1
|
Yusuf AA, Pirk CWW, Buttstedt A. Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:627-641. [PMID: 38567629 DOI: 10.1002/jez.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.
Collapse
Affiliation(s)
- Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Anja Buttstedt
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Jiang S, Zhang W, Xiong Y, Zhang M, Yuan H, Niu Y, Qiao H, Fu H. NPC Intracellular Cholesterol Transporter 1 Regulates Ovarian Maturation and Molting in Female Macrobrachium nipponense. Int J Mol Sci 2024; 25:6049. [PMID: 38892237 PMCID: PMC11172811 DOI: 10.3390/ijms25116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
NPC intracellular cholesterol transporter 1 (NPC1) plays an important role in sterol metabolism and transport processes and has been studied in many vertebrates and some insects, but rarely in crustaceans. In this study, we characterized NPC1 from Macrobrachium nipponense (Mn-NPC1) and evaluated its functions. Its total cDNA length was 4283 bp, encoding for 1344 amino acids. It contained three conserved domains typical of the NPC family (NPC1_N, SSD, and PTC). In contrast to its role in insects, Mn-NPC1 was mainly expressed in the adult female hepatopancreas, with moderate expression in the ovary and heart. No expression was found in the embryo (stages CS-ZS) and only weak expression in the larval stages from hatching to the post-larval stage (L1-PL15). Mn-NPC1 expression was positively correlated with ovarian maturation. In situ hybridization showed that it was mainly located in the cytoplasmic membrane and nucleus of oocytes. A 25-day RNA interference experiment was employed to illustrate the Mn-NPC1 function in ovary maturation. Experimental knockdown of Mn-NPC1 using dsRNA resulted in a marked reduction in the gonadosomatic index and ecdysone content of M. nipponense females. The experimental group showed a significant delay in ovarian maturation and a reduction in the frequency of molting. These results expand our understanding of NPC1 in crustaceans and of the regulatory mechanism of ovarian maturation in M. nipponense.
Collapse
Affiliation(s)
- Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (W.Z.); (Y.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (W.Z.); (Y.X.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (W.Z.); (Y.X.)
| | - Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| | - Yunpeng Niu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (W.Z.); (Y.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (W.Z.); (Y.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (H.Y.); (Y.N.)
| |
Collapse
|
3
|
Chen Q, Liu Q, Chen Y, Du L, Zhu X, Yang Y, Zhao J, Wang Z, Song L, Li J, Ren B. Functional Characterization of the Niemann-Pick C2 Protein BdioNPC2b in the Parasitic Wasp Baryscapus dioryctriae (Chalcidodea: Eulophidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7735-7748. [PMID: 38546111 DOI: 10.1021/acs.jafc.3c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Reverse chemical ecology has been widely applied for the functional characterization of olfactory proteins in various arthropods, but few related studies have focused on parasitic wasps. Here, the odorant carrier Niemann-Pick C2 protein of Baryscapus dioryctriae (BdioNPC2b) was studied in vitro and in vivo. Ligand binding analysis revealed that BdioNPC2b most strongly bound to 2-butyl-2-octenal and which compound could elicit an EAG response and attracted B. dioryctriae adults. Moreover, this odorant attractant significantly improved the reproductive efficiency of B. dioryctriae compared to that of the control. Then, the relationship between BdioNPC2b and 2-butyl-2-octenal was validated by RNAi, and site-directed mutagenesis revealed the involvement of three key residues of BdioNPC2b in binding to 2-butyl-2-octenal through hydrogen bonding. Our findings provide not only a deeper understanding of the olfactory function of NPC2 in wasps but also useful information for improving the performance of the parasitoid B. dioryctriae as a biological control agent.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Qingxin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yuanxu Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Jingyi Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Zizhuo Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Wulff JP, Traverso LM, Latorre-Estivalis JM, Segura DF, Lanzavecchia SB. Identification of candidate genes associated with host-seeking behavior in the parasitoid wasp Diachasmimorpha longicaudata. BMC Genomics 2024; 25:147. [PMID: 38321385 PMCID: PMC10848486 DOI: 10.1186/s12864-024-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.
Collapse
Affiliation(s)
- Juan P Wulff
- Entomology and Plant Pathology, NCSU, Raleigh, NC, USA.
| | - Lucila M Traverso
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Bs As, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires - CONICET, Bs As, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
- Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Bs As, Argentina
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
| |
Collapse
|
5
|
Thambi PJ, Modahl CM, Kini RM. Niemann-Pick Type C2 Proteins in Aedes aegypti: Molecular Modelling and Prediction of Their Structure-Function Relationships. Int J Mol Sci 2024; 25:1684. [PMID: 38338961 PMCID: PMC10855982 DOI: 10.3390/ijms25031684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Aedes aegypti is a major vector that transmits arboviruses through the saliva injected into the host. Salivary proteins help in uninterrupted blood intake and enhance the transmission of pathogens. We studied Niemann-Pick Type C2 (NPC2) proteins, a superfamily of saliva proteins that play an important role in arbovirus infections. In vertebrates, a single conserved gene encodes for the NPC2 protein that functions in cholesterol trafficking. Arthropods, in contrast, have several genes that encode divergent NPC2 proteins. We compared the sequences of 20 A. aegypti NPC2 proteins to the cholesterol-binding residues of human and bovine, and fatty-acid-binding residues of ant NPC2 protein. We identified four mosquito NPC2 proteins as potential sterol-binding proteins. Two of these proteins (AAEL006854 and/or AAEL020314) may play a key role in ecdysteroid biosynthesis and moulting. We also identified one mosquito NPC2 protein as a potential fatty-acid-binding protein. Through molecular modelling, we predicted the structures of the potential sterol- and fatty-acid-binding proteins and compared them to the reference proteins.
Collapse
Affiliation(s)
| | - Cassandra M. Modahl
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Zhang X, Liu Y, Guo M, Sun D, Zhang M, Chu X, Berg BG, Wang G. A female-specific odorant receptor mediates oviposition deterrence in the moth Helicoverpa armigera. Curr Biol 2024; 34:1-11.e4. [PMID: 38091990 DOI: 10.1016/j.cub.2023.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024]
Abstract
Finding ideal oviposition sites is a task of vital importance for all female insects. To ensure optimal conditions for their progeny, females of herbivorous insects detect not only the odors of a relevant host plant but also chemicals released by eggs, named oviposition-deterring pheromones (ODPs). It is reported that such chemicals play critical roles in suppressing female oviposition behavior; however, the molecular mechanism underlying the detection of egg-derived ODPs remains elusive. Here, we have identified three specific fatty acid methyl esters from the surface of eggs of Helicoverpa armigera serving as ODPs-methyl oleate (C18:1ME), methyl palmitate (C16:0ME), and methyl stearate (C18:0ME). We demonstrated that these ODPs are detected by the receptor, HarmOR56, exclusively expressed in sensilla trichodea on female antennae. To assess the significance of this receptor, we disrupted HarmOR56 in H. armigera using CRISPR-Cas9 and found that mutant females did not respond to the ODPs, neither in behavioral nor in electrophysiological tests. We therefore conclude that HarmOR56 is indispensable for identifying the ODPs. This study explores, for the first time, how a female-specific odorant receptor detects chemicals from conspecific eggs. Our data elucidate the intriguing biological phenomenon of repulsion to conspecific eggs during oviposition and contribute new insight into a female-specific olfactory pathway linked to reproduction.
Collapse
Affiliation(s)
- Xiaxuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengbo Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Chu
- Chemosensory lab, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Bente Gunnveig Berg
- Chemosensory lab, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Iannucci A, Zhu J, Antonielli L, Ayari A, Nasri-Ammar K, Knoll W, Pelosi P, Dani FR. Chemosensory proteins as putative semiochemical carriers in the desert isopod Hemilepistus reaumurii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104012. [PMID: 37743031 DOI: 10.1016/j.ibmb.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Anas Ayari
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Karima Nasri-Ammar
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
8
|
Mack LK, Attardo GM. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that Aedes aegypti undergoes detoxification metabolism over 24 h. Sci Rep 2023; 13:16564. [PMID: 37783800 PMCID: PMC10545687 DOI: 10.1038/s41598-023-43676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Insecticide resistance is a multifaceted response and an issue across taxa. Aedes aegypti, the mosquito that vectors Zika, dengue, chikungunya, and yellow fever, demonstrates high levels of pyrethroid resistance across the globe, presenting a challenge to public health officials. To examine the transcriptomic shifts across time after exposure to permethrin, a 3'Tag-Seq analysis was employed on samples 6, 10, and 24 h after exposure along with controls. Differential expression analysis revealed significant shifts in detoxifying enzymes and various energy-producing metabolic processes. These findings indicate significant alterations in gene expression associated with key energy mobilization pathways within the system. These changes encompass a coordinated response involving lipolysis, beta-oxidation, and the citric acid cycle, required for the production of energetic molecules such as ATP, NADH, NADPH, and FADH. These findings highlight a complex interplay of metabolic processes that may have broader implications for understanding insect physiology and response to environmental stimuli. Among the upregulated detoxifying enzymes are cytochrome P450s, glutathione s-transferases and peroxidases, and ATP-binding cassette transporters. Additionally, eight heat shock genes or genes with heat shock domains exhibit the highest fold change across time. Twenty-four hours after exposure, samples indicate a global downregulation of these processes, though principal component analysis suggests lasting signatures of the response. Understanding the recovery response to insecticide exposure provides information on possible new genetic and synergist targets to explore.
Collapse
Affiliation(s)
- Lindsey K Mack
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
10
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Liang D, Chen H, An L, Li Y, Zhao P, Upadhyay A, Hansson BS, Zhao J, Han Q. Molecular identification and functional analysis of Niemann-Pick type C2 proteins,carriers for semiochemicals and other hydrophobic compounds in the brown dog tick, Rhipicephalus linnaei. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105451. [PMID: 37247999 DOI: 10.1016/j.pestbp.2023.105451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with β-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 μM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 μM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Collapse
Affiliation(s)
- Dejuan Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Yao Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
Zhang X, Wang X, Zhao S, Fang K, Wang Z, Liu J, Xi J, Wang S, Zhang J. Response of Odorant Receptors with Phenylacetaldehyde and the Effects on the Behavior of the Rice Water Weevil ( Lissorhoptrus oryzophilus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6541-6551. [PMID: 37058441 DOI: 10.1021/acs.jafc.2c07963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive rice pest that threatens the rice industry worldwide. Odorant receptors (ORs) and odorant receptor coreceptors (Orcos) play an important role in the process of insects' whole life activities; however, there are no related functional studies on RWW. On this basis, a heterologous study of LoryOR20/LoryOrco in Xenopus laevis oocytes was performed to detect the effects of certain natural compounds on RWWs and four active compounds were found. Electroantennogram (EAG) recordings and a behavior test showed that RWWs exhibited a significant response to phenylacetaldehyde (PAA) and an EAG measurement of dsRNA-LoryOR20-treated RWWs revealed a significant decrease in response to PAA. Our results revealed an olfactory molecular mechanism for the recognition of PAA by RWWs, thus providing a potential genetic target at the peripheral olfactory sensing level, contributing to the development of novel control strategies for pest management.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kui Fang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- Technical Center of Kunming Customs, Kunming 650228, PR China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
13
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Wu C, Zhang F, Dewer Y, Zhang J, Li F. Exploration of Candidate Genes Involved in the Biosynthesis, Regulation and Recognition of the Male-Produced Aggregation Pheromone of Halyomorpha halys. INSECTS 2023; 14:163. [PMID: 36835732 PMCID: PMC9960045 DOI: 10.3390/insects14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys (Stål), is produced by adult males, and plays an important role in the behavioral regulation of H. halys. However, information on the molecular mechanisms underlying this pheromone's biosynthesis is limited. In this study, HhTPS1, a key candidate synthase gene in the aggregation pheromone biosynthesis pathway of H. halys, was identified. Then, through weighted gene co-expression network analysis, the candidate P450 enzyme genes in the biosynthetic downstream of this pheromone and the related candidate transcription factor in this pathway were also identified. In addition, two olfactory-related genes, HhCSP5 and HhOr85b, involved in the recognition of the aggregation pheromone of H. halys, were detected. We further identified the key amino acid sites of HhTPS1 and HhCSP5 that interact with substrates by using molecular docking analysis. This study provides basic information for further investigations into the biosynthesis pathways and recognition mechanisms of aggregation pheromones in H. halys. It also provides key candidate genes for bioengineering bioactive aggregation pheromones necessary for the development of technologies for the monitoring and control of H. halys.
Collapse
Affiliation(s)
- Chunyan Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youssef Dewer
- Central Agricultural Pesticide Laboratory, Agricultural Research Center, Phytotoxicity Research Department, Dokki, Giza 12618, Egypt
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengqi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Zhou H, Yan H, Wang E, Zhang B, Xu X. Expression and functional analysis of Niemann-Pick C2 gene in Phytoseiulus persimilis. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:201-213. [PMID: 36920643 DOI: 10.1007/s10493-023-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a new protein class of semiochemical binding and transporting, Niemann-Pick proteins type C2 (NPC2) in arthropods have received more attentions in recent decade. However, the gene function has not been studied in phytoseiid mites with biocontrol potential. In the current study, we cloned a NPC2 gene PpNPC2a from the transcriptome of Phytoseiulus persimilis Athias-Henriot. By encoding 181 amino acids with a conserved ML domain, PpNPC2a was found a homolog of NPC2-1 in Galendromus occidentalis Nesbitt. We then measured the spatio-temporal expression of PpNPC2a in P. persimilis, and found the highest expression in female adults compared to other stages. Due to the tiny body size of predatory mites, we only examined tissue expressions in two sections: the anterior part (gnathosoma and the first pair of legs) and the posterior part (idiosoma without the first pair of legs). Higher transcription of PpNPC2a was found in the posterior part. To investigate the potential function of PpNPC2a in P. persimilis, we interfered gene expression in female adults by feeding dsRNA, which resulted in a decrease of relative expression by 59.1 and 78.2% after 24 and 72 h, respectively. Compared with the control, dsNPC2a-treated P. persimilis were insensitive to the scent of leaves or plants infested by spider mites, suggesting a role of PpNPC2a in response to plant volatiles. However, the dsNPC2a-interfered mites could still respond to four representative compounds of herbivore-induced plant volatiles, including 4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), methyl salicylate (MeSA), β-caryophyllene and linalool. In short, our results indicated PpNPC2a may be involved in the chemosensory process of P. persimilis in response to whole-plant volatiles.
Collapse
Affiliation(s)
- Hongxu Zhou
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Hong Yan
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Endong Wang
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| | - Bo Zhang
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| | - Xuenong Xu
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| |
Collapse
|
16
|
Wang GY, Chang YB, Guo JH, Xi JQ, Liang TB, Zhang SX, Yang MM, Hu LW, Mu WJ, Song JZ. Identification and Expression Profiles of Putative Soluble Chemoreception Proteins from Lasioderma serricorne (Coleoptera: Anobiidae) Antennal Transcriptome. ENVIRONMENTAL ENTOMOLOGY 2022; 51:700-709. [PMID: 35666204 DOI: 10.1093/ee/nvac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae), is a destructive stored product pest worldwide. Adult cigarette beetles are known to rely on host volatiles and pheromones to locate suitable habitats for oviposition and mating, respectively. However, little is known about the chemosensory mechanisms of these pests. Soluble chemoreception proteins are believed to initiate olfactory signal transduction in insects, which play important roles in host searching and mating behaviors. In this study, we sequenced the antennal transcriptome of L. serricorne and identified 14 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), and 2 Niemann-Pick C2 proteins (NPC2). Quantitative realtime PCR (qPCR) results revealed that several genes (LserOBP2, 3, 6, and 14) were predominantly expressed in females, which might be involved in specific functions in this gender. The five LserOBPs (LserOBP1, 4, 8, 10, and 12) that were highly expressed in the male antennae might encode proteins involved in specific functions in males. These findings will contribute to a better understanding of the olfactory system in this stored product pest and will assist in the development of efficient and environmentally friendly strategies for controlling L. serricorne.
Collapse
Affiliation(s)
- Gui-Yao Wang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yan-Bin Chang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jian-Hua Guo
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jia-Qin Xi
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Tai-Bo Liang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shi-Xiang Zhang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Meng-Meng Yang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Li-Wei Hu
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Wen-Jun Mu
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ji-Zhen Song
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
17
|
Cui Y, Wang J, Liu Q, Li D, Zhang W, Liu X, Wang J, Song X, Yao F, Wu H, Zhao N. Identification and expression of potential olfactory-related genes related to Niemann-Pick C2 protein and ionotropic receptors in Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:337-350. [PMID: 35971047 DOI: 10.1007/s10493-022-00729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Studies have shown that the main pathway for tick host localization and perception of mating information may be chemosensory. However, chemical communication in ticks is poorly understood, especially in those other than the Ixodes ticks. Niemann-Pick C2 (NPC2) protein and ionotropic receptors (IRs) are considered to be closely related to the perception of infochemicals in arthropods. Through bioinformatic analysis, eight NPC2 and four IR candidate genes were identified through screening and identification of the transcriptome sequencing database of Haemaphysalis longicornis. Phylogenetic tree analysis indicated that H. longicornis possesses similar homology to the genus Ixodes. A comparison of the expression of NPC2 and IR in tick forelegs (first pair of legs), hind legs (fourth pair of legs), and capitula using RT-PCR revealed that, barring HlonNPC2-8, 11 candidate genes were highly expressed in the foreleg and capitulum, which are the main sensory organs of ticks. They were also expressed in the hind legs, except for six genes that were not expressed in the males. RT-qPCR analysis showed upregulation and higher relative expression of HlonNPC2-1, HlonNPC2-3, HlonNPC2-6, and HlonNPC2-8 when stimulated by ammonium hydroxide, whereas the others were downregulated and demonstrated lower relative expression. These results further support the putative role of NPC2s as a new odorant carrier in ticks and present 12 promising candidate genes for understanding tick olfactory communication, enriching the data on these genes, especially outside the genus Ixodes.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Yao
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ning Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
18
|
He Z, Yu Z, He X, Hao Y, Qiao L, Luo S, Zhang J, Chen B. Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasit Vectors 2022; 15:143. [PMID: 35461301 PMCID: PMC9034491 DOI: 10.1186/s13071-022-05259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05259-x.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Youjin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Shihui Luo
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
19
|
Ma Y, Huang T, Tang B, Wang B, Wang L, Liu J, Zhou Q. Transcriptome analysis and molecular characterization of soluble chemical communication proteins in the parasitoid wasp
Anagrus nilaparvatae
(Hymenoptera: Mymaridae). Ecol Evol 2022; 12:e8661. [PMID: 35261748 PMCID: PMC8888258 DOI: 10.1002/ece3.8661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Anagrus nilaparvatae is an important egg parasitoid wasp of pests such as the rice planthopper. Based on the powerful olfactory system of sensing chemical information in nature, A. nilaparvatae shows complicated life activities and behaviors, such as feeding, mating, and hosting. We constructed a full‐length transcriptome library and used this to identify the characteristics of soluble chemical communication proteins. Through full‐length transcriptome sequencing, splicing, assembly, and data correction by Illumina, we obtained 163.59 Mb of transcriptome data and 501,179 items with annotation information. We then performed Gene Ontology (GO) functional classification of the transcriptome's unigenes. We analyzed the sequence characteristics of soluble chemical communication protein genes and identified eight genes: AnilOBP2, AnilOBP9, AnilOBP23, AnilOBP56, AnilOBP83, AnilCSP5, AnilCSP6, and AnilNPC2. After sequence alignment and conserved domain prediction, the eight proteins encoded by the eight genes above were found to be consistent with the typical characteristics of odorant‐binding proteins (OBPs), chemosensory proteins (CSPs), and Niemann‐pick type C2 proteins (NPC2s) in other insects. Phylogenetic tree analysis showed that the eight genes share low homology with other species of Hymenoptera. Quantitative real‐time polymerase chain reaction (RT‐qPCR) was used to analyze the expression responses of the eight genes in different sexes and upon stimulation by volatile organic compounds. The relative expression levels of AnilOBP9, AnilOBP26, AnilOBP83, AnilCSP5, and AnilNPC2 in males were significantly higher than those in females, while the relative expression level of AnilCSP6 was higher in females. The expression levels of AnilOBP9 and AnilCSP6 were significantly altered by the stimulation of β‐caryophyllene, suggesting that these two genes may be related to host detection. This study provides the first data for A. nilaparvatae's transcriptome and the molecular characteristics of soluble chemical communication proteins, as well as an opportunity for understanding how A. nilaparvatae behaviors are mediated via soluble chemical communication proteins.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
- School of Agriculture Sun Yat‐Sen University Guangzhou China
| | - Tingfa Huang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Bingjie Tang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Bingyang Wang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Liyang Wang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry Guangdong Academy of Sciences Guangzhou China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
20
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
21
|
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. INSECT MOLECULAR BIOLOGY 2021; 30:519-531. [PMID: 34216416 DOI: 10.1111/imb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
We focused our study on the 12 recently identified putative odorant carrier proteins in the ectoparasitic mite, Varroa destructor. Here we show, via an exclusion of the chemosensory appendages (forelegs and gnathosoma) that transcripts of five of the 12 genes were significantly lower, suggesting that they are likely involved in carrying host volatiles. Specifically, three transcripts were found to be foreleg-specific while the other two transcripts were expressed in both the forelegs and gnathosoma. We focused on one of the highly expressed and foreleg-specific transcript Vd40090, which encodes a Niemann-Pick disease protein type C2 (NPC2) protein. Effects of dsRNA-mediated silencing of Vd40090 were first measured by quantifying the transcript levels of genes that encode other putative odorant carrier proteins as well as reproduction related proteins. In addition, the impact of silencing on mites behaviour and survival was tested. Silencing of Vd40090 effectively disrupted Varroa host selection, acceptance and feeding and significantly impaired the expression of genes that regulate its reproduction in brood cells, resulting in reduced reproduction and survival.
Collapse
Affiliation(s)
- B T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - K Mani
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - N Eliash
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
22
|
Zhu J, Renzone G, Arena S, Dani FR, Paulsen H, Knoll W, Cambillau C, Scaloni A, Pelosi P. The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae. Int J Mol Sci 2021; 22:ijms22136828. [PMID: 34202019 PMCID: PMC8269058 DOI: 10.3390/ijms22136828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy;
| | - Harald Paulsen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems, Austria
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (UMR 7257), CNRS and Aix-Marseille Université, CDEX 09, 13288 Marseille, France;
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Correspondence:
| |
Collapse
|
23
|
Amigues B, Zhu J, Gaubert A, Arena S, Renzone G, Leone P, Fischer IM, Paulsen H, Knoll W, Scaloni A, Roussel A, Cambillau C, Pelosi P. A new non-classical fold of varroa odorant-binding proteins reveals a wide open internal cavity. Sci Rep 2021; 11:13172. [PMID: 34162975 PMCID: PMC8222343 DOI: 10.1038/s41598-021-92604-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Odorant-binding proteins (OBPs), as they occur in insects, form a distinct class of proteins that apparently has no closely related representatives in other animals. However, ticks, mites, spiders and millipedes contain genes encoding proteins with sequence similarity to insect OBPs. In this work, we have explored the structure and function of such non-insect OBPs in the mite Varroa destructor, a major pest of honey bee. Varroa OBPs present six cysteines paired into three disulphide bridges, but with positions in the sequence and connections different from those of their insect counterparts. VdesOBP1 structure was determined in two closely related crystal forms and appears to be a monomer. Its structure assembles five α-helices linked by three disulphide bridges, one of them exhibiting a different connection as compared to their insect counterparts. Comparison with classical OBPs reveals that the second of the six α-helices is lacking in VdesOBP1. Ligand-binding experiments revealed molecules able to bind only specific OBPs with a moderate affinity, suggesting that either optimal ligands have still to be identified, or post-translational modifications present in the native proteins may be essential for modulating binding activity, or else these OBPs might represent a failed attempt in evolution and are not used by the mites.
Collapse
Affiliation(s)
- Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Jiao Zhu
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Isabella Maria Fischer
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Harald Paulsen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France.
| | - Paolo Pelosi
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.
| |
Collapse
|
24
|
Wulff JP, Segura DF, Devescovi F, Muntaabski I, Milla FH, Scannapieco AC, Cladera JL, Lanzavecchia SB. Identification and characterization of soluble binding proteins associated with host foraging in the parasitoid wasp Diachasmimorpha longicaudata. PLoS One 2021; 16:e0252765. [PMID: 34138896 PMCID: PMC8211293 DOI: 10.1371/journal.pone.0252765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.
Collapse
Affiliation(s)
- Juan P. Wulff
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Diego F. Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Francisco Devescovi
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Irina Muntaabski
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Fabian H. Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Alejandra C. Scannapieco
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Jorge L. Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| | - Silvia B. Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv IABIMO (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Li J, Gao P, Zhang L. Identification and expression characteristics of putative chemosensory proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100858. [PMID: 34082360 DOI: 10.1016/j.cbd.2021.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
Chemosensory proteins (CSPs) are important for insect chemoreception, which bind, solubilize and transport hydrophobic chemical molecules from external environment to dendrite membrane of chemosensory neurons. Moreover, CSPs are also involved in non-sensory physiological activities. The peach fruit borers Carposina sasakii Matsumura (Lepidoptera: Carposinidae) seriously damage fruit trees and their chemoreception mainly occurs in the adult stage. We identified 10 putative CSPs (CsasCSP1 ~ CsasCSP10) from head transcriptomes of C. sasakii adult males and females, all of which are classic CSPs that have 4 conserved cysteines with a spacing pattern C1-X6-C2-X17-18-C3-X2-C4. Their phylogenetic characteristics were also described. An analysis using fluorescence quantitative PCR showed CsasCSP2 has the highest level of expression in the heads, so it is more likely to be involved in C. sasakii chemoreception than the other C. sasakii CSPs. CsasCSP1, CsasCSP3, CsasCSP4, CsasCSP6, CsasCSP7 and CsasCSP8 are expressed dominantly in the wings; CsasCSP5 and CsasCSP10 have the highest expression level in the thoraxes; CsasCSP9 is dominantly and equally expressed in the thoraxes and abdomens. This study contributes to understanding physiological functions of C. sasakii CSPs and chemosensory mechanism at C. sasakii molecular level.
Collapse
Affiliation(s)
- Jia Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Ping Gao
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Long Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Zhu J, Iannucci A, Dani FR, Knoll W, Pelosi P. Lipocalins in Arthropod Chemical Communication. Genome Biol Evol 2021; 13:6261314. [PMID: 33930146 PMCID: PMC8214410 DOI: 10.1093/gbe/evab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lipocalins represent one of the most successful superfamilies of proteins. Most of them are extracellular carriers for hydrophobic ligands across aqueous media, but other functions have been reported. They are present in most living organisms including bacteria. In animals they have been identified in mammals, molluscs, and arthropods; sequences have also been reported for plants. A subgroup of lipocalins, referred to as odorant-binding proteins (OBPs), mediate chemical communication in mammals by ferrying specific pheromones to the vomeronasal organ. So far, these proteins have not been reported as carriers of semiochemicals in other living organisms; instead chemical communication in arthropods is mediated by other protein families structurally unrelated to lipocalins. A search in the databases has revealed extensive duplication and differentiation of lipocalin genes in some species of insects, crustaceans, and chelicerates. Their large numbers, ranging from a handful to few dozens in the same species, their wide divergence, both within and between species, and their expression in chemosensory organs suggest that such expansion may have occurred under environmental pressure, thus supporting the hypothesis that lipocalins may be involved in chemical communication in arthropods.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.,Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Alessio Iannucci
- Departement of Biology, University of Firenze, Sesto Fiorentino, Italy
| | | | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
27
|
Manikkaraja C, Bhavika M, Singh R, Nagarathnam B, George G, Gulyani A, Archunan G, Sowdhamini R. Molecular and functional characterization of buffalo nasal epithelial odorant binding proteins and their structural insights by in silico and biochemical approaches. J Biomol Struct Dyn 2020; 40:4164-4187. [PMID: 33292066 DOI: 10.1080/07391102.2020.1854117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs). OBP has not yet been exploited to develop a suitable technique to detect oestrus which is being reported as a difficult task in buffalo. In the present study, using molecular biology and protein engineering approaches, we have cloned six novel OBP isoforms from buffalo nasal epithelium odorant-binding proteins (bnOBPs). Furthermore, 3 D models were developed and molecular-docking, dynamics experiments were performed by in silico approaches. In particular, we found four residues (Phe104, Phe134, Phe69 and Asn118) in OBP1a, which contributed to favourable interactions towards two sex pheromones, specifically oleic acid and p-cresol. We expressed this protein in Escherichia coli from female buffalo urine and validated through fluorescence quenching studies to show similar strong binding affinities of OBP1a to oleic acid and p-cresol. By using structural data, the binding specificity was also verified by site-directed mutagenesis of the four residues followed by in vitro binding assays. Our results enable us to better understand the functions of different nasal epithelium OBP isoforms in buffaloes. They also lead to improved understanding of the interaction between olfactory proteins and odorants to develop highly selective biosensing devices for non-invasive detection of oestrus in buffaloes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chidhambaram Manikkaraja
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mam Bhavika
- GKVK Campus, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, Karnataka, India
| | - Randhir Singh
- The Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences (NCBS), Bangalore, Karnataka, India
| | - Balasubramanian Nagarathnam
- GKVK Campus, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
| | - Geen George
- The Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences (NCBS), Bangalore, Karnataka, India
| | - Akash Gulyani
- The Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences (NCBS), Bangalore, Karnataka, India.,Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Govindaraju Archunan
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ramanathan Sowdhamini
- GKVK Campus, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Wang H, Ma YF, Wang MM, Chen GL, Dewer Y, He M, Zhang F, Yang YF, Liu JF, He P. Expression, Affinity, and Functional Characterization of the Specific Binding of Two Putative Pheromone-Binding Proteins in the Omnivorous German Cockroach Blattella germanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13573-13583. [PMID: 32955873 DOI: 10.1021/acs.jafc.0c02456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The German cockroach Blattella germanica (L.) is an important pest in medical, veterinary, and public health. Studies on the olfaction mechanism of hemimetabolous insects have rarely been reported, especially in cockroaches. Pheromone-binding proteins (PBPs) play a vital role in insect sex pheromone recognition, which solubilize and carry the hydrophobic pheromonal compounds through the antennal lymph to receptors. In this study, two potential PBPs (BgerOBP26 and BgerOBP40) were identified on the basis of their biased expression in male antennae using tissue transcriptome data and verified by the quantitative real-time polymerase chain reaction approach. We then expressed and purified the two identified odorant-binding proteins (OBPs) using the Escherichia coli expression system and affinity purification. In vitro binding studies showed that the two OBPs display stronger binding affinities to the female volatile sex pheromone blattellaquinone than to its analogues and contact sex pheromone components. Finally, three-dimensional modeling of the two OBPs and dock conformation with sex pheromone molecules showed BgerOBP26 has a larger odorant cavity and more conservative active amino acid residues than BgerOBP40. These results illuminated the binding characteristics of potential PBPs of B. germanica, which could lay the groundwork for improved understanding of many aspects of the chemical ecology of B. germanica. Moreover, this information complements the understanding of the olfactory molecular mechanism in cockroaches and provides potential gene targets for B. germanica control.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Mei-Mei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China
| | - Yu-Feng Yang
- Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Jian-Feng Liu
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| |
Collapse
|
29
|
Comparative morphological and transcriptomic analyses reveal chemosensory genes in the poultry red mite, Dermanyssus gallinae. Sci Rep 2020; 10:17923. [PMID: 33087814 PMCID: PMC7578799 DOI: 10.1038/s41598-020-74998-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
Detection of chemical cues via chemosensory receptor proteins are essential for most animals, and underlies critical behaviors, including location and discrimination of food resources, identification of sexual partners and avoidance of predators. The current knowledge of how chemical cues are detected is based primarily on data acquired from studies on insects, while our understanding of the molecular basis for chemoreception in acari, mites in particular, remains limited. The poultry red mite (PRM), Dermanyssus gallinae, is one of the most important blood-feeding ectoparasites of poultry. PRM are active at night which suck the birds' blood during periods of darkness and hide themselves in all kinds of gaps and cracks during the daytime. The diversity in habitat usage, as well as the demonstrated host finding and avoidance behaviors suggest that PRM relies on their sense of smell to orchestrate complex behavioral decisions. Comparative transcriptome analyses revealed the presence of candidate variant ionotropic receptors, odorant binding proteins, niemann-pick proteins type C2 and sensory neuron membrane proteins. Some of these proteins were highly and differentially expressed in the forelegs of PRM. Rhodopsin-like G protein-coupled receptors were also identified, while insect-specific odorant receptors and odorant co-receptors were not detected. Furthermore, using scanning electron microscopy, the tarsomeres of all leg pairs were shown to be equipped with sensilla chaetica with or without tip pores, while wall-pored olfactory sensilla chaetica were restricted to the distal-most tarsomeres of the forelegs. This study is the first to describe the presence of chemosensory genes in any Dermanyssidae family. Our findings make a significant step forward in understanding the chemosensory abilities of D. gallinae.
Collapse
|
30
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
31
|
He Y, Wang K, Zeng Y, Guo Z, Zhang Y, Wu Q, Wang S. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020; 112:2291-2301. [DOI: 10.1016/j.ygeno.2019.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
|
32
|
Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100654. [PMID: 31954363 DOI: 10.1016/j.cbd.2020.100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Histia rhodope Cramer (Lepidoptera: Zygaenidae) is one of the most destructive defoliators of landscape tree Bischofia polycarpa (Levl.) Airy Shaw in China stretching to other Southeast Asia regions. Olfactory genes, encoding proteins such as odorant carrier proteins believed to initiate olfactory signal transduction in insects, have been acknowledged to be novel targets for pest control. In this study, we established antennal transcriptome of H. rhodope and ultimately identified 19 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs) and 4 Niemann-Pick type C2 proteins (NPC2s). The 19 OBPs, 6 CSPs and 4 NPC2s were assessed to validate the differential expressions between sexes, and between olfactory and non-olfactory tissues. 8 OBPs and 2 CSPs exhibited male-biased antennae expression, while 6 OBPs, 2 CSPs and HrhoNPC2a exhibited female-biased antennae expression. Moreover, 17 OBPs, 4 CSPs and 2 NPC2s were predominantly expressed in the antennae compared with non-olfactory tissues. HrhoOBP1 and HrhoOBP8 were predominantly expressed in the antennae and heads, HrhoCSP8 and HrhoCSP14 were highly expressed in abdomens and legs, HrhoNPC2c was highly expressed in abdomens, while HrhoNPC2d was expressed in all tissues. Phylogenetic analysis revealed that most H. rhodope proteins were closely related to proteins from other moths. Moreover, compared with other nocturnal moths, acting as a diurnal moth, we found that H. rhodope may have lost a PBP gene. Our results provide important molecular information for further studies on olfactory mechanisms of H. rhodope.
Collapse
|
33
|
Santos da Silva E, Marques Ponte JC, Barbosa da Silva M, Silva Pinheiro C, Carvalho Pacheco LG, Ferreira F, Briza P, Alcantara-Neves NM. Proteomic Analysis Reveals Allergen Variability among Breeds of the Dust Mite Blomia tropicalis. Int Arch Allergy Immunol 2019; 180:159-172. [PMID: 31563904 DOI: 10.1159/000501964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The dawn of the "omics" technologies has changed allergy research, increasing the knowledge and identification of new allergens. However, these studies have been almost restricted to Dermatophagoides spp. Although Blomia tropicalis has long been established as a clinically important source of allergens, a thorough proteomic characterization is still lacking for this dust mite. OBJECTIVE To increase knowledge of B. tropicalis allergens through proteomic analysis. METHODS Eleven in-bred lineages of B. tropicalis were obtained from 11 unique different pregnant females. Their somatic extracts were analyzed and compared with a commercially available extract by liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Considerable differences in the protein expression profiles were found among the breeds, and most of them displayed higher expression levels of major allergens than the commercially available extract. Blo t 2 was the most prominent allergenic protein in the analyzed extracts. Six identified allergens and 14 isoforms have not yet been recognized by IUIS. Conversely, 3 previously recognized B. tropicalis allergens were not found. CONCLUSIONS The clear impact of inbreeding on allergen content shown by our study leads us to conclude that the quantification and/or identification of allergens from in-bred lines should be routinely considered for mite cultivation in order to select breeds with higher amounts of major allergens. In this sense, LC-MS/MS may be a useful method to achieve this quality control for research and commercial purposes.
Collapse
Affiliation(s)
- Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria.,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil
| | - João Carlos Marques Ponte
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Márcia Barbosa da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil, .,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil,
| |
Collapse
|
34
|
Eliash N, Thangarajan S, Goldenberg I, Sela N, Kupervaser M, Barlev J, Altman Y, Knyazer A, Kamer Y, Zaidman I, Rafaeli A, Soroker V. Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. INSECT MOLECULAR BIOLOGY 2019; 28:321-341. [PMID: 30444567 DOI: 10.1111/imb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The tight synchronization between the life cycle of the obligatory parasitic mite Varroa destructor (Varroa) and its host, the honeybee, is mediated by honeybee chemical stimuli. These stimuli are mainly perceived by a pit organ located on the distal part of the mite's foreleg. In the present study, we searched for Varroa chemosensory molecular components by comparing transcriptomic and proteomic profiles between forelegs from different physiological stages, and rear legs. In general, a comparative transcriptomic analysis showed a clear separation of the expression profiles between the rear legs and the three groups of forelegs (phoretic, reproductive and tray-collected mites). Most of the differentially expressed transcripts and proteins in the mite's foreleg were previously uncharacterized. Using a conserved domain approach, we identified 45 transcripts with known chemosensory domains belonging to seven chemosensory protein families, of which 14 were significantly upregulated in the mite's forelegs when compared to rear legs. These are soluble and membrane bound proteins, including the somewhat ignored receptors of degenerin/epithelial Na+ channels and transient receptor potentials. Phylogenetic clustering and expression profiles of the putative chemosensory proteins suggest their role in chemosensation and shed light on the evolution of these proteins in Chelicerata.
Collapse
Affiliation(s)
- N Eliash
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - S Thangarajan
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Goldenberg
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - N Sela
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - M Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - J Barlev
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Y Altman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - A Knyazer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Y Kamer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Zaidman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
35
|
Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3565-3574. [PMID: 30866622 DOI: 10.1021/acs.jafc.9b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two OBP genes, BodoOBP1 and BodoOBP2, were cloned from Bradysia odoriphaga, a major agricultural pest of Chinese chives. The amino acid sequence alignment of both BodoOBPs showed high similarity. Fluorescence competitive binding assays revealed that both BodoOBPs have a moderate binding affinity to dipropyl trisulfide. Tissue expression profiles indicated that both BodoOBPs are antennae-specific and more abundant in the male antennae than in the female antennae. Developmental expression profile analysis indicated that expression levels of both BodoOBPs were higher in the male adult stage than in the other developmental stages. Both BodoOBPs also showed differential expression in pre- and postmating adults. RNAi assays indicated that ability of dsOBPs-treated males to detect females was significantly reduced compared to controls. Attraction of plant volatile dipropyl trisulfide to dsOBPs-treated adults was also significantly lower than in the control. Our findings indicate that both BodoOBPs are involved in host-seeking behavior and in detecting sex pheromones.
Collapse
Affiliation(s)
- Bowen Tang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Shulei Tai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| |
Collapse
|
36
|
Xiu C, Xiao Y, Zhang S, Bao H, Liu Z, Zhang Y. Niemann-Pick proteins type C2 are identified as olfactory related genes of Pardosa pseudoannulata by transcriptome and expression profile analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:320-329. [PMID: 30669056 DOI: 10.1016/j.cbd.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been mainly focused on insects, whereas little on Arachnida, even though olfaction is very important in arachnid behavior. Pardosa pseudoannulata is one of the most common wandering spiders in rice fields, as the important natural enemy against a range of pests. However, little is known about the potential chemosensory proteins involved in olfactory behavior of these spiders. Niemann-Pick proteins type C2 (NPC2) as a new class of binding and transport proteins for semiochemicals in arthropods especially ticks and mites has received more attention in recent years. In this study, six NPC2s namely PpseNPC1-6 were newly identified in the appendages of P. pseudoannulata based on transcriptome data. A phylogenetic analysis indicated that all of P. pseudoannulata NPC2s were clustered together forming one clade with high posterior probability values. In addition, the sequences shared the same subclade with the NPC2 sequences of ticks and scorpion. The motif-patterns indicated that PpseNPC2-5 had the common pattern with the two-spotted spider mite Tetranychus urticae and the ant Trachymyrmex cornetzi. Furthermore, quantitative real-time PCR (qPCR) measurements were conducted to evaluate the expression profile of these genes in various tissues of P. pseudoannulata. It was found that most NPC2s (PpseNPC2-1, PpseNPC2-2, PpseNPC2-5 and PpseNPC2-6) were highly expressed in adult pedipalps and chelicerae. Owing to the functional olfactory organs in Chelicerata of pedipalps, our results supported a putative role of NPC2s as new odorant carriers in P. pseudoannulata.
Collapse
Affiliation(s)
- Chunli Xiu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Xiao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Song Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
38
|
Pelosi P, Zhu J, Knoll W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. SENSORS 2018; 18:s18103248. [PMID: 30262737 PMCID: PMC6210013 DOI: 10.3390/s18103248] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Odour perception has been the object of fast growing research interest in the last three decades. Parallel to the study of the corresponding biological systems, attempts are being made to model the olfactory system with electronic devices. Such projects range from the fabrication of individual sensors, tuned to specific chemicals of interest, to the design of multipurpose smell detectors using arrays of sensors assembled in a sort of artificial nose. Recently, proteins have attracted increasing interest as sensing elements. In particular, soluble olfaction proteins, including odorant-binding proteins (OBPs) of vertebrates and insects, chemosensory proteins (CSPs) and Niemann-Pick type C2 (NPC2) proteins possess interesting characteristics for their use in sensing devices for odours. In fact, thanks to their compact structure, their soluble nature and small size, they are extremely stable to high temperature, refractory to proteolysis and resistant to organic solvents. Moreover, thanks to the availability of many structures solved both as apo-proteins and in complexes with some ligands, it is feasible to design mutants by replacing residues in the binding sites with the aim of synthesising proteins with better selectivity and improved physical properties, as demonstrated in a number of cases.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| |
Collapse
|
39
|
Wang GY, Zhu JL, Zhou WW, Liu S, Khairul QM, Ansari NA, Zhu ZR. Identification and expression analysis of putative chemoreception genes from Cyrtorhinus lividipennis (Hemiptera: Miridae) antennal transcriptome. Sci Rep 2018; 8:12981. [PMID: 30154418 PMCID: PMC6113244 DOI: 10.1038/s41598-018-31294-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022] Open
Abstract
Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) is an important egg predator of planthoppers which are destructive rice pests. The chemosensory genes in the mirid antennae play important roles in mating and prey-seeking behaviors. To gain a better understanding of the olfaction of C. lividipennis, we sequenced the antennal transcriptomes of the predator to identify the key olfaction genes. We identified 18 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 1 Niemann-Pick C2 protein (NPC2), 15 odorant receptors (ORs), 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs) and 3 sensory neuron membrane proteins (SNMPs). Quantitative real-time PCR results showed that the relative transcript levels of three ClivORs (ClivOR6, 7 and 14) in the female antennae were 3 to 6 folds higher than that in the male antennae, indicating these genes were more related to oviposition site selection. The relative transcript levels of ClivCSP8 and ClivOR11 were 2.6 and 2.7 times higher in the male antennae than that of the female, respectively, indicating that these genes might be involved in mate searching. Moreover, the responses of dsorco treated predators to volatiles emitted from infested rice were significantly reduced, indicating these volatiles might serve as crucial cues in the host searching of C. lividipennis.
Collapse
Affiliation(s)
- Gui-Yao Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing-Lei Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Su Liu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Quais Md Khairul
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Naved Ahmad Ansari
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
40
|
Pelosi P, Zhu J, Knoll W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 2018; 102:8213-8227. [PMID: 30054700 DOI: 10.1007/s00253-018-9253-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
In this paper, we critically review the binding protocols currently reported in the literature to measure the affinity of odorants and pheromones to soluble olfactory proteins, such as odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick class C2 (NPC2) proteins. The first part contains a brief introduction on the principles of binding and a comparison of the techniques adopted or proposed so far, discussing advantages and problems of each technique, as well as their suitable application to soluble olfactory proteins. In the second part, we focus on the fluorescent binding assay, currently the most widely used approach. We analyse advantages and drawbacks, trying to identify the causes of anomalous behaviours that have been occasionally observed, and suggest how to interpret the experimental data when such events occur. In the last part, we describe the state of the art of biosensors for odorants, using soluble olfactory proteins immobilised on biochips, and discuss the possibility of using such approach as an alternative way to measure binding events and dissociation constants.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| |
Collapse
|
41
|
Iovinella I, Cappa F, Cini A, Petrocelli I, Cervo R, Turillazzi S, Dani FR. Antennal Protein Profile in Honeybees: Caste and Task Matter More Than Age. Front Physiol 2018; 9:748. [PMID: 29973886 PMCID: PMC6019485 DOI: 10.3389/fphys.2018.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Reproductive and task partitioning in large colonies of social insects suggest that colony members belonging to different castes or performing different tasks during their life (polyethism) may produce specific semiochemicals and be differently sensitive to the variety of pheromones involved in intraspecific chemical communication. The main peripheral olfactory organs are the antennal chemosensilla, where the early olfactory processes take place. At this stage, members of two different families of soluble chemosensory proteins [odorant-binding proteins (OBPs) and chemosensory proteins (CSPs)] show a remarkable affinity for different odorants and act as carriers while a further family, the Niemann-Pick type C2 proteins (NPC2) may have a similar function, although this has not been fully demonstrated. Sensillar lymph also contains Odorant degrading enzymes (ODEs) which are involved in inactivation through degradation of the chemical signals, once the message is conveyed. Despite their importance in chemical communication, little is known about how proteins involved in peripheral olfaction and, more generally antennal proteins, differ in honeybees of different caste, task and age. Here, we investigate for the first time, using a shotgun proteomic approach, the antennal profile of honeybees of different castes (queens and workers) and workers performing different tasks (nurses, guards, and foragers) by controlling for the potential confounding effect of age. Regarding olfactory proteins, major differences were observed between queens and workers, some of which were found to be more abundant in queens (OBP3, OBP18, and NPC2-1) and others to be more abundant in workers (OBP15, OBP21, CSP1, and CSP3); while between workers performing different tasks, OBP14 was more abundant in nurses with respect to guards and foragers. Apart from proteins involved in olfaction, we have found that the antennal proteomes are mainly characterized by castes and tasks, while age has no effect on antennal protein profile. Among the main differences, the strong decrease in vitellogenins found in guards and foragers is not associated with age.
Collapse
Affiliation(s)
| | - Federico Cappa
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Alessandro Cini
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.,Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Iacopo Petrocelli
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Rita Cervo
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Stefano Turillazzi
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Francesca R Dani
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.,Mass Spectrometry Centre, Centro di Servizi di Spettrometria di Massa, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
42
|
Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: A comprehensive examination of the potential carriers for semiochemicals. J Proteomics 2018; 181:131-141. [PMID: 29653265 DOI: 10.1016/j.jprot.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
Abstract
We have performed a proteomic analysis on chemosensory organs of Varroa destructor, the honey bee mite, in order to identify putative soluble carriers for pheromones and other olfactory cues emitted by the host. In particular, we have analysed forelegs, mouthparts (palps, chelicera and hypostome) and the second pair of legs (as control tissue) in reproductive and phoretic stages of the Varroa life cycle. We identified 958 Varroa proteins, most of them common to the different organs and stages. Sequence analysis shows that four proteins can be assigned to the odorant-binding protein (OBP)-like class, which bear some similarity to insect OBPs, but so far have only been reported in some Chelicerata. In addition, we have detected the presence of two proteins belonging to the Niemann-Pick family, type C2 (NPC2), which have also been suggested as semiochemical carriers. Biological significance: The mite Varroa destructor is the major parasite of the honey bee and is responsible for great economical losses. The biochemical tools used by Varroa to detect semiochemicals produced by the host are still largely unknown. This work contributes to understand the molecular basis of olfaction in Varroa and, more generally, how detection of semiochemicals has evolved in terrestrial non-hexapod Arthropoda. Moreover, the identification of molecular carriers involved in olfaction can contribute to the development of control strategies for this important parasite.
Collapse
|