1
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
2
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Arkee T, Hornick EL, Bishop GA. TRAF3 regulates STAT6 activation and T-helper cell differentiation by modulating the phosphatase PTP1B. J Biol Chem 2024; 300:107737. [PMID: 39233229 PMCID: PMC11462019 DOI: 10.1016/j.jbc.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood. We show here that TRAF3 deficiency led to impaired Akt activation and thus to impaired in vitro skewing of CD4 T cells into the TH1 and TH2 fates. We investigated the role of TRAF3 in regulation of signaling pathways that drive TH1 and TH2 differentiation and found that TRAF3 enhanced activation of signal transducer and activator of transcription 6 (STAT6), thus promoting skewing toward the TH2 fate. TRAF3 promoted STAT6 activation by regulating recruitment of the inhibitory molecule protein tyrosine phosphatase 1B to the IL-4R signaling complex, in a manner that required integration of TCR-CD28- and IL-4R-mediated signals. This work reveals a new mechanism for TRAF3-mediated regulation of STAT6 activation in CD4 T cells and adds to our understanding of the diverse roles played by TRAF3 as an important regulator of T-cell biology.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Office of Research and Development, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
4
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Zykova MV, Bratishko KA, Buyko EE, Azarkina LA, Ivanov VV, Mihalyov DA, Trofimova ES, Danilets MG, Ligacheva AA, Konstantinov AI, Ufandeev AA, Rabtsevich ES, Drygunova LA, Zima AP, Bashirov SR, Udut EV, Belousov MV. Coal-Derived Humic Substances: Insight into Chemical Structure Parameters and Biomedical Properties. Molecules 2024; 29:1530. [PMID: 38611808 PMCID: PMC11013056 DOI: 10.3390/molecules29071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
An investigation was carried out on humic substances (HSs) isolated from the coal of the Kansk-Achinsk basin (Krasnoyarsk Territory, Russia). The coal HSs demonstrate the main parameters of molecular structure inherent to this class of natural compounds. An assessment was performed for the chemical, microbiological, and pharmacological safety parameters, as well as the biological efficacy. The HS sample meets the safety requirements in microbiological purity, toxic metals content (lead, cadmium, mercury, arsenic), and radionuclides. The presence of 11 essential elements was determined. The absence of general, systemic toxicity, cytotoxicity, and allergenic properties was demonstrated. The coal HS sample was classified as a Class V hazard (low danger substances). High antioxidant and antiradical activities and immunotropic and cytoprotective properties were identified. The ability of the HS to inhibit hydroxyl radicals and superoxide anion radicals was revealed. Pronounced actoprotective and nootropic activities were also demonstrated in vivo. Intragastric administration of the HS sample resulted in the improvement of physical parameters in mice as assessed by the "swim exhaustion" test. Furthermore, intragastric administration in mice with cholinergic dysfunction led to a higher ability of animals with scopolamine-induced amnesia to form conditioned reflexes. These findings suggest that the studied HS sample is a safe and effective natural substance, making it suitable for use as a dietary bioactive supplement.
Collapse
Affiliation(s)
- Maria V. Zykova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Kristina A. Bratishko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Evgeny E. Buyko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Lyudmila A. Azarkina
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Vladimir V. Ivanov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Dmitrii A. Mihalyov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Evgeniya S. Trofimova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634050 Tomsk, Russia; (M.G.D.); (A.A.L.)
| | - Marina G. Danilets
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634050 Tomsk, Russia; (M.G.D.); (A.A.L.)
| | - Anastasia A. Ligacheva
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634050 Tomsk, Russia; (M.G.D.); (A.A.L.)
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia;
| | - Alexander A. Ufandeev
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Evgenia S. Rabtsevich
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
- Tomsk State University, 634050 Tomsk, Russia
| | - Larisa A. Drygunova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Anastasia P. Zima
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Sergey R. Bashirov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Elena V. Udut
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| | - Mikhail V. Belousov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (K.A.B.); (E.E.B.); (L.A.A.); (V.V.I.); (D.A.M.); (E.S.T.); (A.A.U.); (E.S.R.); (L.A.D.); (A.P.Z.); (S.R.B.); (E.V.U.); (M.V.B.)
| |
Collapse
|
7
|
Bensussen A, Torres-Magallanes JA, Álvarez-Buylla ER, de Álvarez-Buylla ER. Hybrid lineages of CD4 + T cells: a handbook update. Front Immunol 2024; 15:1344078. [PMID: 38312841 PMCID: PMC10834732 DOI: 10.3389/fimmu.2024.1344078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
CD4+ T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats. In this work, we reviewed the characteristics of the hybrid lineages reported in the literature, in order to identify the expression profiles that characterize them and the markers that could be used to identify them. We also review the differentiation cues that elicit their hybrid origin and what is known about their physiological roles.
Collapse
Affiliation(s)
- Antonio Bensussen
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - José Antonio Torres-Magallanes
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena Roces de Álvarez-Buylla
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
8
|
Surcel M, Constantin C, Munteanu AN, Costea DA, Isvoranu G, Codrici E, Popescu ID, Tănase C, Ibram A, Neagu M. Immune Portrayal of a New Therapy Targeting Microbiota in an Animal Model of Psoriasis. J Pers Med 2023; 13:1556. [PMID: 38003872 PMCID: PMC10672519 DOI: 10.3390/jpm13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS There were significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Antonia Costea
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gheorghița Isvoranu
- Animal Husbandry, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania;
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Cristiana Tănase
- Faculty of Medicine, Titu Maiorescu University, Calea Văcăreşti 189, 031593 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, Şos. Centurii 7, 077190 Voluntari, Romania;
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
9
|
Vlahos AE, Call CC, Kadaba SE, Guo S, Gao XJ. Compact Programmable Control of Protein Secretion in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560774. [PMID: 37873144 PMCID: PMC10592972 DOI: 10.1101/2023.10.04.560774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synthetic biology currently holds immense potential to engineer the spatiotemporal control of intercellular signals for biomedicine. Programming behaviors using protein-based circuits has advantages over traditional gene circuits such as compact delivery and direct interactions with signaling proteins. Previously, we described a generalizable platform called RELEASE to enable the control of intercellular signaling through the proteolytic removal of ER-retention motifs compatible with pre-existing protease-based circuits. However, these tools lacked the ability to reliably program complex expression profiles and required numerous proteases, limiting delivery options. Here, we harness the recruitment and antagonistic behavior of endogenous 14-3-3 proteins to create RELEASE-NOT to turn off protein secretion in response to protease activity. By combining RELEASE and RELEASE-NOT, we establish a suite of protein-level processing and output modules called Compact RELEASE (compRELEASE). This innovation enables functions such as logic processing and analog signal filtering using a single input protease. Furthermore, we demonstrate the compactness of the post-translational design by using polycistronic single transcripts to engineer cells to control protein secretion via lentiviral integration and leverage mRNA delivery to selectively express cell surface proteins only in engineered cells harboring inducible proteases. CompRELEASE enables complex control of protein secretion and enhances the potential of synthetic protein circuits for therapeutic applications, while minimizing the overall genetic payload.
Collapse
Affiliation(s)
- Alexander E. Vlahos
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Connor C. Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samarth E. Kadaba
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Siqi Guo
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- The Chinese Undergraduate Visiting Research (UGVR) Program, Stanford, CA, 94305, USA
| | - Xiaojing J. Gao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Morin S, Tremblay A, Dumais E, Julien P, Flamand N, Pouliot R. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells. Biomolecules 2023; 13:1413. [PMID: 37759812 PMCID: PMC10526348 DOI: 10.3390/biom13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin's lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 PUFAs). Bioactive lipid mediators derived from arachidonic acid (AA) are involved in the inflammatory functions of T cells in psoriasis, whereas n-3 PUFAs' derivatives are anti-inflammatory metabolites. Here, we sought to evaluate the influence of a supplementation of the culture media with eicosapentaenoic acid (EPA) on the lipid profile of a psoriatic skin model produced with polarized T cells. Healthy and psoriatic skin substitutes were produced following the auto-assembly technique. Psoriatic skin substitutes produced with or without T cells presented increased epidermal and dermal linolenic acid (LA) and AA levels. N-6 PUFA lipid mediators were strongly measured in psoriatic substitutes, namely, 13-hydroxyoctadecadienoic acid (13-HODE), prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). The added EPA elevated the amounts of EPA, n-3 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in the epidermal and dermal phospholipids. The EPA supplementation balanced the production of epidermal lipid mediators, with an increase in prostaglandin E3 (PGE3), 12-hydroxyeicosapentaenoic acid (12-HEPE) and N-eicosapentaenoyl-ethanolamine (EPEA) levels. These findings show that EPA modulates the lipid composition of psoriatic skin substitutes by encouraging the return to a cutaneous homeostatic state.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elizabeth Dumais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
| | - Pierre Julien
- Centre de Recherche du CHU de Québec-Université Laval, Axe Endocrinologie et Néphrologie, Université Laval, Québec, QC G1V 4G2, Canada;
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Decreased frequency of Th22 cells and IL-22 cytokine in kidney transplant patients with active cytomegalovirus infection. BMC Immunol 2023; 24:18. [PMID: 37403036 DOI: 10.1186/s12865-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The immunity of CD4+ T cell subsets against human cytomegalovirus (HCMV) is considerable due to their essential role in controlling the infection in transplant individuals. Previously explained CD4+ subsets such as T helper (Th) 1 have been proven to have a protective role against HCMV infection, while the role of the recently identified Th22 subset has not been described yet. Here, the frequency changes of Th22 cells and the IL-22 cytokine production were investigated in kidney transplant recipients with and without HCMV infection. METHODS Twenty kidney transplant patients and ten healthy controls were enrolled in this study. Patients were categorized into HCMV + and HCMV- groups based on the HCMV DNA real-time PCR results. After isolating CD4+ T cells from PBMCs, the phenotype (CCR6+CCR4+CCR10+) and cytokine profile (IFN-γ-IL-17-IL-22+) of Th22 cells were analyzed by flow cytometry. The gene expression of Aryl Hydrocarbon Receptor (AHR) transcription factor was analyzed by real-time PCR. RESULTS The phenotype frequency of these cells was lower in recipients with infection than in those without infection and healthy controls (1.88 ± 0.51 vs. 4.31 ± 1.05; P = 0.03 and 4.22 ± 0.72; P = 0.01, respectively). A lower Th22 cytokine profile was observed in patients with infection than in the two other groups (0.18 ± 0.03 vs. 0.20 ± 0.03; P = 0.96 and 0.33 ± 0.05; P = 0.04, respectively). AHR expression was also lower in patients with active infection. CONCLUSIONS Overall, this study for the first time suggests that the reduced levels of Th22 subset and IL-22 cytokine in patients with active HCMV infection might indicate the protective role of these cells against HCMV.
Collapse
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Balogun O, Shuaib BI, Usman A, Yusuf AA, Musa BO, Reginald OO, Babadoko AA. Effects of anti-retroviral therapy on baseline serum interleukin-18 levels in HIV-I infected patients relative to viral suppression and CD4+ gain: A prospective pilot study. Biomedicine (Taipei) 2023; 13:24-33. [PMID: 37937297 PMCID: PMC10627208 DOI: 10.37796/2211-8039.1406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 11/09/2023] Open
Abstract
Background In HIV infection, dysregulation of cytokines, including interleukin 18 (IL-18), has been linked to poor clinical outcomes in studies mainly conducted in resource-rich countries. This phenomenon has not been well-studied in resource-limited settings where outcomes could be confounded by exposure to endemic infections and genetic factors. Objectives Therefore, the influence of immunological and virological status of HIV-infected, antiretroviral therapy (ART)-naïve patients on serum IL-18 levels at baseline (pretreatment) and 24 weeks following initiation of combination ART (cART24) in a resource-limited setting was investigated. Methods Using the cross-sectional and longitudinal mixed method design, a total of Forty-four (44) newly diagnosed consenting HIV patients were consecutively recruited during routine clinic visits at the Nasara Treatment & Care Centre of the Ahmadu Bello University Teaching Hospital (ABUTH), Zaria, Nigeria between December 2016 to January 2018, and followed up for 24 weeks on initiation of first-line cART. Results Serum IL-18 concentrations, CD4+ T-cell counts (CD4+) counts, and HIV1 RNA levels were determined at baseline and cART24. There was little CD4+ count gain in both <200 and ≥ 200 cell/mm3subgroups despite the high proportion of subjects having virological suppression (n = 35, [80%]) at cART24. However, at cART24 there was a more than a threefold decrease in the level of IL-18 concentration compared to baseline in patients with <200 cells/mm3 and a significant decrease in the median plasma IL-18 concentration in patients with HIV1 RNA <1000 cp/mL at cART24. A multivariate logistic regression model shows IL-18 intermediate quartile to be more related to immunological poor gain as compared to the highest quartile. Conclusion Our study found high baseline and significantly low levels of IL-18 at cART24 in virologically suppressed subjects but not among virological non-suppressed responders despite comparable IL-18 levels by CD4+ T cell count strata at cART24. These findings have implications for risk stratification and treatment outcomes in HIV-positive persons.
Collapse
Affiliation(s)
- Olayemi Balogun
- Department of Medical Microbiology, Ahmadu Bello University Teaching Hospital, Zaria,
Nigeria
| | - Bukhari I. Shuaib
- Anti-Retroviral Therapy (ART) Laboratory, Ahmadu Bello University Teaching Hospital, Zaria,
Nigeria
| | - Abdulrasheed Usman
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Science Ahmadu Bello University, Zaria,
Nigeria
| | - Aminu A. Yusuf
- Department of Haematology, Faculty of Clinical Sciences, Bayero University Kano,
Nigeria
- Department of Haematology and Blood Transfusion, Aminu Kano Teaching Hospital,
Nigeria
| | - Bolanle O.P. Musa
- Department of Medical Microbiology, Ahmadu Bello University Teaching Hospital, Zaria,
Nigeria
| | - Obiako O. Reginald
- Department of Medical Microbiology, Ahmadu Bello University Teaching Hospital, Zaria,
Nigeria
| | - Aliyu A. Babadoko
- Anti-Retroviral Therapy (ART) Laboratory, Ahmadu Bello University Teaching Hospital, Zaria,
Nigeria
| |
Collapse
|
14
|
Sun X, Hosomi K, Shimoyama A, Yoshii K, Lan H, Wang Y, Yamaura H, Nagatake T, Ishii KJ, Akira S, Kiyono H, Fukase K, Kunisawa J. TLR4 agonist activity of Alcaligenes lipid a utilizes MyD88 and TRIF signaling pathways for efficient antigen presentation and T cell differentiation by dendritic cells. Int Immunopharmacol 2023; 117:109852. [PMID: 36806039 DOI: 10.1016/j.intimp.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Alcaligenes faecalis was previously identified as an intestinal lymphoid tissue-resident commensal bacteria, and our subsequent studies showed that lipopolysaccharide and its core active element (i.e., lipid A) have a potent adjuvant activity to promote preferentially antigen-specific Th17 response and antibody production. Here, we compared A. faecalis lipid A (ALA) with monophosphoryl lipid A, a licensed lipid A-based adjuvant, to elucidate the immunological mechanism underlying the adjuvant properties of ALA. Compared with monophosphoryl lipid A, ALA induced higher levels of MHC class II molecules and costimulatory CD40, CD80, and CD86 on dendritic cells (DCs), which in turn resulted in strong T cell activation. Moreover, ALA more effectively promoted the production of IL-6 and IL-23 from DCs than did monophosphoryl lipid A, thus leading to preferential induction of Th17 and Th1 cells. As underlying mechanisms, we found that the ALA-TLR4 axis stimulated both MyD88- and TRIF-mediated signaling pathways, whereas monophosphoryl lipid A was biased toward TRIF signaling. These findings revealed the effects of ALA on DCs and T cells and its induction pattern on signaling pathways.
Collapse
Affiliation(s)
- Xiao Sun
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Atsushi Shimoyama
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Haruki Yamaura
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Ken J Ishii
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Kiyono
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), San Diego, CA, United States; Chiba University (CU)-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), UCSD, San Diego, CA, United States; Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan.
| |
Collapse
|
15
|
von Mücke-Heim IA, Martin J, Uhr M, Ries C, Deussing JM. The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation. Front Pharmacol 2023; 14:1148190. [PMID: 37101546 PMCID: PMC10123291 DOI: 10.3389/fphar.2023.1148190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: In recent years, purinergic signaling via the P2X7 receptor (P2X7R) on microglia has repeatedly been implicated in depression genesis. However, it remains unclear which role the human P2X7R (hP2X7R) plays in regulating both microglia morphology and cytokine secretion upon different environmental and immune stimuli, respectively. Methods: For this purpose, we used primary microglial cultures derived from a humanized microglia-specific conditional P2X7R knockout mouse line to emulate different gene-environment interactions between microglial hP2X7R and molecular proxies of psychosocial and pathogen-derived immune stimuli. Microglial cultures were subjected to treatments with the agonists 2'(3')-O-(4-benzoylbenzoyl)-ATP (BzATP) and lipopolysaccharides (LPS) combined with specific P2X7R antagonists (JNJ-47965567, A-804598). Results: Morphotyping revealed overall high baseline activation due to the in vitro conditions. Both BzATP and LPS + BzATP treatment increased round/ameboid microglia and decreased polarized and ramified morphotypes. This effect was stronger in hP2X7R-proficient (CTRL) compared to knockout (KO) microglia. Aptly, we found antagonism with JNJ-4796556 and A-804598 to reduce round/ameboid microglia and increase complex morphologies only in CTRL but not KO microglia. Single cell shape descriptor analysis confirmed the morphotyping results. Compared to KO microglia, hP2X7R-targeted stimulation in CTRLs led to a more pronounced increase in microglial roundness and circularity along with an overall higher decrease in aspect ratio and shape complexity. JNJ-4796556 and A-804598, on the other hand, led to opposite dynamics. In KO microglia, similar trends were observed, yet the magnitude of responses was much smaller. Parallel assessment of 10 cytokines demonstrated the proinflammatory properties of hP2X7R. Following LPS + BzATP stimulation, IL-1β, IL-6, and TNFα levels were found to be higher and IL-4 levels lower in CTRL than in KO cultures. Vice versa, hP2X7R antagonists reduced proinflammatory cytokine levels and increased IL-4 secretion. Discussion: Taken together, our results help disentangle the complex function of microglial hP2X7R downstream of various immune stimuli. In addition, this is the first study in a humanized, microglia-specific in vitro model identifying a so far unknown potential link between microglial hP2X7R function and IL-27 levels.
Collapse
Affiliation(s)
| | - Jana Martin
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- *Correspondence: Jan M. Deussing,
| |
Collapse
|
16
|
CD4+ T Cell Regulatory Network Underlies the Decrease in Th1 and the Increase in Anergic and Th17 Subsets in Severe COVID-19. Pathogens 2022; 12:pathogens12010018. [PMID: 36678366 PMCID: PMC9865341 DOI: 10.3390/pathogens12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this model we use a dynamic and multistable Boolean regulatory network to provide a mechanistic explanation of the lymphopenia and dysregulation of CD4+ T cell subsets in COVID-19 and provide therapeutic targets. Using a previous model, the cytokine micro-environments found in mild, moderate, and severe COVID-19 with and without TGF-β and IL-10 was we simulated. It shows that as the severity of the disease increases, the number of antiviral Th1 cells decreases, while the the number of Th1-like regulatory and exhausted cells and the proportion between Th1 and Th1R cells increases. The addition of the regulatory cytokines TFG-β and IL-10 makes the Th1 attractor unstable and favors the Th17 and regulatory subsets. This is associated with the contradictory signals in the micro-environment that activate SOCS proteins that block the signaling pathways. Furthermore, it determined four possible therapeutic targets that increase the Th1 compartment in severe COVID-19: the activation of the IFN-γ pathway, or the inhibition of TGF-β or IL-10 pathways or SOCS1 protein; from these, inhibiting SOCS1 has the lowest number of predicted collateral effects. Finally, a tool is provided that allows simulations of specific cytokine environments and predictions of CD4 T cell subsets and possible interventions, as well as associated secondary effects.
Collapse
|
17
|
Singh G, Martin Rumende C, Sharma SK, Rengganis I, Amin Z, Loho T, Hermiyanti E, Harimurti K, Wibowo H. Low BALF CD4 T cells count is associated with extubation failure and mortality in critically ill covid-19 pneumonia. Ann Med 2022; 54:1894-1905. [PMID: 35786088 PMCID: PMC9258432 DOI: 10.1080/07853890.2022.2095012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Critically ill COVID-19 pneumonia is one of the main causes of extubation failure and mortality. Understanding clinical characteristics, laboratory profiles and bronchoalveolar lavage fluid (BALF) immunopathology may help improve outcomes in critically ill COVID-19 pneumonia. We aimed to describe clinical characteristics, laboratory profiles and BALF immunopathology based on lung severity in critically ill COVID-19 pneumonia patients. MATERIALS AND METHODS Forty critically ill severe pneumonia patients requiring invasive mechanical ventilation in Cipto Mangunkusumo General (National Tertiary Referral Hospital), Indonesia within November 2020-January 2021 were enrolled in this study. Early BALF collection was performed after patients' intubation. Clinical characteristics, laboratory profiles and BALF biomarkers (sTREM-1, alveolar macrophage amount and function, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3) were observed and analysed. Outcomes were measured based on extubation failure (within 19 days) and 28-days mortality. Univariate and bivariate analyses were performed. RESULTS Early bronchoscopy was performed in an average of 4 h (SD = 0.82) after patients' intubation. Twenty-three and twenty-two patients had extubation failure (within 19 days) and 28-days mortality, respectively. In the baseline clinical characteristics of critically ill COVID-19 patients, we found no significant differences in the extubation and mortality status groups. In the laboratory profiles of critically ill COVID-19 patients, we found no significant differences in the extubation status groups. In critically ill COVID-19 pneumonia patients, there was a significant high D-dimer levels in survived group (p = .027), a significant low BALF CD4 T-cells count in the right lung (p = .001) and a significant low BALF CD4 T-cells count (p = .010 and p = .018) in severely affected lung with extubation failure and mortality. CONCLUSIONS BALF CD4 T-cells count evaluation of severely affected lung is associated with early extubation failure and mortality in critically ill COVID-19 pneumonia patients. KEY MESSAGEFew studies have been conducted during the peak COVID-19 period analysing combined bronchoalveolar lavage fluid (BALF) immunopathology biomarkers within four hours of intubation to assess extubation failure and mortality. In this study, we reported eight BALF immunopathology biomarkers (sTREM-1, alveolar macrophage, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3).We found significantly low BALF CD4 T-cells count in the right lung, and low BALF CD4 T-cells count in severely affected lung of critically ill COVID-19 pneumonia patients in extubation failure and mortality.
Collapse
Affiliation(s)
- Gurmeet Singh
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Surendra K Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Hamdard University, New Delhi, India.,Department of General Medicine & Pulmonary Medicine, JNMC, Datta Meghe Institute of Medical Science, New Delhi, India
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Division of Allergy and Clinical Immunology, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Zulkifli Amin
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tonny Loho
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Emmy Hermiyanti
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Padjadjaran, Dr Hasan Sadikin Hospital Bandung, Bandung, Indonesia
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Division of Geriatrics, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Head of Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Martínez-Méndez D, Huerta L, Villarreal C. Modeling the effect of environmental cytokines, nutrient conditions and hypoxia on CD4+ T cell differentiation. Front Immunol 2022; 13:962175. [PMID: 36211418 PMCID: PMC9539201 DOI: 10.3389/fimmu.2022.962175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen stimulation and co-stimulation, CD4+ T lymphocytes produce soluble factors that promote the activity of other immune cells against pathogens or modified tissues; this task must be performed in presence of a variety of environmental cytokines, nutrient, and oxygen conditions, which necessarily impact T cell function. The complexity of the early intracellular processes taking place upon lymphocyte stimulation is addressed by means of a mathematical model based on a network that integrates variable microenvironmental conditions with intracellular activating, regulatory, and metabolic signals. Besides the phenotype subsets considered in previous works (Th1, Th2, Th17, and Treg) the model includes the main early events in differentiation to the TFH phenotype. The model describes how cytokines, nutrients and oxygen availability regulate the differentiation of naïve CD4+ T cells into distinct subsets. Particularly, it shows that elevated amounts of an all-type mixture of effector cytokines under optimal nutrient and oxygen availability conduces the system towards a highly-polarized Th1 or Th2 state, while reduced cytokine levels allow the expression of the Th17, Treg or TFH subsets, or even hybrid phenotypes. On the other hand, optimal levels of an all-type cytokine mixture in combination with glutamine or tryptophan restriction implies a shift from Th1 to Th2 expression, while decreased levels of the Th2-inducing cytokine IL-4 leads to the rupture of the Th1-Th2 axis, allowing the manifestation of different (or hybrid) subsets. Modeling proposes that, even under reduced levels of pro-inflammatory cytokines, the sole action of hypoxia boost Th17 expression.
Collapse
Affiliation(s)
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Departamento de Inmunología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carlos Villarreal, ; Leonor Huerta,
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carlos Villarreal, ; Leonor Huerta,
| |
Collapse
|
19
|
Jia J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front Cell Neurosci 2022; 16:982881. [PMID: 36119128 PMCID: PMC9479450 DOI: 10.3389/fncel.2022.982881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Central and peripheral interventions for brain injury rehabilitation have been widely employed. However, as patients’ requirements and expectations for stroke rehabilitation have gradually increased, the limitations of simple central intervention or peripheral intervention in the rehabilitation application of stroke patients’ function have gradually emerged. Studies have suggested that central intervention promotes the activation of functional brain regions and improves neural plasticity, whereas peripheral intervention enhances the positive feedback and input of sensory and motor control modes to the central nervous system, thereby promoting the remodeling of brain function. Based on the model of a central–peripheral–central (CPC) closed loop, the integration of center and peripheral interventions was effectively completed to form “closed-loop” information feedback, which could be applied to specific brain areas or function-related brain regions of patients. Notably, the closed loop can also be extended to central and peripheral immune systems as well as central and peripheral organs such as the brain–gut axis and lung–brain axis. In this review article, the model of CPC closed-loop rehabilitation and the potential neuroimmunological mechanisms of a closed-loop approach will be discussed. Further, we highlight critical questions about the neuroimmunological aspects of the closed-loop technique that merit future research attention.
Collapse
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Regional Medical Center, Fujian, China
- The First Affiliated Hospital of Fujian Medical University, Fujian, China
- *Correspondence: Jie Jia,
| |
Collapse
|
20
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Risk assessment of Human cytomegalovirus infection in solid organ transplantation: Insight into
CD4
+
T cell subsets. Scand J Immunol 2022. [DOI: 10.1111/sji.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
21
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
22
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
23
|
Jansen JE, Aschenbrenner D, Uhlig HH, Coles MC, Gaffney EA. A method for the inference of cytokine interaction networks. PLoS Comput Biol 2022; 18:e1010112. [PMID: 35731827 PMCID: PMC9216621 DOI: 10.1371/journal.pcbi.1010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-cell communication is mediated by many soluble mediators, including over 40 cytokines. Cytokines, e.g. TNF, IL1β, IL5, IL6, IL12 and IL23, represent important therapeutic targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of cytokines that are causative drivers of, and not just associated with, inflammation is fundamental for selecting therapeutic targets that should be studied in clinical trials. As in vitro models of cytokine interactions provide a simplified framework to study complex in vivo interactions, and can easily be perturbed experimentally, they are key for identifying such targets. We present a method to extract a minimal, weighted cytokine interaction network, given in vitro data on the effects of the blockage of single cytokine receptors on the secretion rate of other cytokines. Existing biological network inference methods typically consider the correlation structure of the underlying dataset, but this can make them poorly suited for highly connected, non-linear cytokine interaction data. Our method uses ordinary differential equation systems to represent cytokine interactions, and efficiently computes the configuration with the lowest Akaike information criterion value for all possible network configurations. It enables us to study indirect cytokine interactions and quantify inhibition effects. The extracted network can also be used to predict the combined effects of inhibiting various cytokines simultaneously. The model equations can easily be adjusted to incorporate more complicated dynamics and accommodate temporal data. We validate our method using synthetic datasets and apply our method to an experimental dataset on the regulation of IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model predictions against experimental data that were not used for model fitting. In summary, we present a novel method specifically designed to efficiently infer cytokine interaction networks from cytokine perturbation data in the context of IMIDs. Cytokines are the messenger molecules of the immune system, allowing intercellular communication and mediating effective immune responses. They are an important therapeutic target in immune mediated inflammatory diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis. Cytokines interact in a tightly regulated network and depending on the context a particular cytokine can be involved in anti-inflammatory or inflammatory activities. In order to determine which cytokines to target in specific disease types and patient subsets, it is critical to study the effects of the inhibition of one or more cytokines on the larger cytokine interaction network. We present a novel method to extract a minimal, weighted network from cytokine interaction data. Existing biological network inference methods typically consider the correlation structure of the underlying dataset and/or make further assumptions of the dataset such as the existence of a small core of regulators. This can make them poorly suited for highly connected, non-linear cytokine interaction data. We validated our method using synthetic data and applied our method to a dataset on the regulation of IL23, a cytokine implicated in IBD pathogenesis. Predictions of the extracted IL23 network were validated using additional experimental data and were used to support the view of the cytokines IL1 and IL23 as promising targets for those patients that fail to respond to TNFα inhibition, the current golden standard in IBD treatment.
Collapse
Affiliation(s)
- Joanneke E. Jansen
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark C. Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Hope JM, Dombroski JA, Pereles RS, Lopez-Cavestany M, Greenlee JD, Schwager SC, Reinhart-King CA, King MR. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol 2022; 20:61. [PMID: 35260156 PMCID: PMC8904069 DOI: 10.1186/s12915-022-01266-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background T cell activation is a mechanical process as much as it is a biochemical process. In this study, we used a cone-and-plate viscometer system to treat Jurkat and primary human T cells with fluid shear stress (FSS) to enhance the activation of the T cells through mechanical means. Results The FSS treatment of T cells in combination with soluble and bead-bound CD3/CD28 antibodies increased the activation of signaling proteins essential for T cell activation, such as zeta-chain-associated protein kinase-70 (ZAP70), nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), and AP-1 (activator protein 1). The FSS treatment also enhanced the expression of the cytokines tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), and interferon gamma (IFN-γ), which are necessary for sustained T cell activation and function. The enhanced activation of T cells by FSS was calcium dependent. The calcium signaling was controlled by the mechanosensitive ion channel Piezo1, as GsMTx-4 and Piezo1 knockout reduced ZAP70 phosphorylation by FSS. Conclusions These results demonstrate an intriguing new dynamic to T cell activation, as the circulatory system consists of different magnitudes of FSS and could have a proinflammatory role in T cell function. The results also identify a potential pathophysiological relationship between T cell activation and FSS, as hypertension is a disease characterized by abnormal blood flow and is correlated with multiple autoimmune diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01266-7.
Collapse
Affiliation(s)
- Jacob M Hope
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Rebecca S Pereles
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Maria Lopez-Cavestany
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Joshua D Greenlee
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA.
| |
Collapse
|
26
|
Karkanitsa M, Fathi P, Ngo T, Sadtler K. Mobilizing Endogenous Repair Through Understanding Immune Reaction With Biomaterials. Front Bioeng Biotechnol 2021; 9:730938. [PMID: 34917594 PMCID: PMC8670074 DOI: 10.3389/fbioe.2021.730938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
With few exceptions, humans are incapable of fully recovering from severe physical trauma. Due to these limitations, the field of regenerative medicine seeks to find clinically viable ways to repair permanently damaged tissue. There are two main approaches to regenerative medicine: promoting endogenous repair of the wound, or transplanting a material to replace the injured tissue. In recent years, these two methods have fused with the development of biomaterials that act as a scaffold and mobilize the body's natural healing capabilities. This process involves not only promoting stem cell behavior, but by also inducing activity of the immune system. Through understanding the immune interactions with biomaterials, we can understand how the immune system participates in regeneration and wound healing. In this review, we will focus on biomaterials that promote endogenous tissue repair, with discussion on their interactions with the immune system.
Collapse
Affiliation(s)
| | | | | | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Martínez-Méndez D, Mendoza L, Villarreal C, Huerta L. Continuous Modeling of T CD4 Lymphocyte Activation and Function. Front Immunol 2021; 12:743559. [PMID: 34804023 PMCID: PMC8602102 DOI: 10.3389/fimmu.2021.743559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
T CD4+ cells are central to the adaptive immune response against pathogens. Their activation is induced by the engagement of the T-cell receptor by antigens, and of co-stimulatory receptors by molecules also expressed on antigen presenting cells. Then, a complex network of intracellular events reinforce, diversify and regulate the initial signals, including dynamic metabolic processes that strongly influence both the activation state and the differentiation to effector cell phenotypes. The regulation of cell metabolism is controlled by the nutrient sensor adenosine monophosphate-activated protein kinase (AMPK), which drives the balance between oxidative phosphorylation (OXPHOS) and glycolysis. Herein, we put forward a 51-node continuous mathematical model that describes the temporal evolution of the early events of activation, integrating a circuit of metabolic regulation into the main routes of signaling. The model simulates the induction of anergy due to defective co-stimulation, the CTLA-4 checkpoint blockade, and the differentiation to effector phenotypes induced by external cytokines. It also describes the adjustment of the OXPHOS-glycolysis equilibrium by the action of AMPK as the effector function of the T cell develops. The development of a transient phase of increased OXPHOS before induction of a sustained glycolytic phase during differentiation to the Th1, Th2 and Th17 phenotypes is shown. In contrast, during Treg differentiation, glycolysis is subsequently reduced as cell metabolism is predominantly polarized towards OXPHOS. These observations are in agreement with experimental data suggesting that OXPHOS produces an ATP reservoir before glycolysis boosts the production of metabolites needed for protein synthesis, cell function, and growth.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
28
|
Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules 2021; 11:1011. [PMID: 34356636 PMCID: PMC8301842 DOI: 10.3390/biom11071011] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening medical condition that occurs when the host has an uncontrolled or abnormal immune response to overwhelming infection. It is now widely accepted that sepsis occurs in two concurrent phases, which consist of an initial immune activation phase followed by a chronic immunosuppressive phase, leading to immune cell death. Depending on the severity of the disease and the pathogen involved, the hosts immune system may not fully recover, leading to ongoing complications proceeding the initial infection. As such, sepsis remains one of the leading causes of morbidity and mortality world-wide, with treatment options limited to general treatment in intensive care units (ICU). Lack of specific treatments available for sepsis is mostly due to our limited knowledge of the immuno-physiology associated with the disease. This review will provide a comprehensive overview of the mechanisms and cell types involved in eliciting infection-induced immune activation from both the innate and adaptive immune system during sepsis. In addition, the mechanisms leading to immune cell death following hyperactivation of immune cells will be explored. The evaluation and better understanding of the cellular and systemic responses leading to disease onset could eventuate into the development of much needed therapies to combat this unrelenting disease.
Collapse
Affiliation(s)
- Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
29
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
30
|
Corral-Jara KF, Rosas da Silva G, Fierro NA, Soumelis V. Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:675099. [PMID: 34026764 PMCID: PMC8137995 DOI: 10.3389/fcell.2021.675099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
CD4 + T cell differentiation is governed by gene regulatory and metabolic networks, with both networks being highly interconnected and able to adapt to external stimuli. Th17 and Tregs differentiation networks play a critical role in cancer, and their balance is affected by the tumor microenvironment (TME). Factors from the TME mediate recruitment and expansion of Th17 cells, but these cells can act with pro or anti-tumor immunity. Tregs cells are also involved in tumor development and progression by inhibiting antitumor immunity and promoting immunoevasion. Due to the complexity of the underlying molecular pathways, the modeling of biological systems has emerged as a promising solution for better understanding both CD4 + T cell differentiation and cancer cell behavior. In this review, we present a context-dependent vision of CD4 + T cell transcriptomic and metabolic network adaptability. We then discuss CD4 + T cell knowledge-based models to extract the regulatory elements of Th17 and Tregs differentiation in multiple CD4 + T cell levels. We highlight the importance of complementing these models with data from omics technologies such as transcriptomics and metabolomics, in order to better delineate existing Th17 and Tregs bifurcation mechanisms. We were able to recompilate promising regulatory components and mechanisms of Th17 and Tregs differentiation under normal conditions, which we then connected with biological evidence in the context of the TME to better understand CD4 + T cell behavior in cancer. From the integration of mechanistic models with omics data, the transcriptomic and metabolomic reprograming of Th17 and Tregs cells can be predicted in new models with potential clinical applications, with special relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Karla F. Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, PSL Research University, Paris, France
| | | | - Nora A. Fierro
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vassili Soumelis
- Université de Paris, INSERM U976, France and AP-HP, Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
31
|
Corral-Jara KF, Chauvin C, Abou-Jaoudé W, Grandclaudon M, Naldi A, Soumelis V, Thieffry D. Interplay between SMAD2 and STAT5A is a critical determinant of IL-17A/IL-17F differential expression. MOLECULAR BIOMEDICINE 2021; 2:9. [PMID: 35006414 PMCID: PMC8607379 DOI: 10.1186/s43556-021-00034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukins (IL)-17A and F are critical cytokines in anti-microbial immunity but also contribute to auto-immune pathologies. Recent evidence suggests that they may be differentially produced by T-helper (Th) cells, but the underlying mechanisms remain unknown. To address this question, we built a regulatory graph integrating all reported upstream regulators of IL-17A and F, completed by ChIP-seq data analyses. The resulting regulatory graph encompasses 82 components and 136 regulatory links. The graph was then supplemented by logical rules calibrated with original flow cytometry data using naive CD4+ T cells, in conditions inducing IL-17A or IL-17F. The model displays specific stable states corresponding to virtual phenotypes explaining IL-17A and IL-17F differential regulation across eight cytokine stimulatory conditions. Our model analysis points to the transcription factors NFAT2A, STAT5A and SMAD2 as key regulators of the differential expression of IL-17A and IL-17F, with STAT5A controlling IL-17F expression, and an interplay of NFAT2A, STAT5A and SMAD2 controlling IL-17A expression. We experimentally observed that the production of IL-17A was correlated with an increase of SMAD2 transcription, and the expression of IL-17F correlated with an increase of BLIMP-1 transcription, together with an increase of STAT5A expression (mRNA), as predicted by our model. Interestingly, RORγt presumably plays a more determinant role in IL-17A expression as compared to IL-17F expression. In conclusion, we propose the first mechanistic model accounting for the differential expression of IL-17A and F in Th cells, providing a basis to design novel therapeutic interventions in auto-immune and inflammatory diseases.
Collapse
Affiliation(s)
- Karla Fabiola Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Camille Chauvin
- Integrative Biology of Human Dendritic Cells and T Cells Team, Institut de Recherche St-Louis, U976, Hôpital Saint Louis, 75010, Paris, France
| | - Wassim Abou-Jaoudé
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Maximilien Grandclaudon
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005, Paris, France
| | - Aurélien Naldi
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells Team, Institut de Recherche St-Louis, U976, Hôpital Saint Louis, 75010, Paris, France.
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France.
| |
Collapse
|
32
|
Yang P, Tian H, Zou YR, Chambon P, Ichinose H, Honig G, Diamond B, Kim SJ. Epinephrine Production in Th17 Cells and Experimental Autoimmune Encephalitis. Front Immunol 2021; 12:616583. [PMID: 33692790 PMCID: PMC7937652 DOI: 10.3389/fimmu.2021.616583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Epinephrine is a hormone secreted primarily by medullary cells of the adrenal glands which regulates permeability of blood–brain barrier (BBB). Recent studies showed signaling by epinephrine/epinephrine receptor in T cells is involved in autoimmune diseases. Nevertheless, the production of epinephrine by T cells and its pathogenic function in T cells are not well investigated. Our results show that phenylethanol N-methyltransferase (PNMT), a rate-limiting enzyme of epinephrine synthesis, is specifically expressed in vitro in differentiated TH17 cells and in tissue-resident TH17 cells. Indeed, expression levels of enzymes involved in epinephrine production are higher in TH17 cells from animals after EAE induction. The induction of PNMT was not observed in other effector T cell subsets or regulatory T cells. Epinephrine producing TH17 cells exhibit co-expression of GM-CSF, suggesting they are pathogenic TH17 cells. To delineate the function of epinephrine-production in TH17 cells, we generated a TH17-specific knockout of tyrosine hydroxylase (Th) by breeding a Th-flox and a ROR-gt-CRE mouse (Th-CKO). Th-CKO mice are developmentally normal with an equivalent T lymphocyte number in peripheral lymphoid organs. Th-CKO mice also show an equivalent number of TH17 cells in vivo and following in vitro differentiation. To test whether epinephrine-producing TH17 cells are key for breaching the BBB, migration of T cells through mouse brain endothelial cells was investigated in vitro. Both epi+ wild-type and epi- TH17 cells migrate through an endothelial cell barrier. Mice were immunized with MOG peptide to induce experimental autoimmune encephalitis (EAE) and disease progression was monitored. Although there is a reduced infiltration of CD4+ T cells in Th-CKO mice, no difference in clinical score was observed between Th-CKO and wild-type control mice. Increased neutrophils were observed in the central nervous system of Th-CKO mice, suggesting an alternative pathway to EAE progression in the absence of TH17 derived epinephrine.
Collapse
Affiliation(s)
- Pinguang Yang
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, NY, United States
| | - Hong Tian
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yong-Rui Zou
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Pierre Chambon
- Institute for Genetics and Cellular and Molecular Biology, Institute of Advanced Study of the University of Strasbourg, Strasbourg, France
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Gerard Honig
- Crohn's & Colitis Foundation, National Headquarters, New York, NY, United States
| | - Betty Diamond
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sun Jung Kim
- Center of Autoimmune and Hematopoietic and Musculoskeletal diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
33
|
Michaelis L, Treß M, Löw HC, Klees J, Klameth C, Lange A, Grießhammer A, Schäfer A, Menz S, Steimle A, Schulze-Osthoff K, Frick JS. Gut Commensal-Induced IκBζ Expression in Dendritic Cells Influences the Th17 Response. Front Immunol 2021; 11:612336. [PMID: 33542719 PMCID: PMC7851057 DOI: 10.3389/fimmu.2020.612336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.
Collapse
Affiliation(s)
- Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marcel Treß
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Johanna Klees
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christian Klameth
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Grießhammer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Menz
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Lesteberg KE, Fader DS, Beckham JD. Pregnancy Alters Innate and Adaptive Immune Responses to Zika Virus Infection in the Reproductive Tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3107-3121. [PMID: 33127823 PMCID: PMC7686295 DOI: 10.4049/jimmunol.2000882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Recent outbreaks of Zika virus (ZIKV) have been associated with birth defects, including microcephaly and neurologic impairment. However, the mechanisms that confer potential susceptibility to ZIKV during pregnancy remain unclear. We hypothesized that poor outcomes from ZIKV infection during pregnancy are due in part to pregnancy-induced alteration of innate immune cell frequencies and cytokine expression. To examine the impact of pregnancy on innate immune responses, we inoculated immunocompetent pregnant and nonpregnant female C57BL/6 mice with 5 × 105 focus-forming units of ZIKV intravaginally. Innate immune cell frequencies and cytokine expression were measured by flow cytometry at day 3 postinfection. Compared with nonpregnant mice, pregnant mice exhibited higher frequencies of uterine macrophages (CD68+) and CD11c+ CD103+ and CD11c+ CD11b+ dendritic cells. Additionally, ZIKV-infected pregnant mice had lower frequencies of CD45+ IL-12+ and CD11b+ IL-12+ cells in the uterus and spleen. Next, we measured the frequencies of Ag-experienced CD4 (CD4+ CD11a+ CD49d+) and CD8 (CD8lo CD11ahi) T cells at day 10 postinfection to determine the impact of pregnancy-associated changes in innate cellular IL-12 responses on the adaptive immune response. We found that pregnant mice had lower frequencies of uterine Ag-experienced CD4 T cells and ZIKV-infected pregnant mice had lower frequencies of uterine Ag-experienced CD8 T cells compared with ZIKV-infected nonpregnant mice. These data show that pregnancy results in altered innate and adaptive immune responses to ZIKV infection in the reproductive tract of mice and that pregnancy-associated immune modulation may play an important role in the severity of acute ZIKV infection.
Collapse
Affiliation(s)
- Kelsey E Lesteberg
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Dana S Fader
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045
| | - J David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045;
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045; and
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045
| |
Collapse
|
35
|
Berchtold D, Priller J, Meisel C, Meisel A. Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 2020; 30:1208-1218. [PMID: 33058417 PMCID: PMC8018083 DOI: 10.1111/bpa.12911] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke, in association with its complications, is one of the leading causes of mortality and morbidity worldwide. Cerebral ischemia triggers an inflammatory response in the brain that is controlled by the activation of resident microglia as well as the infiltration of peripheral myeloid and lymphoid cells into the brain parenchyma. This inflammation has been shown to have both beneficial and detrimental effects on stroke outcome. The focus of this review lies on the functions of myeloid cells and their interaction with infiltrating lymphocytes in different phases of stroke. A detailed and time-specific understanding of the contribution of different immune cell subsets during the course of cerebral ischemia is crucial to specifically promote beneficial and inhibit detrimental effects of inflammation on stroke outcome.
Collapse
Affiliation(s)
- Daniel Berchtold
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and DZNE, Charité - Universitätsmedizin Berlin, Berlin, Germany.,UK DRI, University of Edinburgh, Edinburgh, UK
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
37
|
Barrera M, Hiriart M, Cocho G, Villarreal C. Type 2 diabetes progression: A regulatory network approach. CHAOS (WOODBURY, N.Y.) 2020; 30:093132. [PMID: 33003944 DOI: 10.1063/5.0011125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In order to elucidate central elements underlying type 2 diabetes, we constructed a regulatory network model involving 37 components (molecules, receptors, processes, etc.) associated to signaling pathways of pancreatic beta-cells. In a first approximation, the network topology was described by Boolean rules whose interacting dynamics predicted stationary patterns broadly classified as health, metabolic syndrome, and diabetes stages. A subsequent approximation based on a continuous logic analysis allowed us to characterize the progression of the disease as transitions between these states associated to alterations of cell homeostasis due to exhaustion or exacerbation of specific regulatory signals. The method allowed the identification of key transcription factors involved in metabolic stress as essential for the progression of the disease. Integration of the present analysis with existent mathematical models designed to yield accurate account of experimental data in human or animal essays leads to reliable predictions for beta-cell mass, insulinemia, glycemia, and glycosylated hemoglobin in diabetic fatty rats.
Collapse
Affiliation(s)
- M Barrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - M Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - G Cocho
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - C Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
38
|
Winter P, Stubenvoll S, Scheiblhofer S, Joubert IA, Strasser L, Briganser C, Soh WT, Hofer F, Kamenik AS, Dietrich V, Michelini S, Laimer J, Lackner P, Horejs-Hoeck J, Tollinger M, Liedl KR, Brandstetter J, Huber CG, Weiss R. In silico Design of Phl p 6 Variants With Altered Fold-Stability Significantly Impacts Antigen Processing, Immunogenicity and Immune Polarization. Front Immunol 2020; 11:1824. [PMID: 33013833 PMCID: PMC7461793 DOI: 10.3389/fimmu.2020.01824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Understanding, which factors determine the immunogenicity and immune polarizing properties of proteins, is an important prerequisite for designing better vaccines and immunotherapeutics. While extrinsic immune modulatory factors such as pathogen associated molecular patterns are well-understood, far less is known about the contribution of protein inherent features. Protein fold-stability represents such an intrinsic feature contributing to immunogenicity and immune polarization by influencing the amount of peptide-MHC II complexes (pMHCII). Here, we investigated how modulation of the fold-stability of the grass pollen allergen Phl p 6 affects its ability to stimulate immune responses and T cell polarization. Methods: MAESTRO software was used for in silico prediction of stabilizing or destabilizing point mutations. Mutated proteins were expressed in E. coli, and their thermal stability and resistance to endolysosomal proteases was determined. Resulting peptides were analyzed by mass spectrometry. The structure of the most stable mutant protein was assessed by X-ray crystallography. We evaluated the capacity of the mutants to stimulate T cell proliferation in vitro, as well as antibody responses and T cell polarization in vivo in an adjuvant-free BALB/c mouse model. Results: In comparison to wild-type protein, stabilized or destabilized mutants displayed changes in thermal stability ranging from -5 to +14°. While highly stabilized mutants were degraded very slowly, destabilization led to faster proteolytic processing in vitro. This was confirmed in BMDCs, which processed and presented the immunodominant epitope from a destabilized mutant more efficiently compared to a highly stable mutant. In vivo, stabilization resulted in a shift in immune polarization from TH2 to TH1/TH17 as indicated by higher levels of IgG2a and increased secretion of TNF-α, IFN-γ, IL-17, and IL-21. Conclusion: MAESTRO software was very efficient in detecting single point mutations that increase or reduce fold-stability. Thermal stability correlated well with the speed of proteolytic degradation and presentation of peptides on the surface of dendritic cells in vitro. This change in processing kinetics significantly influenced the polarization of T cell responses in vivo. Modulating the fold-stability of proteins thus has the potential to optimize and polarize immune responses, which opens the door to more efficient design of molecular vaccines.
Collapse
Affiliation(s)
- Petra Winter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Stefan Stubenvoll
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | | | - Lisa Strasser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Carolin Briganser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Wai Tuck Soh
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Florian Hofer
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anna Sophia Kamenik
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Valentin Dietrich
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Sara Michelini
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Josef Laimer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Lackner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Martin Tollinger
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | | | - Christian G Huber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
39
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
40
|
T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends Immunol 2019; 41:61-76. [PMID: 31813764 PMCID: PMC7427322 DOI: 10.1016/j.it.2019.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Fungi can cause disease in humans, from mucocutaneous to life-threatening systemic infections. Initiation of antifungal immunity involves fungal recognition by pattern recognition receptors such as C-type lectin receptors (CLRs). These germline-encoded receptors trigger a multitude of innate responses including phagocytosis, fungal killing, and antigen presentation which can also shape the development of adaptive immunity. Recently, studies have shed light on how CLRs directly or indirectly modulate lymphocyte function. Moreover, CLR-mediated recognition of commensal fungi maintains homeostasis and prevents invasion from opportunistic commensals. We present an overview of current knowledge of antifungal T cell immune responses, with emphasis on the role of C-type lectins, and discuss how these receptors modulate these responses at different levels. CLRs are essential pattern recognition receptors involved in fungal recognition and initiation of protective antifungal immunity. CLRs promote the differentiation of mammalian T helper cell subsets essential for the control of systemic (Th1) and mucosal (Th17) fungal infections. CLRs are involved in antigen presentation, the expression of co-stimulatory molecules, and cytokine secretion; therefore, they can regulate lymphocyte function and adaptive immune responses at different levels. Fungal morphological changes, such as the transition from yeast to hyphae in Candida albicans during tissue invasion, affects recognition by CLRs and impacts on adaptive immune responses. CLRs recognize the fungal component of the microbiome that can influence T cell responses during infection at intestinal and peripheral sites.
Collapse
|
41
|
Bedke N, Swindle EJ, Molnar C, Holt PG, Strickland DH, Roberts GC, Morris R, Holgate ST, Davies DE, Blume C. A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood. J Immunol Methods 2019; 477:112703. [PMID: 31711888 PMCID: PMC6983936 DOI: 10.1016/j.jim.2019.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) play a central role in regulating innate and adaptive immune responses. It is well accepted that their regulatory functions change over the life course. In order to study DCs function during early life it is important to characterize the function of neonatal DCs. However, the availability of neonatal DCs is limited due to ethical reasons or relative small samples of cord blood making it difficult to perform large-scale experiments. Our aim was to establish a robust protocol for the generation of neonatal DCs from cord blood derived CD34+ hematopoietic stem cells. For the expansion of DC precursor cells we used a cytokine cocktail containing Flt-3 L, SCF, TPO, IL-3 and IL-6. The presence of IL-3 and IL-6 in the first 2 weeks of expansion culture was essential for the proliferation of DC precursor cells expressing CD14. After 4 weeks in culture, CD14+ precursor cells were selected and functional DCs were generated in the presence of GM-CSF and IL-4. Neonatal DCs were then stimulated with Poly(I:C) and LPS to mimic viral or bacterial infections, respectively. Poly(I:C) induced a higher expression of the maturation markers CD80, CD86 and CD40 compared to LPS. In line with literature data using cord blood DCs, our Poly(I:C) matured neonatal DCs cells showed a higher release of IL-12p70 compared to LPS matured neonatal DCs. Additionally, we demonstrated a higher release of IFN-γ, TNF-α, IL-1β and IL-6, but lower release of IL-10 in Poly(I:C) matured compared to LPS matured neonatal DCs derived from cord blood CD34+ hematopoietic stem cells. In summary, we established a robust protocol for the generation of large numbers of functional neonatal DCs. In line with previous studies, we showed that neonatal DCs generated form CD34+ cord blood progenitors have a higher inflammatory potential when exposed to viral than bacterial related stimuli. A robust protocol for the generation of high numbers of neonatal dendritic cells. IL-3 and IL-6 are crucial for the proliferation of cord blood CD34+ progenitors. Neonatal DCs have a higher inflammatory potential when exposed to viral stimuli. LPS induces higher release of IL-10 in neonatal DCs compared to Poly(I:C).
Collapse
Affiliation(s)
- Nicole Bedke
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Camelia Molnar
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick G Holt
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Deborah H Strickland
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Graham C Roberts
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruth Morris
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
42
|
Enciso J, Pelayo R, Villarreal C. From Discrete to Continuous Modeling of Lymphocyte Development and Plasticity in Chronic Diseases. Front Immunol 2019; 10:1927. [PMID: 31481957 PMCID: PMC6710364 DOI: 10.3389/fimmu.2019.01927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular events leading to differentiation, development, and plasticity of lymphoid cells have been subject of intense research due to their key roles in multiple pathologies, such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases. The emergent roles of lymphoid cells and the use of high-throughput technologies have led to an extensive accumulation of experimental data allowing the reconstruction of gene regulatory networks (GRN) by integrating biochemical signals provided by the microenvironment with transcriptional modules of lineage-specific genes. Computational modeling of GRN has been useful for the identification of molecular switches involved in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and analyses of signaling events occurring downstream the activation of antigen recognition receptors. Among most common modeling strategies to analyze the dynamical behavior of GRN, discrete dynamic models are widely used for their capacity to capture molecular interactions when a limited knowledge of kinetic parameters is present. However, they are less powerful when modeling complex systems sensitive to biochemical gradients. To compensate it, discrete models may be transformed into regulatory networks that includes state variables and parameters varying within a continuous range. This approach is based on a system of differential equations dynamics with regulatory interactions described by fuzzy logic propositions. Here, we discuss the applicability of this method on modeling of development and plasticity processes of adaptive lymphocytes, and its potential implications in the study of pathological landscapes associated to chronic diseases.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos Villarreal
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Física Cuántica y Fotónica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M, Helikar T. A Mechanistic Computational Model Reveals That Plasticity of CD4 + T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Front Physiol 2018; 9:878. [PMID: 30116195 PMCID: PMC6083813 DOI: 10.3389/fphys.2018.00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
CD4+ T cells provide cell-mediated immunity in response to various antigens. During an immune response, naïve CD4+ T cells differentiate into specialized effector T helper (Th1, Th2, and Th17) cells and induced regulatory (iTreg) cells based on a cytokine milieu. In recent studies, complex phenotypes resembling more than one classical T cell lineage have been experimentally observed. Herein, we sought to characterize the capacity of T cell differentiation in response to the complex extracellular environment. We constructed a comprehensive mechanistic (logical) computational model of the signal transduction that regulates T cell differentiation. The model's dynamics were characterized and analyzed under 511 different environmental conditions. Under these conditions, the model predicted the classical as well as the novel complex (mixed) T cell phenotypes that can co-express transcription factors (TFs) related to multiple differentiated T cell lineages. Analyses of the model suggest that the lineage decision is regulated by both compositions and dosage of signals that constitute the extracellular environment. In this regard, we first characterized the specific patterns of extracellular environments that result in novel T cell phenotypes. Next, we predicted the inputs that can regulate the transition between the canonical and complex T cell phenotypes in a dose-dependent manner. Finally, we predicted the optimal levels of inputs that can simultaneously maximize the activity of multiple lineage-specifying TFs and that can drive a phenotype toward one of the co-expressed TFs. In conclusion, our study provides new insights into the plasticity of CD4+ T cell differentiation, and also acts as a tool to design testable hypotheses for the generation of complex T cell phenotypes by various input combinations and dosages.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Robert G Todd
- Department of Natural and Applied Sciences, Mount Mercy University, Cedar Rapids, IA, United States
| | - Akram Mohammed
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
44
|
Barberis M, Helikar T, Verbruggen P. Simulation of Stimulation: Cytokine Dosage and Cell Cycle Crosstalk Driving Timing-Dependent T Cell Differentiation. Front Physiol 2018; 9:879. [PMID: 30116196 PMCID: PMC6083814 DOI: 10.3389/fphys.2018.00879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Triggering an appropriate protective response against invading agents is crucial to the effectiveness of human innate and adaptive immunity. Pathogen recognition and elimination requires integration of a myriad of signals from many different immune cells. For example, T cell functioning is not qualitatively, but quantitatively determined by cellular and humoral signals. Tipping the balance of signals, such that one of these is favored or gains advantage on another one, may impact the plasticity of T cells. This may lead to switching their phenotypes and, ultimately, modulating the balance between proliferating and memory T cells to sustain an appropriate immune response. We hypothesize that, similar to other intracellular processes such as the cell cycle, the process of T cell differentiation is the result of: (i) pleiotropy (pattern) and (ii) magnitude (dosage/concentration) of input signals, as well as (iii) their timing and duration. That is, a flexible, yet robust immune response upon recognition of the pathogen may result from the integration of signals at the right dosage and timing. To investigate and understand how system's properties such as T cell plasticity and T cell-mediated robust response arise from the interplay between these signals, the use of experimental toolboxes that modulate immune proteins may be explored. Currently available methodologies to engineer T cells and a recently devised strategy to measure protein dosage may be employed to precisely determine, for example, the expression of transcription factors responsible for T cell differentiation into various subtypes. Thus, the immune response may be systematically investigated quantitatively. Here, we provide a perspective of how pattern, dosage and timing of specific signals, called interleukins, may influence T cell activation and differentiation during the course of the immune response. We further propose that interleukins alone cannot explain the phenotype variability observed in T cells. Specifically, we provide evidence that the dosage of intercellular components of both the immune system and the cell cycle regulating cell proliferation may contribute to T cell activation, differentiation, as well as T cell memory formation and maintenance. Altogether, we envision that a qualitative (pattern) and quantitative (dosage) crosstalk between the extracellular milieu and intracellular proteins leads to T cell plasticity and robustness. The understanding of this complex interplay is crucial to predict and prevent scenarios where tipping the balance of signals may be compromised, such as in autoimmunity.
Collapse
Affiliation(s)
- Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Verbruggen
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|