicque L, Dörr M, Evans MK, Ferrucci L, Fornage M, Fox C, Garland T, Gudnason V, Gyllensten U, Hansen T, Hayward C, Horta BL, Hyppönen E, Jarvelin MR, Johnson WC, Kardia SLR, Kiemeney LA, Laakso M, Langenberg C, Lehtimäki T, Marchand LL, Magnusson PKE, Martin NG, Melbye M, Metspalu A, Meyre D, North KE, Ohlsson C, Oldehinkel AJ, Orho-Melander M, Pare G, Park T, Pedersen O, Penninx BWJH, Pers TH, Polasek O, Prokopenko I, Rotimi CN, Samani NJ, Sim X, Snieder H, Sørensen TIA, Spector TD, Timpson NJ, van Dam RM, van der Velde N, van Duijn CM, Vollenweider P, Völzke H, Voortman T, Waeber G, Wareham NJ, Weir DR, Wichmann HE, Wilson JF, Hevener AL, Krook A, Zierath JR, Thomis MAI, Loos RJF, Hoed MD. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. Nat Genet 2022; 54:1332-1344. [PMID: 36071172 PMCID: PMC9470530 DOI: 10.1038/s41588-022-01165-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/18/2022] [Indexed: 02/02/2023]
Abstract
Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.
Collapse
Affiliation(s)
- Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Andrew Emmerich
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Moore
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Daiane Hemerich
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eugenia Mazzaferro
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Siacia Broos
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mike Chong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- GlaxoSmithKline, Cambridge, MA, USA
| | - Diane Berry
- Division of Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Nicole D Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elisa Kasbohm
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- MRC Integrative Epidemiology Unit, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA, USA
| | - Ville Huikari
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Christina Holzapfel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Moltke Jørgensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marika A Kaakinen
- Section of Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Chantal M Koolhaas
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Penelope A Lind
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Science, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mattias Lorentzon
- Geriatric Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital Mölndal, Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Christoph Metzendorf
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Kristine R Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Pacolet
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Centre Nutrition Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Rene Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit and Avon Longitudinal Study of Parents and Children, University of Bristol Medical School, Population Health Sciences and Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK
| | - Natalia V Rivera
- Respiratory Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Sebastien Robiou-du-Pont
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christina-Alexandra Schulz
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathias Vanmunster
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xiaoshuai Zhang
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- School of Public Health, Department of Biostatistics, Shandong University, Jinan, China
| | - Jing-Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, University of Surrey, Guilford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, UK
| | - Marie N Balslev-Harder
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- University of Münster, Münster, Germany
| | - John Beilby
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ulf Ekelund
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John W Cole
- Vascular Neurology, Department of Neurology, University of Maryland School of Medicine and the Baltimore VAMC, Baltimore, MD, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - L Adrienne Cupples
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Fernandez-Rhodes
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Alison E Fohner
- Department of Epidemiology, Institute of Public Health Genetics, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Scott D Gordon
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennie Hui
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
- Busselton Population Medical Research Institute, Busselton, Western Australia, Australia
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Russell Jago
- Centre for Exercise Nutrition & Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Alan James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Perth, Australia
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Humanity Inc, Boston, MA, USA
| | - Taeyeong Jung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Peter P Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institutes of Health, Baltimore, MD, USA
| | - Aihua Li
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Pedro Marques Vidal
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah E Medland
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology and Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bill Musk
- Busselton Population Medical Research Institute, Busselton, Western Australia, Australia
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christine Power
- Division of Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Mägi Reedik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Kathy Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Albert V Smith
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kópavogur, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Marin Strøm
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Koon K Teo
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Centre Nutrition Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Natasja van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Kayleen Williams
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Instiute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Louise Deldicque
- Faculty of Movement and Rehabilitation Sciences, Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Instiute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caroline Fox
- Genetics and Pharmacogenomics (GpGx), Merck Research Labs, Boston, MA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Marjo-Riitta Jarvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics and HPA-MRC Center, School of Public Health, Imperial College London, London, UK
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mads Melbye
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- K.G.Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - David Meyre
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Guillaume Pare
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, University of Surrey, Guilford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, UK
- UMR 8199 - EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol Medical School, University of Bristol, Bristol, UK
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Section of Geriatrics, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Aging and Later Life, Amsterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter Vollenweider
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gérard Waeber
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Heinz-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martine A I Thomis
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
29
|
The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes (Basel) 2022; 13:genes13091525. [PMID: 36140693 PMCID: PMC9498790 DOI: 10.3390/genes13091525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
We aimed to evaluate the effect of selected polymorphisms of the ACTN3, ACE, HIF1A and PPARA genes on the immediate supercompensation training effect of elite Slovak endurance runners and football players compared with a sedentary control group. Adaptation effect levels were evaluated by 10 s continuous vertical jump test parameters measured by Optojump. Genetic polymorphisms were determined by PCR and Sanger sequencing. We found significant differences in the effect of PPARA genotypes in the experimental group. C allele genotypes represented an advantage in immediate supercompensation (p < 0.05). We observed a significant combined effect of multiple genes on immediate supercompensation (p < 0.05): the RR genotype of the ACTN3 gene, the ID genotype of the ACE gene, the Pro/Pro genotype of HIF1A, and the GC and GG genotypes of PPARA genes. In the control group, we found a significant effect (p < 0.05) on immediate supercompensation of the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene. We found significant differences in genotype frequency of ACE (p < 0.01) and PPARA (p < 0.001) genes. We confirmed that individual genetic polymorphisms of ACTN3, ACE, HIF1A and PPARA genes have a different effect on the level of immediate supercompensation of the lower limbs depending on the training adaptation of the probands and the combination of genotypes.
Collapse
|
30
|
Genetics and Sport Injuries: New Perspectives for Athletic Excellence in an Italian Court of Rugby Union Players. Genes (Basel) 2022; 13:genes13060995. [PMID: 35741757 PMCID: PMC9223017 DOI: 10.3390/genes13060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Several genes are involved in sport performance, especially in injuries incidence. The aim of this study was to investigate the association of ACE, ACTN3, COL1A1, and MCT1 genotypes and injuries in rugby players in order to find a genotype/phenotype correlation and provide useful information improving athletic performance. One-hundred male professional and semiprofessional rugby players were selected. Analysis was performed genotyping the genes ACE, ACTN3, COL1A1, and MCT1 as candidate gene of interest involved in athletic performance. A control group of non-athletic Italian male participants was analyzed to compare the results. We found statistical significance of MCT1 rs1049434 AA for total injuries (χ2 = 0.115; p = 0.003) and bone injuries (χ2 = 0.603; p = 0.007) in the rugby athlete population. No statistical significance was found between injury incidence and ACE, ACTN3, COL1A1 genotypes. The MCT1 AA genotype is associated with the incidence of total and bone injuries in the rugby player population. Although environmental factors such as lifestyle, diet, training, and stress can influence athletic performance, our data demonstrated the importance of genetic study in sport aimed at developing personalized training and achieving the best possible athletic excellence.
Collapse
|
31
|
Pasqualetti M, Onori ME, Canu G, Moretti G, Minucci A, Baroni S, Mordente A, Urbani A, Galvani C. The Relationship between ACE, ACTN3 and MCT1 Genetic Polymorphisms and Athletic Performance in Elite Rugby Union Players: A Preliminary Study. Genes (Basel) 2022; 13:genes13060969. [PMID: 35741731 PMCID: PMC9222624 DOI: 10.3390/genes13060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Athletic performance is influenced by many factors such as the environment, diet, training and endurance or speed in physical effort and by genetic predisposition. Just a few studies have analyzed the impact of genotypes on physical performance in rugby. The aim of this study was to verify the modulation of genetic influence on rugby-specific physical performance. Twenty-seven elite rugby union players were involved in the study during the in-season phase. Molecular genotyping was performed for: angiotensin-converting enzyme (ACE rs4646994), alfa-actinin-3 (ACTN3 rs1815739) and monocarboxylate transporter 1 (MCT1 rs1049434) and their variants. Lean mass index (from skinfolds), lower-limb explosive power (countermovement jump), agility (505), speed (20 m), maximal aerobic power (Yo-yo intermittent recovery test level 1) and repeated sprint ability (12 × 20 m) were evaluated. In our rugby union players ACE and ACTN3 variants did not show any influence on athletic performance. MCT1 analysis showed that TT-variant players had the highest peak vertical power (p = 0.037) while the ones with the AA genotype were the fastest in both agility and sprint tests (p = 0.006 and p = 0.012, respectively). Considering the T-dominant model, the AA genotype remains the fastest in both tests (agility: p = 0.013, speed: p = 0.017). Only the MCT1 rs1049434 A allele seems to be advantageous for elite rugby union players, particularly when power and speed are required.
Collapse
Affiliation(s)
- Massimo Pasqualetti
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Maria Elisabetta Onori
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Giulia Canu
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
| | - Giacomo Moretti
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
| | - Angelo Minucci
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
| | - Silvia Baroni
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy
| | - Andrea Urbani
- UOC di Chimica Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario A. Gemelli I.R.C.C.S., Via della Pineta Sacchetti 217, 00168 Rome, Italy; (M.P.); (M.E.O.); (G.C.); (G.M.); (A.M.); (S.B.); (A.U.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Christel Galvani
- Laboratorio di Scienze Dell’esercizio Fisico e Dello Sport, Dipartimento di Psicologia, Università Cattolica del Sacro Cuore, Viale Suzzani 279, 20162 Milan, Italy
- Correspondence: ; Tel.: +39-02-72348800
| |
Collapse
|
32
|
Combined aCGH and Exome Sequencing Analysis Improves Autism Spectrum Disorders Diagnosis: A Case Report. Medicina (B Aires) 2022; 58:medicina58040522. [PMID: 35454361 PMCID: PMC9030270 DOI: 10.3390/medicina58040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: The development and standardization of genome-wide technologies able to carry out high-resolution, genomic analyses in a cost- and time-affordable way is increasing our knowledge regarding the molecular bases of complex diseases like autism spectrum disorder (ASD). ASD is a group of heterogeneous diseases with multifactorial origins. Genetic factors seem to be involved, albeit they remain still largely unknown. Here, we report the case of a child with a clinical suspicion of ASD investigated by using such a genomic high-resolution approach. Materials and Methods: Both array comparative genomic hybridization (aCGH) and exome sequencing were carried out on the family trio. aCGH was performed using the 4 × 180 K SurePrint G3 Human CGH Microarray, while the Human All Exon V7 targeted SureSelect XT HS panel was used for exome sequencing. Results: aCGH identified a paternally inherited duplication of chromosome 7 involving the CNTNAP2 gene, while 5 potentially clinically-relevant variants were identified by exome sequencing. Conclusions: Within the identified genomic alterations, the CNTNAP2 gene duplication may be related to the patient’s phenotype. Indeed, this gene has already been associated with brain development and cognitive functions, including language. The paternal origin of the alteration cannot exclude an incomplete penetrance. Moreover, other genomic factors may act as phenotype modifiers combined with CNTNAP2 gene duplication. Thus, the case reported herein strongly reinforces the need to use extensive genomic analyses to shed light on the bases of complex diseases.
Collapse
|
33
|
Jacob Y, Hart NH, Cochrane JL, Spiteri T, Laws SM, Jones A, Rogalski B, Kenna J, Anderton RS. ACTN3 (R577X) Genotype Is Associated With Australian Football League Players. J Strength Cond Res 2022; 36:573-576. [DOI: 10.1519/jsc.0000000000003458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Chung HC, Keiller DR, Roberts JD, Gordon DA. Do exercise-associated genes explain phenotypic variance in the three components of fitness? a systematic review & meta-analysis. PLoS One 2021; 16:e0249501. [PMID: 34648504 PMCID: PMC8516263 DOI: 10.1371/journal.pone.0249501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to identify a list of common, candidate genes associated with the three components of fitness, specifically cardiovascular fitness, muscular strength, and anaerobic power, and how these genes are associated with exercise response phenotype variability, in previously untrained participants. A total of 3,969 potentially relevant papers were identified and processed for inclusion. After eligibility and study selection assessment, 24 studies were selected for meta-analysis, comprising a total of 3,012 participants (male n = 1,512; females n = 1,239; not stated n = 261; age 28 ± 9 years). Meta-Essentials spreadsheet 1.4 (Microsoft Excel) was used in creating the forest plots and meta-analysis. IBM SPSS statistics V24 was implemented for the statistical analyses and the alpha was set at p ≤ 0.05. 13 candidate genes and their associated alleles were identified, which were associated with the phenotypes of interest. Analysis of training group data showed significant differential phenotypic responses. Subgroup analysis showed; 44%, 72% and 10% of the response variance in aerobic, strength and power phenotypes, respectively, were explained by genetic influences. This analysis established that genetic variability explained a significant proportion of the adaptation differences across the three components of fitness in the participants post-training. The results also showed the importance of analysing and reporting specific gene alleles. Information obtained from these findings has the potential to inform and influence future exercise-related genes and training studies.
Collapse
Affiliation(s)
- Henry C. Chung
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- * E-mail:
| | - Don R. Keiller
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin D. Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan A. Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
36
|
Pimenta I, Mateus H, Rodrigues-Manica S, Pinheiro-Torres R, Neto A, Domingues L, Lage Crespo C, Sardoo A, Machado P, Branco JC, Silva SN, Pimentel-Santos FM. The Effect of ACTN3 and VDR Polymorphisms on Skeletal Muscle Performance in Axial Spondyloarthropathies. Front Genet 2021; 12:688984. [PMID: 34456969 PMCID: PMC8385750 DOI: 10.3389/fgene.2021.688984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Spondyloarthritis (SpA) are the most common group of chronic inflammatory rheumatic diseases affecting about 1.5% of the adult Caucasian population. Low back pain is the most common symptom. The aetiopathogenesis of SpA is multifactorial, with well-known genetic and environmental contributions. Furthermore, muscle properties might also be involved in the pathophysiological process and these could be modulated by the genetic background. Alpha-actinin-3 (ACTN3) and Vitamin D receptor (VDR) genes are well-known genes related with muscle performance. Our aim was to analyze four SNPs of these genes and to evaluate their influence in axial SpA (axSpA) susceptibility, phenotype and muscle properties. Methods We performed a pilot study based on case-control approach involving 56 participants: 28 axSpA patients and 28 healthy controls matched by age, gender and levels of physical activity. Clinical, epidemiological and muscle characterization data—muscle physical properties (stiffness, tone, and elasticity), strength, mass, and performance, were collected. Two different muscles were considered for analysis, the Multifidus and Gastrocnemius. Four SNPs of ACTN3 (rs1815739) and VDR (rs2228570, rs731236, and rs7975232), were selected, analyzed and correlated with clinical, epidemiological and muscle characterization data. Results In total, 51 individuals (27 axSpA patients and 24 matched controls) were eligible for further genetic analysis, 66.7% being male and with a mean age of 36 years. Muscle physical properties, muscle strength and muscle mass were similar in both groups; however, axSpA patients showed a decrease in muscle performance. None of the studied SNPs were associated with disease susceptibility/phenotype, muscle physical properties, muscle strength or muscle mass. However, ACTN3 rs1815739 and VDR rs2228570 were shown to be associated with muscle performance. Conclusion Our results suggest an association between ACTN3 and VDR polymorphisms and muscle performance in axSpA.
Collapse
Affiliation(s)
- Isabel Pimenta
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Mateus
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Santiago Rodrigues-Manica
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Rita Pinheiro-Torres
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Agna Neto
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Lúcia Domingues
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto Politécnico de Setúbal, Escola Superior de Saúde, Setúbal, Portugal
| | - Carolina Lage Crespo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Atlas Sardoo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro Machado
- Centre for Rheumatology and Department of Neuromuscular Diseases, University College London, London, United Kingdom
| | - Jaime C Branco
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Susana N Silva
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Fernando M Pimentel-Santos
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| |
Collapse
|
37
|
Samaha G, Wade CM, Mazrier H, Grueber CE, Haase B. Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics 2021; 22:601. [PMID: 34362297 PMCID: PMC8348863 DOI: 10.1186/s12864-021-07899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background While recent advances in genomics has enabled vast improvements in the quantification of genome-wide diversity and the identification of adaptive and deleterious alleles in model species, wildlife and non-model species have largely not reaped the same benefits. This has been attributed to the resources and infrastructure required to develop essential genomic datasets such as reference genomes. In the absence of a high-quality reference genome, cross-species alignments can provide reliable, cost-effective methods for single nucleotide variant (SNV) discovery. Here, we demonstrated the utility of cross-species genome alignment methods in gaining insights into population structure and functional genomic features in cheetah (Acinonyx jubatas), snow leopard (Panthera uncia) and Sumatran tiger (Panthera tigris sumatrae), relative to the domestic cat (Felis catus). Results Alignment of big cats to the domestic cat reference assembly yielded nearly complete sequence coverage of the reference genome. From this, 38,839,061 variants in cheetah, 15,504,143 in snow leopard and 13,414,953 in Sumatran tiger were discovered and annotated. This method was able to delineate population structure but limited in its ability to adequately detect rare variants. Enrichment analysis of fixed and species-specific SNVs revealed insights into adaptive traits, evolutionary history and the pathogenesis of heritable diseases. Conclusions The high degree of synteny among felid genomes enabled the successful application of the domestic cat reference in high-quality SNV detection. The datasets presented here provide a useful resource for future studies into population dynamics, evolutionary history and genetic and disease management of big cats. This cross-species method of variant discovery provides genomic context for identifying annotated gene regions essential to understanding adaptive and deleterious variants that can improve conservation outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07899-2.
Collapse
Affiliation(s)
- Georgina Samaha
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hamutal Mazrier
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Melián Ortiz A, Laguarta-Val S, Varillas-Delgado D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes (Basel) 2021; 12:genes12081177. [PMID: 34440352 PMCID: PMC8391250 DOI: 10.3390/genes12081177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The potential influence of genetics in athletic performance allows the search for genetic profiles associated with muscular work for the orientation of strength training and sports selection. The purpose of the study was to analyze four muscular exercises for effectiveness in improving explosive strength variables, associated to the genetics in Angiotensin Converting Enzyme (ACE) and α-actinin-3 (ACTN3) polymorphisms. Methods: A randomized controlled trial was conducted on a sample of 80 subjects allocated into four groups: concentric muscle work (CMW), eccentric muscle work (EMW), concentric-eccentric muscle (C-EMW) work and isometric muscular work (IMW), by block and gender randomization. Vertical jump, long jump, power jump, and speed were measured to study explosive strength. Genotypic frequencies of ACE (rs4646994) and ACTN3 (rs1815739) were obtained by polymerase chain reaction. Results: ACE gen showed significant improvements regarding the DD genotype in the Sargent test (p = 0.003) and sprint velocity test (p = 0.017). In the ACTN3 gene, the RR variable obtained improvement results with regard to RX and XX variables in long jump (p < 0.001), Sargent test (p < 0.001) and power jump (p = 0.004). Conclusions: The selected genes demonstrated an influence on the muscle work and the improvement in explosive strength variables with a decisive role regarding the type of muscle work performed.
Collapse
Affiliation(s)
- Alberto Melián Ortiz
- Department of Physical Therapy, FREMAP-Majadahonda Hospital, 28222 Madrid, Spain;
- Department of Health Sciences, Faculty of Nursing and Physical Therapy Salus Informorum, Pontifical University of Salamanca, 37007 Madrid, Spain
| | - Sofía Laguarta-Val
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
- Correspondence:
| | - David Varillas-Delgado
- Department of Sports Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, 28223 Madrid, Spain;
| |
Collapse
|
39
|
Lim T, Santiago C, Pareja-Galeano H, Iturriaga T, Sosa-Pedreschi A, Fuku N, Pérez-Ruiz M, Yvert T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand J Med Sci Sports 2021; 31:2014-2032. [PMID: 34270833 DOI: 10.1111/sms.14020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Non-contact muscle injuries (NCMI) account for a large proportion of sport injuries, affecting athletes' performance and career, team results and financial aspects. Recently, genetic factors have been attributed a role in the susceptibility of an athlete to sustain NCMI. However, data in this field are only just starting to emerge. OBJECTIVES To review available knowledge of genetic variations associated with sport-related NCMI. METHODS The databases Pubmed, Scopus, and Web of Science were searched for relevant articles published until February 2021. The records selected for review were original articles published in peer-reviewed journals describing studies that have examined NCMI-related genetic variations in adult subjects (17-60 years) practicing any sport. The data extracted from the studies identified were as follows: general information, and data on genetic polymorphisms and NCMI risk, incidence and recovery time and/or severity. RESULTS Seventeen studies examining 47 genes and 59 polymorphisms were finally included. 29 polymorphisms affecting 25 genes were found significantly associated with NCMI risk, incidence, recovery time, and/or severity. These genes pertain to three functional categories: (i) muscle fiber structural/contractile properties, (ii) muscle repair and regeneration, or (iii) muscle fiber external matrix composition and maintenance. CONCLUSION Our review confirmed the important role of genetics in NCMI. Some gene variants have practical implications such as differences of several weeks in recovery time detected between genotypes. Knowledge in this field is still in its early stages. Future studies need to examine a wider diversity of sports and standardize their methods and outcome measures.
Collapse
Affiliation(s)
- Tifanny Lim
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Catalina Santiago
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Tamara Iturriaga
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | - Thomas Yvert
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Santos CGM, Rolim-Filho NG, Domingues CA, Dornelas-Ribeiro M, King JL, Budowle B, Moura-Neto RS, Silva R. Association of whole mtDNA, an NADPH G11914A variant, and haplogroups with high physical performance in an elite military troop. ACTA ACUST UNITED AC 2021; 54:e10317. [PMID: 33909855 PMCID: PMC8075130 DOI: 10.1590/1414-431x202010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
Physical performance is a multifactorial and complex trait influenced by environmental and hereditary factors. Environmental factors alone have been insufficient to characterize all outstanding phenotypes. Recent advances in genomic technologies have enabled the investigation of whole nuclear and mitochondrial genome sequences, increasing our ability to understand interindividual variability in physical performance. Our objective was to evaluate the association of mitochondrial polymorphic loci with physical performance in Brazilian elite military personnel. Eighty-eight male military personnel who participated in the Command Actions Course of the Army were selected. Total DNA was obtained from blood samples and a complete mitochondrial genome (mtDNA) was sequenced using Illumina MiSeq platform. Twenty-nine subjects completed the training program (FINISHED, 'F'), and fifty-nine failed to complete (NOT_FINISHED, 'NF'). The mtDNA from NF was slightly more similar to genomes from African countries frequently related to endurance level. Twenty-two distinct mtDNA haplogroups were identified corroborating the intense genetic admixture of the Brazilian population, but their distribution was similar between the two groups (FST=0.0009). Of 745 polymorphisms detected in the mtDNA, the position G11914A within the NADPH gene component of the electron transport chain, was statistically different between F and NF groups (P=0.011; OR: 4.286; 95%CI: 1.198-16.719), with a higher frequency of the G allele in group F individuals). The high performance of military personnel may be mediated by performance-related genomic traits. Thus, mitochondrial genetic markers such as the ND4 gene may play an important role on physical performance variability.
Collapse
Affiliation(s)
- C G M Santos
- Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil
| | - N G Rolim-Filho
- Centro de Instrução de Operações Especiais do Exército Brasileiro, Rio de Janeiro, RJ, Brasil
| | - C A Domingues
- Centro de Instrução de Operações Especiais do Exército Brasileiro, Rio de Janeiro, RJ, Brasil
| | | | - J L King
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - B Budowle
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - R S Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
41
|
Kittilsen HT, Goleva-Fjellet S, Freberg BI, Nicolaisen I, Støa EM, Bratland-Sanda S, Helgerud J, Wang E, Sæbø M, Støren Ø. Responses to Maximal Strength Training in Different Age and Gender Groups. Front Physiol 2021; 12:636972. [PMID: 33679448 PMCID: PMC7925619 DOI: 10.3389/fphys.2021.636972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The present study aimed to investigate the potential impact of age, gender, baseline strength, and selected candidate polymorphisms on maximal strength training (MST) adaptations. Methods A total of 49 subjects (22 men and 27 women) aged 20–76 years, divided into five age groups, completed an 8 weeks MST intervention. Each MST session consisted of 4 sets with 4 repetitions at ∼85–90% of one-repetition maximum (1RM) intensity in leg-press, three times per week. 1RM was tested pre and post the intervention and blood samples were drawn to genotype candidate polymorphisms ACE I/D (rs1799752), ACTN3 R577X (rs1815739), and PPARGC1A Gly482Ser (rs8192678). Results All age groups increased leg-press 1RM (p < 0.01), with a mean improvement of 24.2 ± 14.0%. There were no differences in improvements between the five age groups or between male and female participants, and there were no non-responders. Baseline strength status did not correlate with 1RM improvements. PPARGC1A rs8192678 T allele carriers had a 15% higher age- and gender corrected baseline 1RM than the CC genotype (p < 0.05). C allele carriers improved 1RM (%) by 34.2% more than homozygotes for the T allele (p < 0.05). Conclusion To the best of our knowledge, this is the first study to report improvement in leg-press maximal strength regardless of gender, baseline strength status in all age groups. The present study is also first to demonstrate an association between the PPARGC1A rs8192678 and maximal strength and its trainability in a moderately trained cohort. MST may be beneficial for good health and performance of all healthy individuals.
Collapse
Affiliation(s)
- Hans Torvild Kittilsen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Baard Ingegerdsson Freberg
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway.,The Norwegian Biathlon Association, Oslo, Norway.,Top Sports Medical Office, Tønsberg, Norway
| | - Iver Nicolaisen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Eva Maria Støa
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Solfrid Bratland-Sanda
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Øyvind Støren
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
42
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports (Basel) 2021; 9:22. [PMID: 33572708 PMCID: PMC7912285 DOI: 10.3390/sports9020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3) (rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite athletic performance. This study assessed the influence of polymorphisms in these candidate genes towards endurance test performance in 46 players from a single Australian Football League (AFL) team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were required to perform two independent two-kilometre running time-trials, six weeks apart. Linear mixed models were created to account for repeated measures over time and to determine whether player genotypes are associated with overall performance in the two-kilometre time-trial. The results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031) genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study to link genetic polymorphism to an assessment of endurance performance in Australian Football and provides justification for further exploratory or confirmatory studies.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
| | - Ryan S. Anderton
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- School of Health Science, University of Notre Dame Australia, Perth 6160, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Jodie L. Cochrane Wilkie
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Brent Rogalski
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Simon M. Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Tania Spiteri
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Nicolas H. Hart
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- Exercise Medicine Research Institute, Edith Cowan University, Perth 6027, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
43
|
Gutiérrez-Hellín J, Baltazar-Martins G, Aguilar-Navarro M, Ruiz-Moreno C, Oliván J, Del Coso J. Effect of ACTN3 R577X Genotype on Injury Epidemiology in Elite Endurance Runners. Genes (Basel) 2021; 12:genes12010076. [PMID: 33430120 PMCID: PMC7828078 DOI: 10.3390/genes12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the ACTN3 XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism in the injury epidemiology of elite endurance athletes. Using a cross-sectional experiment, the epidemiology of running-related injuries was recorded for one season in a group of 89 Spanish elite endurance runners. ACTN3 R577X genotype was obtained for each athlete using genomic DNA samples. From the study sample, 42.7% of athletes had the RR genotype, 39.3% had the RX genotype, and 18.0% had the XX genotype. A total of 96 injuries were recorded in 57 athletes. Injury incidence was higher in RR runners (3.2 injuries/1000 h of running) than in RX (2.0 injuries/1000 h) and XX (2.2 injuries/1000 h; p = 0.030) runners. RR runners had a higher proportion of injuries located in the Achilles tendon, RX runners had a higher proportion of injuries located in the knee, and XX runners had a higher proportion of injuries located in the groin (p = 0.025). The ACTN3 genotype did not affect the mode of onset, the severity, or the type of injury. The ACTN3 genotype slightly affected the injury epidemiology of elite endurance athletes with a higher injury rate in RR athletes and differences in injury location. However, elite ACTN3 XX endurance runners were not more prone to muscle-type injuries.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Gabriel Baltazar-Martins
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Jesús Oliván
- Faculty of Physical Activity and Sport Sciences, Technical University of Madrid, 28040 Madrid, Spain;
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28933 Fuenlabrada, Spain
- Correspondence:
| |
Collapse
|
44
|
Fontanel M, Todd E, Drabbe A, Ropka-Molik K, Stefaniuk-Szmukier M, Myćka G, Velie BD. Variation in the SLC16A1 and the ACOX1 Genes Is Associated with Gallop Racing Performance in Arabian Horses. J Equine Vet Sci 2020; 93:103202. [PMID: 32972674 DOI: 10.1016/j.jevs.2020.103202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
Arabian horses are not only one of the most ancient breeds in the world, but they are also one of the most appreciated racehorse breeds today. The breed generates attention for their phenomenal endurance ability and their capability for gallop racing. Consequently, genetic testing to select the best individuals is attracting ever increasing interests from the Arabian industry. As such, the aim of this study was to further investigate associations between performance and variation at candidate genes suspected of having a key role in Arabian gallop racing performance. Generalized linear models were fit to test associations between eight candidate gene variants and a variety of gallop racing performance traits in a sample of Arabian racehorses (n = 287). Two genes, solute carrier family 16 member 1 (SLC16A1) and acyl-CoA oxidase 1 (ACOX1), were significantly associated with multiple gallop racing performance traits, whereas another gene, actinin alpha 3 (ACTN3) was associated with best race distance. Previously established associations between these three genes and equine metabolism strongly suggest further investigation of these genes, and their relationship with Arabian horse performance is warranted.
Collapse
Affiliation(s)
- Marie Fontanel
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia; Agrosup Dijon, Institut national supérieur des sciences agronomiques et de l'alimentation et de l'environnement, Dijon Cedex, France
| | - Evelyn Todd
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Alize Drabbe
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Kraków, Poland
| | - Grzegorz Myćka
- University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Kraków, Poland
| | - Brandon D Velie
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
45
|
Effect of ACTN3 Genotype on Sports Performance, Exercise-Induced Muscle Damage, and Injury Epidemiology. Sports (Basel) 2020; 8:sports8070099. [PMID: 32668587 PMCID: PMC7404684 DOI: 10.3390/sports8070099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic factors play a significant role in athletic performance and its related phenotypes such as power, strength and aerobic capacity. In this regard, the lack of a muscle protein due to a genetic polymorphism has been found to affect sport performance in a wide variety of ways. α-actinin-3 is a protein located within the skeletal muscle with a key role in the production of sarcomeric force. A common stop-codon polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) produces individuals with the XX genotype that lack expression of a functional α-actinin-3. In contrast, individuals with the R-allele (i.e., RX vs. RR genotypes) in this polymorphism can express α-actinin-3. Interestingly, around ~18% of the world population have the XX genotype and much has been debated about why a polymorphism that produces a lack of a muscle protein has endured natural selection. Several investigations have found that α-actinin-3 deficiency due to XX homozygosity in the ACTN3 R577X polymorphism can negatively affect sports performance through several structural, metabolic, or signaling changes. In addition, new evidence suggests that α-actinin-3 deficiency may also impact sports performance through indirect factors such a higher risk for injury or lower resistance to muscle-damaging exercise. The purpose of this discussion is to provide a clear explanation of the effect of α-actinin-3 deficiency due to the ACTN3 XX genotype on sport. Key focus has been provided about the effect of α-actinin-3 deficiency on morphologic changes in skeletal muscle, on the low frequency of XX athletes in some athletic disciplines, and on injury epidemiology.
Collapse
|
46
|
Romero-Blanco C, Artiga-González MJ, Gómez-Cabello A, Vila-Maldonado S, Casajús JA, Ara I, Aznar S. Strength and Endurance Training in Older Women in Relation to ACTN3 R577X and ACE I/D Polymorphisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041236. [PMID: 32075076 PMCID: PMC7068405 DOI: 10.3390/ijerph17041236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to analyze the effect of two genetic polymorphisms, ACTN3R577X, and ACE I/D, on physical condition in a sample of active older women after a two-year training period. The sample was composed of 300 healthy women over the age of 60 who underwent a two-year training program. Adapted tests from the Senior Fitness Test were used. The genotyping of the polymorphisms was obtained from the participants’ DNA via buccal swabs. The analysis of the ACE polymorphism did not reveal differences between genotypes. The analysis of the R577X polymorphism showed a favorable effect for the ACTN3 XX genotype in tests for leg strength (p: 0.001) after training, compared to the other genotypes, and also in the analysis of the combined effect of the polymorphism (ACE II + ACTN3 RX/XX). The intragroup effect revealed an improvement in arm strength for carriers of the X allele after 24 months of training (p < 0.05). The endurance values significantly worsened in all study groups. Conclusions: The R577X polymorphism of ACTN3 may have an important role in capacities related to muscle strength, providing a beneficial effect for carriers of the X allele.
Collapse
Affiliation(s)
- Cristina Romero-Blanco
- Physical Activity and Health Promotion Research Group, Universidad de Castilla-La Mancha, 45004 Toledo, Spain;
| | | | - Alba Gómez-Cabello
- Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-C.); (J.A.C.)
| | - Sara Vila-Maldonado
- Growth, Exercise, Nutrition and Development Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (S.V.-M.); (I.A.)
- CIBERFES Biomedical Research Networking Center on Frailty and Health Aging, 28029 Madrid, Spain
| | - José Antonio Casajús
- Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-C.); (J.A.C.)
| | - Ignacio Ara
- Growth, Exercise, Nutrition and Development Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (S.V.-M.); (I.A.)
- CIBERFES Biomedical Research Networking Center on Frailty and Health Aging, 28029 Madrid, Spain
| | - Susana Aznar
- Physical Activity and Health Promotion Research Group, Universidad de Castilla-La Mancha, 45004 Toledo, Spain;
- CIBERFES Biomedical Research Networking Center on Frailty and Health Aging, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-925-268-800 (ext. 5545)
| |
Collapse
|
47
|
Moreno V, Areces F, Ruiz-Vicente D, Ordovás JM, Del Coso J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS One 2020; 15:e0227548. [PMID: 31990958 PMCID: PMC6986710 DOI: 10.1371/journal.pone.0227548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
A common single nucleotide polymorphism in the ACTN3 gene might result in the complete deficiency of α-actinin-3 (i.e., XX genotype). It has been found that ACTN3 XX individuals have several traits related to lessened muscle performance. This study aimed to determine the influence, if any, of ACTN3 genotypes on injury incidence of marathoners during the year preceding to participating in a competitive marathon race. Using a cross-sectional experimental design, the type and conditions of sports injuries were documented for one year in a group of 139 marathoners. Injuries were recorded following a consensus statement on injuries in Athletics. Afterward, ACTN3 genotyping was performed, and injury epidemiology was compared among RR, RX, and XX genotypes. The distribution of the RR/RX/XX genotypes was 28.8/42.8/23.5%, respectively. A total of 67 injuries were recorded. The frequency of marathoners that reported any injury during the previous year was not different across the genotypes (55.0/38.8/40.6%, P = 0.241). Although the overall injury incidence was not different among genotypes (2.78/1.65/1.94 injuries/1000 h of running, P = 0.084), the likelihood of suffering an injury was higher in RR than in RX (OR = 1.93: 95%CI = 0.87–4.30), and higher than in XX (OR = 1.79: 0.70–4.58). There was no difference in the conditions, severity, body location, time of year, or leading cause of injury among genotypes. However, XX presented a higher frequency of sudden-onset injuries (P = 0.024), and the OR for muscle-type injuries was 2.0 (0.51–7.79) times higher compared to RR runners. Although XX marathoners did not have a higher overall incidence of injury, the OR in these runners for muscle-type injuries was superior to RR and RX runners. The likelihood of suffering a muscle injury, especially with a sudden-onset, was twice in XX than in RR endurance runners.
Collapse
Affiliation(s)
- Victor Moreno
- Sports Research Centre, Miguel Hernandez University of Elche, Alicante, Spain
| | - Francisco Areces
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Diana Ruiz-Vicente
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - José M. Ordovás
- USDA ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Madrid, Spain
- * E-mail:
| |
Collapse
|
48
|
Goleva-Fjellet S, Bjurholt AM, Kure EH, Larsen IK, Støren Ø, Sæbø M. Distribution of allele frequencies for genes associated with physical activity and/or physical capacity in a homogenous Norwegian cohort- a cross-sectional study. BMC Genet 2020; 21:8. [PMID: 31973699 PMCID: PMC6979285 DOI: 10.1186/s12863-020-0813-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There are large individual differences in physical activity (PA) behavior as well as trainability of physical capacity. Heritability studies have shown that genes may have as much impact on exercise participation behavior as environmental factors. Genes that favor both trainability and participation may increase the levels of PA. The present study aimed to assess the allele frequencies in genes associated with PA and/or physical capacity, and to see if there is any association between these polymorphisms and self-reported PA levels in a cohort of middle-aged Norwegians of Scandinavian descent (n = 831; mean age mean age (± SD) 55.5 ± 3.8 years). RESULTS The genotype distributions of the ACTN3 R577X, ACE I/D and MAOA uVNTR polymorphisms were similar to other populations of European descent. When comparing the genotype distribution between the low/medium level PA group (LMPA) and high level PA groups (HPA), a significant difference in ACTN3 577X allele distribution was found. The X allele frequency was 10% lower in the HPA level group (P = 0.006). There were no differences in the genotype distribution of the ACE I/D or MAOA uVNTR polymorphism. Education and previous participation in sports or outdoor activities was positively associated with the self-reported PA levels (P ≤ 0.001). CONCLUSIONS To the best of our knowledge, this is the first study to report association between ACTN3 R577X genotype and PA level in middle-aged Scandinavians. Nevertheless, the contribution of a single polymorphism to a complex trait, like PA level, is likely small. Socioeconomic variables, as education and previous participation in sports or outdoor activities, are positively associated with the self-reported PA levels.
Collapse
Affiliation(s)
- Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.
| | - Anne Mari Bjurholt
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Elin H Kure
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| |
Collapse
|
49
|
Pratt J, Boreham C, Ennis S, Ryan AW, De Vito G. Genetic Associations with Aging Muscle: A Systematic Review. Cells 2019; 9:E12. [PMID: 31861518 PMCID: PMC7016601 DOI: 10.3390/cells9010012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The age-related decline in skeletal muscle mass, strength and function known as 'sarcopenia' is associated with multiple adverse health outcomes, including cardiovascular disease, stroke, functional disability and mortality. While skeletal muscle properties are known to be highly heritable, evidence regarding the specific genes underpinning this heritability is currently inconclusive. This review aimed to identify genetic variants known to be associated with muscle phenotypes relevant to sarcopenia. PubMed, Embase and Web of Science were systematically searched (from January 2004 to March 2019) using pre-defined search terms such as "aging", "sarcopenia", "skeletal muscle", "muscle strength" and "genetic association". Candidate gene association studies and genome wide association studies that examined the genetic association with muscle phenotypes in non-institutionalised adults aged ≥50 years were included. Fifty-four studies were included in the final analysis. Twenty-six genes and 88 DNA polymorphisms were analysed across the 54 studies. The ACTN3, ACE and VDR genes were the most frequently studied, although the IGF1/IGFBP3, TNFα, APOE, CNTF/R and UCP2/3 genes were also shown to be significantly associated with muscle phenotypes in two or more studies. Ten DNA polymorphisms (rs154410, rs2228570, rs1800169, rs3093059, rs1800629, rs1815739, rs1799752, rs7412, rs429358 and 192 bp allele) were significantly associated with muscle phenotypes in two or more studies. Through the identification of key gene variants, this review furthers the elucidation of genetic associations with muscle phenotypes associated with sarcopenia.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
| | - Sean Ennis
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
- UCD ACoRD, Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland
| | - Anthony W. Ryan
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Department of Biomedical Sciences, University of Padova, Via F. Marzolo 3, 35131 Padova, Italy
| |
Collapse
|
50
|
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 2019; 10:2338. [PMID: 31736815 PMCID: PMC6839278 DOI: 10.3389/fpsyg.2019.02338] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose-response relationship in exercise-cognition research. This improved understanding of dose-response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Gronwald
- Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|