1
|
Alter K, Constenla M, Padrós F, Sokolova IM, Born-Torrijos A. Spawning is accompanied by increased thermal performance in blue mussels. J Therm Biol 2024; 127:104018. [PMID: 39705764 DOI: 10.1016/j.jtherbio.2024.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/23/2024]
Abstract
Climate change is causing extreme short-term warming with greater intensity and more frequent occurrence. Reproduction and subsequent recruitment of coastal ecosystem engineers, such as the blue mussel, may be impacted by the extreme temperatures because these vital functions are sensitive to the timing of short-term changes in abiotic factors. We exposed intertidal blue mussels, Mytilus edulis, to a thermal challenge from 10 to 29 °C using an ecologically relevant heating rate of 4 °C/h. We assessed their reproductive status by observing spawning activity and by analyzing histological sections of their gonad tissue. In addition, we monitored their heart rates and valve gaping behavior to determine their thermal performance. We identified three spawning groups: non-spawners that had mature gonads but did not release gametes, post-spawners that released mature gametes prior to the thermal challenge, and active spawners that released mature gametes during the thermal challenge. Across temperatures, active spawners had significantly higher heart rates and their heart rate peaked at the temperatures 3.9 and 3.2 °C higher compared to those of non-spawners or post-spawners, respectively. Post-spawners had significantly narrower valve gapes across temperatures compared to both other spawning groups. Hence, the metabolic response to warming strongly depends on the reproductive status, with active spawners experiencing increased thermal stress due to heightened metabolism, non-spawners showing heat-induced metabolic depression, and post-spawners adopting an energy-conserving strategy indicated by reduced gaping. Considered together, spawning during recurring short-term warming events may elevate mortality risk with potential consequences for the local biodiversity in a future climate.
Collapse
Affiliation(s)
- Katharina Alter
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790 AB Den Burg, the Netherlands.
| | - Maria Constenla
- Universitat Autònoma de Barcelona, Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia and Servei de Diagnòstic Patològic en Peixos, Spain.
| | - Francesc Padrós
- Universitat Autònoma de Barcelona, Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia and Servei de Diagnòstic Patològic en Peixos, Spain.
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| | - Ana Born-Torrijos
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790 AB Den Burg, the Netherlands.
| |
Collapse
|
2
|
Liu Z, Kong N, Zhang Y, Zheng Y, Yang C, Fu Q, Zhang Z, Li F, Liu R, Wang L, Song L. The phytoplankton community affects the energy metabolism and immunomodulation strategy of oyster during breeding seasons. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109819. [PMID: 39122097 DOI: 10.1016/j.fsi.2024.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The mass mortality of Pacific oyster Crassostrea gigas has become a severe ecological and economic concern to Chinese aquaculture, which is proposed to be linked to the phytoplankton community in the farming waters. In the present study, both field and laboratory experiments were conducted to identify the phytoplankton taxa associated with oyster mortality and explore the molecular mechanism by which they affect the physiological health of oysters. The field experiment showed that more serious mortality of oysters was observed in the North Yellow Sea from July to September in 2018 (average survival rate of 75.11 %) than in 2019 (average survival rate of 85.78 %), with the proportion of Bacillariophyta (diatoms) in the phytoplankton community in 2018 lower than that in 2019. In comparison to 2019, reduced dry weight, lower glycogen and triglyceride contents in hepatopancreas, lower 17β-estradiol and testosterone concentrations in gonad, as well as a generally weaker immune response against Vibrio splendidus stimulation were detected in the oysters sampled in 2018. The treatment of oysters with either starvation (starvation group) or Nitzschia closterium f. minutissima feeding (N. closterium group) was conducted to verify the field findings, with individuals reared in natural seawater as control. After 40 days of N. closterium feeding, dry weight, glycogen and triglyceride contents in hepatopancreas significantly increased, as well as the biosynthesis of sex hormones and gonadal maturation were promoted compared to the control and starvation groups. Moreover, a much stronger immune response against V. splendidus stimulation was observed in the oysters of N. closterium group, with the fold-changes of norepinephrine content in serum, SOD activity in hepatopancreas, and the mRNA expression level of IL17-5 and HSP70 in haemocytes higher than those in the control and starvation groups. Collectively, these results suggested that lack of diatoms in the farming waters suppressed the energy storage and gonadal maturation of adult oysters, and also resulted in a compromised immune response against bacterial infection, which may be a leading cause of the mass mortality of oysters living in diatom-deficient waters during breeding seasons.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ziyang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Fuzhe Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ranyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Yee-Duarte JA, Arellano-Martínez M, Roldán-Wong NT, Kidd KA, Ceballos-Vázquez BP. Reduction in reproductive activity from degeneration of testicular follicles in Megapitaria squalida (Mollusca: Bivalvia) exposed to metal pollution in the Gulf of California. MARINE POLLUTION BULLETIN 2024; 205:116648. [PMID: 38917499 DOI: 10.1016/j.marpolbul.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.
Collapse
Affiliation(s)
- Josué Alonso Yee-Duarte
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico; Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur KM 5.5, C.P. 23080, La Paz, Baja California Sur, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico
| | | | - Karen Ann Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Bertha Patricia Ceballos-Vázquez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
4
|
Howells J, Maria L, Shirkey T, Carrington A, Lane HS. Testing a health baseline during a bivalve mollusc mortality event: An investigation into die-offs of pipi Paphies australis from Aotearoa New Zealand. J Invertebr Pathol 2024; 204:108110. [PMID: 38631558 DOI: 10.1016/j.jip.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Disease is a major threat to the economic, ecological and cultural services provided by wild bivalve populations. Over the past decade anecdotal reports on declining health of native bivalve populations around Aotearoa New Zealand have been supported by increasing observations of mass die-offs. Causes of declining health and mass die-offs of wild bivalves are not clear and could be due to a number of interactive and cumulative factors, including declining water quality, climate change, or disease. Pipi/kōkota (Paphies australis) within the Whangārei area (northern New Zealand) have suffered repeated die-offs and declining health since at least 2009. Baseline health data for wild native bivalve populations are scarce making it difficult to identify changes in pathogen infection prevalence and intensity and infer their importance to host health. This research aimed to examine and document the health of pipi in Whangārei with the objective of identifying factors that may contribute to their ill health and lack of population recovery. We sampled pipi from four sites within Whangārei, eight times across two years (total n = 640) to establish a health baseline using histopathology, general bacteriology, and qPCR for the intracellular bacteria Endozoicomonas spp. Three pipi mass die-offs occurred during the sampling window that were opportunistically sampled to compare against the health baseline established using healthy pipi. An increase in bacterial growth and a decrease in the abundance of Endozoicomonas spp. in mortality pipi was observed compared with the health baseline. Establishing a health baseline for pipi from Whangārei provided a benchmark to assess changes in a pipi population experiencing high mortality. Such data can help identify factors contributing to die-offs and to help inform what mitigation, if any, is possible in wild shellfish populations.
Collapse
Affiliation(s)
- Joanne Howells
- University of Waikato, Environmental Research Institute, Tauranga 3110, New Zealand; Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand.
| | - Lisa Maria
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - Taryn Shirkey
- Patuharakeke Te Iwi Trust Board, Whangārei, New Zealand
| | | | - Henry S Lane
- National Institute of Water and Atmospheric Research Ltd, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Yuan KK, Yu YY, Mo YH, Liu YJ, Zhang WX, Lv JJ, Shi W, Liu GX, Li HY, Yang WD. Exposure to microplastics renders immunity of the thick-shell mussel more vulnerable to diarrhetic shellfish toxin-producing harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172125. [PMID: 38565353 DOI: 10.1016/j.scitotenv.2024.172125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.
Collapse
Affiliation(s)
- Kuan-Kuan Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying-Ying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Xia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Jin Lv
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Mredul MMH, Sokolov EP, Kong H, Sokolova IM. Spawning acts as a metabolic stressor enhanced by hypoxia and independent of sex in a broadcast marine spawner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168419. [PMID: 37979860 DOI: 10.1016/j.scitotenv.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Broadcast spawners, like the blue mussel Mytilus edulis, experience substantial energy expenditure during spawning due to extensive gamete release that can divert energy from other functions. This energetic cost might be intensified by environmental stressors, including hypoxia that suppress aerobic metabolism. However, the energy implications of spawning in marine broadcast spawners have not been well studied. We examined the effects of short-term hypoxia (7 days) and spawning on mitochondrial activity, reactive oxygen species (ROS) production, and cellular energy allocation (ratio of tissue energy reserves to energy demand) in somatic tissues of M. edulis. Under normoxic conditions, post-spawning (72 h) recovery correlated with increased phosphorylation (OXPHOS) rate in mitochondria from the digestive gland, while hypoxia inhibited this response. Regardless of oxygen levels, mitochondrial ROS production decreased after spawning, indicating M. edulis' ability to prevent oxidative stress. Spawning led to reduced energy reserves in somatic tissues (the gills and the digestive gland), highlighting significant energy cost of spawning primarily fueled by lipid and protein breakdown. Additionally, cellular energy allocation dropped 3 h post-spawning, indicating a shift in energy demand and supply. Normoxic conditions allowed recovery in 72 h, but hypoxia hindered recuperation. These findings underscore spawning's bioenergetic challenge for broadcast spawners like M. edulis, potentially elevating post-spawning mortality risk, especially in hypoxic coastal habitats.
Collapse
Affiliation(s)
- Md Mahamudul Hasan Mredul
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, Germany
| | - Hui Kong
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
7
|
Han Y, Zhang W, Tang Y, Shi W, Liu Z, Lamine I, Zhang H, Liu J, Liu G. Triclosan exposure induces immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis in blood clam (Tegillarca granosa). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106778. [PMID: 38056281 DOI: 10.1016/j.aquatox.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Omnipresent presence of triclosan (TCS) in aqueous environment puts a potential threat to organisms. However, it's poorly understood about its immunometabolic impacts of marine invertebrates. In present study, we use a representative bivalve blood clam (Tegillarca granosa) as a model, investigating the effects of TCS exposure at 20 and 200 μg/L for 28 days on immunometabolism, detoxification, and cellular homeostasis to explore feasible toxicity mechanisms. Results demonstrated that the clams exposed to TCS resulting in evident immunotoxic impacts on both cellular and humoral immune responses, through shifting metabolic pathways and substances, as well as suppressing the expressions of genes from the immune- and metabolism-related pathways. In addition, significant alterations in contents (or activity) of detoxification enzymes and the expression of key detoxification genes were detected in TCS-exposed clams. Moreover, exposure to TCS also disrupted cellular homeostasis of clams through increasing MDA contents and caspase activities, and promoting activation of the apoptosis-related genes. These findings suggested that TCS might induce immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis.
Collapse
Affiliation(s)
- Yu Han
- School of life sciences, Central South University, Changsha, China, 410083; Hangzhou Normal University, Hangzhou, China, 311121; College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Weixia Zhang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Yu Tang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Wei Shi
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China, 311121
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | | | - Jing Liu
- School of life sciences, Central South University, Changsha, China, 410083
| | - Guangxu Liu
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058.
| |
Collapse
|
8
|
Padilla P, Herrel A, Denoël M. What makes a great invader? Anatomical traits as predictors of locomotor performance and metabolic rate in an invasive frog. J Exp Biol 2023; 226:jeb246717. [PMID: 37955111 DOI: 10.1242/jeb.246717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Invasive species are characterized by their ability to establish and spread in a new environment. In alien populations of anurans, dispersal and fitness-related traits such as endurance, burst performance and metabolism are key to their success. However, few studies have investigated inter-individual variation in these traits and more specifically have attempted to understand the drivers of variation in these traits. Associations of anatomical features may be excellent predictors of variation in performance and could be targets for selection or subject to trade-offs during invasions. In this study, we used marsh frogs (Pelophylax ridibundus), a species that has been introduced in many places outside its native range and which is now colonizing large areas of Western Europe. We first measured the inter-individual variation in resting metabolism, the time and distance they were able to jump until exhaustion, and their peak jump force, and then measured the mass of specific organs and lengths of body parts suspected to play a role in locomotion and metabolism. Among the 5000 bootstrap replicates on body size-corrected variables, our statistical models most often selected the stomach (75.42%), gonads (71.46%) and the kidneys (67.26%) as predictors of inter-individual variation in metabolism, and the gluteus maximus muscle (97.24%) mass was the most frequently selected predictor of jump force. However, endurance was poorly associated with the anatomical traits (R2distance=0.42, R2time=0.37). These findings suggest that selection on these predictors may lead to physiological changes that may affect the colonization, establishment and dispersal of these frogs.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Anthony Herrel
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000 Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| |
Collapse
|
9
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
10
|
Zou H, Zhang B, Liang H, Li C, Chen J, Wu Y. Defence mechanisms of Pinctada fucata martensii to Vibrio parahaemolyticus infection: Insights from proteomics and metabolomics. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109204. [PMID: 37931889 DOI: 10.1016/j.fsi.2023.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Survival of pearl oysters is not only challenged by coastal pollution, but also pathogen infection that may eventually incur substantial economic losses in the pearl farming industry. Yet, whether pearl oysters can defend themselves against pathogen infection through molecular mechanisms remains largely unexplored. By using iTRAQ proteomic and metabolomic analyses, we analysed the proteins and metabolites in the serum of pearl oysters (Pinctada fucata martensii) when stimulated by pathogenic bacteria (Vibrio parahaemolyticus). Proteomic results found that a total of 2,242 proteins were identified in the experimental (i.e., Vibrio-stimulated) and control groups, where 166 of them were differentially expressed (120 upregulated and 46 downregulated in the experimental group). Regarding the immune response enrichment results, the pathway of signal transduction was significantly enriched, such as cytoskeleton and calcium signalling pathways. Proteins, including cathepsin L, heat shock protein 20, myosin and astacin-like protein, also contributed to the immune response of oysters. Pathogen stimulation also altered the metabolite profile of oysters, where 49 metabolites associated with metabolism of energy, fatty acids and amino acids were found. Integrated analysis suggests that the oysters could respond to pathogen infection by coordinating multiple cellular processes. Thus, the proteins and metabolites identified herein not only represent valuable genetic resources for developing molecular biomarkers and genetic breeding research, but also open new avenues for studies on the molecular defence mechanisms of pearl oysters to pathogen infection.
Collapse
Affiliation(s)
- Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Chaojie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jie Chen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yifan Wu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
11
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. PLoS One 2023; 18:e0288342. [PMID: 37440541 DOI: 10.1371/journal.pone.0288342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster, after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
Affiliation(s)
- R Radhika
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Nagasawa K, Kanamori M, Yoon J, Kobayashi M, Mokrina M, Kato T, Osada M. Hemocytes of Yesso scallop characterized by cytological, molecular marker, and functional analyses. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108751. [PMID: 37105424 DOI: 10.1016/j.fsi.2023.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
Bivalve hemocytes have pivotal role as cellular biodefense. However, no information is available for cytological parameters, marker gene and function of the hemocytes in Yesso scallop, a commercially important aquaculture species worldwide. Due to their extremely strong cell aggregation ability, the scallop hemocytes were not able to assess as a single cell so far. In the present study, we established methodologies for studying the hemocytes of Yesso scallop, assessed cell morphology, measured seasonal fluctuation, and analyzed transcriptomes and cellular behavior during the immune response. Our results showed that the Yesso scallop possesses a single type of leukocyte-type hemocytes similar to other bivalve granulocytes circulating at an average of 1 × 107 cells/ml throughout the year. In addition, we identified five molecular marker genes specific to the scallop hemocytes. These hemocyte markers enabled us to precisely detect the hemocyte localization. Using these markers, we confirmed that tissue transplantation can experimentally induce an immune response, leading to the mobilization of circulating hemocytes for encapsulation. This study provides a comprehensive understanding of scallop hemocytes and their role in the cellular biodefense system of bivalves and various methods for cytological analysis.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| | - Makoto Kanamori
- Hakodate Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, 20-5 Benten-cho, Hakodate, Hokkaido, 040-0051, Japan
| | - Jeongwoong Yoon
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mutsuko Kobayashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mariia Mokrina
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Takahiro Kato
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
13
|
Eraso-Ordoñez JF, Yee-Duarte JA, Roldán-Wong NT, García-Ulloa M, Góngora-Gómez AM, Arellano-Martínez M. Histopathological alterations in the gonads of wild white clams Dosinia ponderosa inhabiting a former copper mine locality in the Gulf of California. JOURNAL OF AQUATIC ANIMAL HEALTH 2023. [PMID: 37243331 DOI: 10.1002/aah.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Prolonged exposure to heavy metals, such as Pb, Hg, or Cu, has multiple adverse effects on marine organisms at the cellular, physiological, and population levels. Bivalves' histopathology provides a sensitive biomarker of pollutant-induced stress and environmental health. Gonad tissue deterioration is of particular concern, as it affects the reproductive success of a species. This study aimed to examine the histopathological alterations caused by metal exposure in the gonad of the white clam Dosinia ponderosa. METHODS Organisms were sampled from three locations in the Gulf of California: Santa Rosalia (SR), a former Cu mining town; San Lucas beach (SL), a nearby site influenced by pollution; and Escondida beach (EB), which served as a control site. Histological and histochemical stains were used, and the prevalence and intensity level of each alteration were calculated. RESULT The prevalence of alterations was higher in the ovaries of SR clams (92% compared to 60% in SL clams and 32.7% in EB clams), during spawning (91.4% compared to 20% in SL clams and 4.7% in EB clams), and in winter (93.5% compared to 30% in SL clams and 17.4% in EB clams). CONCLUSION These findings suggest a significant deterioration in the gonads of white clams from SR, probably linked to the chronic exposure to high concentrations of Cu and possibly other heavy metals; hence, the reproductive health of the clams is likely compromised.
Collapse
Affiliation(s)
- Jessica F Eraso-Ordoñez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Josué Alonso Yee-Duarte
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Nefertiti Taydé Roldán-Wong
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Manuel García-Ulloa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Andrés M Góngora-Gómez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| |
Collapse
|
14
|
Rutkowski NAJ, Foo YZ, Jones TM, McNamara KB. Age, but not an immune challenge, triggers terminal investment in the Pacific field cricket, Teleogryllus oceanicus. Behav Ecol 2023; 34:468-479. [PMID: 37192922 PMCID: PMC10183208 DOI: 10.1093/beheco/arad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/22/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
The terminal investment hypothesis proposes that, when individuals are faced with a threat to survival, they will increase investment in current reproduction. The level of the threat necessary to elicit terminal investment (the dynamic terminal investment threshold) may vary based on other factors that also influence future reproduction. Here, we tested whether there is an interactive effect of age and an immune challenge on the dynamic terminal investment threshold in the Pacific field cricket, Teleogryllus oceanicus. We measured the courtship call, mating attractiveness, ejaculate size, and offspring production of T. oceanicus males. We found only limited support for the dynamic terminal investment threshold: there was no consistent evidence of a positive interaction between male age and immune challenge intensity. However, we found evidence for age-related terminal investment: older males produced a larger spermatophore than younger males. Older males also had a slower calling rate compared to younger males, suggesting a potential trade-off between these two pre- and post-copulatory traits. As some, but not all, reproductive traits responded plastically to cues for terminal investment, our research highlights the importance of considering a broad range of pre-and post-copulatory traits when exploring the potential for terminal investment to occur.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Rojas I, Cárcamo CB, Defranchi Y, Jeno K, Rengel J, Araya M, Tarnok ME, Aguilar L, Álvarez G, Schmitt P, Brokordt K. A Diet Rich in HUFAs Enhances the Energetic and Immune Response Capacities of Larvae of the Scallop Argopecten purpuratus. Animals (Basel) 2023; 13:ani13081416. [PMID: 37106979 PMCID: PMC10135034 DOI: 10.3390/ani13081416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Massive mortalities in farmed larvae of the scallop Argopecten purpuratus have been associated with pathogenic Vibrio outbreaks. An energetic trade-off between development-associated demands and immune capacity has been observed. Given that highly unsaturated fatty acids (HUFAs) are essential nutrients for larval development, we evaluated the effect of diets based on microalgae low and high in HUFAs (LH and HH, respectively) on the energetic condition and the immune response of scallop larvae. The results showed that the HH diet increased cellular membrane fluidity in veliger larvae. The routine respiration rate was 64% higher in the HH-fed veligers than in the LH-fed veligers. Additionally, the metabolic capacity tended to be higher in the HH-fed veligers than in the LH-fed veligers after the Vibrio challenge. After the challenge, the HH-fed veligers presented higher transcript induction of ApTLR (immune receptor) and ApGlys (immune effector) genes, and the HH-fed pediveligers presented higher induction of ApLBP/BPI1 (antimicrobial immune effector) gene, than the LH-fed larvae. Furthermore, the HH-fed veligers controlled total Vibrio proliferation (maintaining near basal levels) after the bacterial challenge, while the LH-fed veligers were not able to control this proliferation, which increased three-fold. Finally, the HH-fed larvae showed 20-25% higher growth and survival rates than the LH-fed veligers. Overall, the results indicated that the administration of a HH diet increases cell membrane fluidity and energy metabolic capacity, which in turn enhances immunity and the ability to control Vibrio proliferation. The administration of microalgae high in HUFAs would be a promising strategy for improving scallop larval production efficiency.
Collapse
Affiliation(s)
- Isis Rojas
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Pontificia Universidad Católica de Valparaíso, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Claudia B Cárcamo
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
- Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Yohana Defranchi
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Katherine Jeno
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
- Centro de Estudios avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| | - José Rengel
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
- Laboratorio de Producción Primaria, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas y otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - María Elena Tarnok
- Laboratorio de Fotofísica y Espectroscopía Molecular, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Luis Aguilar
- Laboratorio de Fotofísica y Espectroscopía Molecular, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Gonzalo Álvarez
- Laboratorio de Producción Primaria, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Centro de Investigación y Desarrollo Tecnológico en Algas y otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Campus Guayacán, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Campus Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Campus Guayacán, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Centro de Estudios avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| |
Collapse
|
16
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Valéria Laneuville Teixeira
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Sébastien Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
17
|
Zapata Vívenes E, Sánchez G, Nusetti O, Marcano LDV. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born, 1778) caused by exposure to used automobile crankcase oils. FISH & SHELLFISH IMMUNOLOGY 2022; 130:342-349. [PMID: 36122641 DOI: 10.1016/j.fsi.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The used automobile crankcase oils are potential sources of contaminant elements for the coastal-marine ecosystems, affecting mainly the immunological system of organisms that feed by filtration, e. g. scallops. This study examined the effects of a water-soluble fraction of used automobile crankcase oils (WSF-UACO) on innate cellular- and humoral immune responses of the flame scallop Ctenoides scaber. The scallops were exposed to ascending concentrations of 0, 0.001, 0.01, and 0.1 of WSF-UACO under a static system of aquaria during 7 and 13 d. The viability, haemocyte total count (HTC), lysosomal membrane destabilization (LMD), phagocytosis, and protein concentration in hemolymph samples withdrawn taken from the blood sinus as well as lysozyme activity of the digestive gland were measured as immune endpoints. A decrease in cellular immune competence in scallops exposed to WSF-UACO was observed, with significant impairment of viability, HTC, and phagocytosis. LMD index increased about exposure concentrations, and plasma protein concentrations augmented to 0.01 and 0.1% during 13 d. Lysozyme activity increased in scallops exposed to WSF-UVCO during 7 d, to level off in the chronic period. Lysozyme activity and enhanced plasma proteins could act as compensatory responses when cell parameters tend to fall, helping to the regulation of microbial microflora and possible invasion of pathogenic microbes as well as defense against xenobiotics. The results demonstrate that the immunological responses of C. scaber are highly sensitive to the complex chemical mixture of contaminants, and it could be used for evaluating biological risks of hazardous xenobiotics in tropical marine environments. Republic of Ecuador.
Collapse
Affiliation(s)
- Edgar Zapata Vívenes
- Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador.
| | - Gabriela Sánchez
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Osmar Nusetti
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Leida Del Valle Marcano
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| |
Collapse
|
18
|
Zhang W, Tang Y, Han Y, Huang L, Zhou W, Zhou C, Hu Y, Lu R, Wang F, Shi W, Liu G. Immunotoxicity of pentachlorophenol to a marine bivalve species and potential toxification mechanisms underpinning. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129681. [PMID: 36104908 DOI: 10.1016/j.jhazmat.2022.129681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous presence of pentachlorophenol (PCP) in ocean environments threatens marine organisms. However, its effects on immunity of marine invertebrates at environmentally realistic levels are still largely unknown. In this study, the immunotoxicity of PCP to a representative bivalve species was evaluated. In addition, its impacts on metabolism, energy supply, detoxification, and oxidative stress status were also analysed by physiological examination as well as comparative transcriptomic and metabolomic analyses to reveal potential mechanisms underpinning. Results illustrated that the immunity of blood clams was evidently hampered upon PCP exposure. Additionally, significant alterations in energy metabolism were detected in PCP-exposed clams. Meanwhile, the expressions of key detoxification genes and the in vivo contents (or activity) of key detoxification enzymes were markedly altered. Exposure to PCP also triggered significant elevations in intracellular ROS and MDA whereas evident suppression of haemocyte viability. The abovementioned findings were further supported by transcriptomic and metabolomic analyses. Our results suggest that PCP may hamper the immunity of the blood clam by (i) constraining the cellular energy supply through disrupting metabolism; and (ii) damaging haemocytes through inducing oxidative stress. Considering the high similarity of immunity among species, many marine invertebrates may be threatened by PCP, which deserves more attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Rongmao Lu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Fang Wang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Zhang D, Dong M, Song X, Qiao X, Yang Y, Yu S, Sun W, Wang L, Song L. ROS function as an inducer of autophagy to promote granulocyte proliferation in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104479. [PMID: 35764163 DOI: 10.1016/j.dci.2022.104479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Hematopoiesis is the biological process to generate new blood cells in the living body and reactive oxygen species (ROS) contribute significantly to the regulation of haematopoietic cell homeostasis. In the present study, the involvement of ROS in the proliferation of haemocytes was examined in Pacific oyster Crassostrea gigas. The ROS content in haemocytes increased significantly after lipopolysaccharide (LPS) treatment, but decreased after the treatment with antioxidant N-Acetyl-L-cysteine (NAC, a scavenger of ROS). The percentage of 5-ethynyl-2'-deoxyuridine labeled (EdU+) granulocytes in total haemocytes significantly increased at 12 h (4.12-fold, p < 0.001) and 24 h (2.36-fold, p < 0.001) after LPS treatment, while decreased at 12 h (0.26-fold, p < 0.001) and 24 h (0.61-fold, p < 0.05) after NAC treatment, respectively. Meanwhile, the percentage of haemocytes with autophagosome positive signals significantly increased at 12 h (1.17-fold, p < 0.01) and 24 h (1.19-fold, p < 0.05) after LPS treatment, but significantly reduced at 12 h (0.41-fold, p < 0.001) and 24 h (0.28-fold, p < 0.001) after the NAC treatment, respectively. After ammonium chloride (NH4Cl) treatment, the percentage of haemocytes with autophagosome and EdU+ granulocytes significantly increased at 12 h, which was 1.27-fold (p < 0.01) and 1.70-fold (p < 0.01) of control group, respectively. These results collectively suggested that ROS produced after LPS treatment could act as an inducer for autophagy and involved in regulating the proliferation of some granulocytes in C. gigas.
Collapse
Affiliation(s)
- Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
20
|
Pousse É, Munroe D, Hart D, Hennen D, Cameron LP, Rheuban JE, Wang ZA, Wikfors GH, Meseck SL. Dynamic energy budget modeling of Atlantic surfclam, Spisula solidissima, under future ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105602. [PMID: 35462229 DOI: 10.1016/j.marenvres.2022.105602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
A dynamic energy budget (DEB) model integrating pCO2 was used to describe ocean acidification (OA) effects on Atlantic surfclam, Spisula solidissima, bioenergetics. Effects of elevated pCO2 on ingestion and somatic maintenance costs were simulated, validated, and adapted in the DEB model based upon growth and biological rates acquired during a 12-week laboratory experiment. Temperature and pCO2 were projected for the next 100 years following the intergovernmental panel on climate change representative concentration pathways scenarios (2.6, 6.0, and 8.5) and used as forcing variables to project surfclam growth and reproduction. End-of-century water warming and acidification conditions resulted in simulated faster growth for young surfclams and more energy allocated to reproduction until the beginning of the 22nd century when a reduction in maximum shell length and energy allocated to reproduction was observed for the RCP 8.5 scenario.
Collapse
Affiliation(s)
- Émilien Pousse
- National Research Council Post-Doctoral Associate at NOAA NMFS, 212 Rogers Ave, Milford, CT, 06418, USA
| | - Daphne Munroe
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave, Port Norris, NJ, 08349, USA
| | - Deborah Hart
- NOAA/NMFS, 166 Water St, Woods Hole, MA, 02543, USA
| | | | - Louise P Cameron
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Jennie E Rheuban
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Zhaohui Aleck Wang
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA
| | - Shannon L Meseck
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA.
| |
Collapse
|
21
|
Yang Y, Chen F, Qiao K, Zhang H, Chen HY, Wang KJ. Two Male-Specific Antimicrobial Peptides SCY2 and Scyreprocin as Crucial Molecules Participated in the Sperm Acrosome Reaction of Mud Crab Scylla paramamosain. Int J Mol Sci 2022; 23:3373. [PMID: 35328805 PMCID: PMC8952799 DOI: 10.3390/ijms23063373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) identified in the reproductive system of animals have been widely studied for their antimicrobial activity, but only a few studies have focused on their physiological roles. Our previous studies have revealed the in vitro antimicrobial activity of two male gonadal AMPs, SCY2 and scyreprocin, from mud crab Scylla paramamosain. Their physiological functions, however, remain a mystery. In this study, the two AMPs were found co-localized on the sperm apical cap. Meanwhile, progesterone was confirmed to induce acrosome reaction (AR) of mud crab sperm in vitro, which intrigued us to explore the roles of the AMPs and progesterone in AR. Results showed that the specific antibody blockade of scyreprocin inhibited the progesterone-induced AR without affecting intracellular Ca2+ homeostasis, while the blockade of SCY2 hindered the influx of Ca2+. We further showed that SCY2 could directly bind to Ca2+. Moreover, progesterone failed to induce AR when either scyreprocin or SCY2 function was deprived. Taken together, scyreprocin and SCY2 played a dual role in reproductive immunity and sperm AR. To our knowledge, this is the first report on the direct involvement of AMPs in sperm AR, which would expand the current understanding of the roles of AMPs in reproduction.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hua Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
22
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
23
|
Occurrence and Seasonal Monitoring of Domoic Acid in Three Shellfish Species from the Northern Adriatic Sea. Toxins (Basel) 2022; 14:toxins14010033. [PMID: 35051010 PMCID: PMC8780818 DOI: 10.3390/toxins14010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
As filter feeders, bivalves and ascidians can accumulate contaminants present in the environment and pass them on to higher food chain levels as vectors. The consumption of bivalves contaminated with the potent neurotoxin domoic acid (DA) can cause amnesic shellfish poisoning in humans. The aim of this study was to determine seasonal differences in occurrence and accumulation of this phycotoxin in European oysters (Ostrea edulis Linnaeus, 1758) (n = 46), Queen scallops (Aequipecten opercularis Linnaeus, 1758) (n = 53), and edible ascidians of the Microcosmus spp. (n = 107), originating from the same harvesting area in the Northern Adriatic Sea. The quantification was performed using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) preceded by derivatization with dansyl chloride. DA was found in very low concentrations throughout the year, with a maximum value of 810 μg/kg in Queen scallops. This study reveals differences in the occurrence and accumulation of DA between Queen scallops and the other two investigated species (oysters and ascidians) and the highest concentrations during the colder part of the year. Even though DA was detected in all of them, Queen scallops showed higher DA accumulation compared to the other two (p < 0.001), hence representing a sentinel species suitable for the monitoring of DA level in seafood.
Collapse
|
24
|
Kim JH, Lee HM, Cho YG, Shin JS, Yoo JW, Hong HK, Choi KS. Effects of spawning stress on the immune capacity of blood cockle Tegillarca granosa occurring on the south coast of Korea. FISH & SHELLFISH IMMUNOLOGY 2022; 120:15-22. [PMID: 34774731 DOI: 10.1016/j.fsi.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Spawning in marine bivalves is a great energy-demanding process, and it often results in lethal and sublethal stresses during the post-spawning period, including depressed immune capacity. The blood cockle Tegillarca granosa (Linnaeus, 1758) distributes widely in silty-mud tidal flats on the south coast of Korea, and they spawn in late summer. To understand the impacts of spawning on immune parameters, we analyzed the total hemocyte count (THC), hemocyte mortality, phagocytosis capacity, and reactive oxygen species (ROS) production of T. granosa in pre-, and post-spawning condition using a flow cytometer. Histology indicated that the blood cockles occurring on the south coast of Korea ripe and ready to spawn in July, and they spawned in August and September. The THC in the blood cockle hemolymph declined from pre-spawning (1.2 × 108 cell mL-1) to post-spawning (0.9 × 108 cell mL-1), possibly due to the spawning stress and the massive infiltration of hemocytes in the gonad to phagocytose and resorb the residual gametes during the post-spawning period. The hemocyte mortality increased linearly from August (4.1%) to November (9.1%), as the histology revealed that the blood cockle completed spawning, and they resorbed the relict gametes. The granulocyte phagocytosis capacity declined dramatically from July (12.7%) to September (6.0%), when the cockles were engaged in active spawning. The flow cytometry revealed that the production of reactive oxygen species (ROS) from the granulocytes and the erythrocytes type II increased linearly from August (0.8-0.9 × 105 A U.) to December (2.1-2.8 × 105 A U.), which may cause stresses at a cellular level during this period. As the data indicated, spawning is a stressful activity inducing depressed immunological capacities in the blood cockles.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Mi Lee
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young-Ghan Cho
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jong-Seop Shin
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Won Yoo
- Korea Institute of Coastal Ecology, Inc., Bucheon, 14449, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
25
|
Galarza JA, Murphy L, Mappes J. Antibiotics accelerate growth at the expense of immunity. Proc Biol Sci 2021; 288:20211819. [PMID: 34666517 PMCID: PMC8527196 DOI: 10.1098/rspb.2021.1819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics have long been used in the raising of animals for agricultural, industrial or laboratory use. The use of subtherapeutic doses in diets of terrestrial and aquatic animals to promote growth is common and highly debated. Despite their vast application in animal husbandry, knowledge about the mechanisms behind growth promotion is minimal, particularly at the molecular level. Evidence from evolutionary research shows that immunocompetence is resource-limited, and hence expected to trade off with other resource-demanding processes, such as growth. Here, we ask if accelerated growth caused by antibiotics can be explained by genome-wide trade-offs between growth and costly immunocompetence. We explored this idea by injecting broad-spectrum antibiotics into wood tiger moth (Arctia plantaginis) larvae during development. We follow several life-history traits and analyse gene expression (RNA-seq) and bacterial (r16S) profiles. Moths treated with antibiotics show a substantial depletion of bacterial taxa, faster growth rate, a significant downregulation of genes involved in immunity and significant upregulation of growth-related genes. These results suggest that the presence of antibiotics may aid in up-keeping the immune system. Hence, by reducing the resource load of this costly process, bodily resources may be reallocated to other key processes such as growth.
Collapse
Affiliation(s)
- Juan A. Galarza
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
| | - Liam Murphy
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Biocenter 3, FIN-00014, University of Helsinki, Finland
| |
Collapse
|
26
|
Rojas I, Rivera-Ingraham GA, Cárcamo CB, Jeno K, de la Fuente-Ortega E, Schmitt P, Brokordt K. Metabolic Cost of the Immune Response During Early Ontogeny of the Scallop Argopecten purpuratus. Front Physiol 2021; 12:718467. [PMID: 34539443 PMCID: PMC8440925 DOI: 10.3389/fphys.2021.718467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The scallop Argopecten purpuratus is an important resource for Chilean and Peruvian aquaculture. Seed availability from commercial hatcheries is critical due to recurrent massive mortalities associated with bacterial infections, especially during the veliger larval stage. The immune response plays a crucial role in counteracting the effects of such infections, but being energetically costly, it potentially competes with the physiological and morphological changes that occur during early development, which are equally expensive. Consequently, in this study, energy metabolism parameters at the individual and cellular levels, under routine-basal status and after the exposure to the pathogenic strain bacteria (Vibrio splendidus VPAP18), were evaluated during early ontogeny (trochophore, D-veliger, veliger, pediveliger, and early juveniles) of A. purpuratus. The parameters measured were as follows: (1) metabolic demand, determined as oxygen consumption rate and (2) ATP supplying capacity measured by key mitochondrial enzymes activities [citrate synthase (CS), electron transport system (ETS), and ETS/CS ratio, indicative of ATP supplying efficiency], mitochondrial membrane potential (ΔΨm), and mitochondrial density (ρ m) using an in vivo image analysis. Data revealed that metabolic demand/capacity varies significantly throughout early development, with trochophores being the most efficient in terms of energy supplying capacity under basal conditions. ATP supplying efficiency decreased linearly with larval development, attaining its lowest level at the pediveliger stage, and increasing markedly in early juveniles. Veliger larvae at basal conditions were inefficient in terms of energy production vs. energy demand (with low ρ m, ΔΨm, enzyme activities, and ETS:CS). Post-challenged results suggest that both trochophore and D-veliger would have the necessary energy to support the immune response. However, due to an immature immune system, the immunity of these stages would rely mainly on molecules of parental origin, as suggested by previous studies. On the other hand, post-challenged veliger maintained their metabolic demand but decreased their ATP supplying capacity, whereas pediveliger increased CS activity. Overall, results suggest that veliger larvae exhibit the lowest metabolic capacity to overcome a bacterial challenge, coinciding with previous works, showing a reduced capacity to express immune-related genes. This would result in a higher susceptibility to pathogen infection, potentially explaining the higher mortality rates occurring during A. purpuratus farming.
Collapse
Affiliation(s)
- Isis Rojas
- Doctorado en Acuicultura Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Coquimbo, Chile.,Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Georgina A Rivera-Ingraham
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Laboratoire Environnement de Petit Saut, Hydreco-Guyane, Kourou, French Guiana
| | - Claudia B Cárcamo
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo, Chile
| | - Katherine Jeno
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Erwin de la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| |
Collapse
|
27
|
Chung MHJ, Jennions MD, Fox RJ. Quantifying the costs of pre- and postcopulatory traits for males: Evidence that costs of ejaculation are minor relative to mating effort. Evol Lett 2021; 5:315-327. [PMID: 34367658 PMCID: PMC8327938 DOI: 10.1002/evl3.228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Although it is widely stated that both mating behavior and sperm traits are energetically costly for males, we currently lack empirical estimates of the relative costs to males of pre‐ versus postcopulatory investments. Such estimates require the experimental separation of the act of mating from that of ejaculation, which is a nontrivial logistical challenge. Here, we overcome this challenge using a novel morphological manipulation (gonopodium tip ablation) in the eastern mosquitofish (Gambusia holbrooki) to tease apart investment in mating effort from that in sperm replenishment following ejaculation. We quantified the relative cumulative costs of investing in mating effort and ejaculation by comparing somatic traits and reproductive performance among three types of males: ablated males that could attempt to mate but not ejaculate; unablated males that could both mate and ejaculate; and control males that had no access to females. We show that, after eight weeks, mating investment significantly reduces both body growth and immunocompetence and results in a significant decline in mating effort. In contrast, cumulative investment into sperm replenishment following ejaculation has few detectable effects that are only apparent in smaller males. These minor costs occur despite the fact that G. holbrooki has very high levels of sperm competition and multiple mating by both sexes, which is usually associated with elevated levels of sperm production. Crucially, our study is the first, to our knowledge, to experimentally compare the relative costs of pre‐ and postcopulatory investment on components of male fitness in a vertebrate.
Collapse
Affiliation(s)
- Meng-Han Joseph Chung
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT 2601 Australia
| | - Michael D Jennions
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT 2601 Australia
| | - Rebecca J Fox
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
28
|
Balbi T, Auguste M, Ciacci C, Canesi L. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Front Immunol 2021; 12:618726. [PMID: 33679759 PMCID: PMC7930816 DOI: 10.3389/fimmu.2021.618726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
The transcriptome analysis of the whole-body of the gastropod mollusk Limax flavus and screening of putative antimicrobial peptide and protein genes. Genomics 2020; 112:3991-3999. [PMID: 32650091 DOI: 10.1016/j.ygeno.2020.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023]
Abstract
The gastropod mollusk Limax flavus, one of the most widespread pests in China, is used to treat infectious diseases in traditional Chinese medicine. However, little genomic information is available for this non-model species. In this study, the whole-body transcriptome of L. flavus was sequenced using next generation sequencing technology. A total of 6.81 Gb clean reads were obtained, which were assembled into 150,766 transcripts with 132,206 annotated unigenes. Functionally classification assigned 30,542 unigenes to 56 Gene Ontology terms, 16,745 unigenes were divided into 26 euKaryotic Ortholog Groups of proteins categories, and 13,854 unigenes were assigned to 230 Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, we identified 17,251 simple sequence repeats and several kinds of antimicrobial peptide and protein (AMPs) genes. The transcriptome data of L. flavus will provide a valuable genomic resource for further studies on this species, and the AMPs identified in L. flavus will support its medical potential.
Collapse
|
30
|
Hernández-Méndez LS, Castro-Longoria E, Araujo-Palomares CL, García-Esquivel Z, Castellanos-Martínez S. Hemocyte cell types of the Cortes Geoduck, Panopea globosa (Dall 1898), from the Gulf of California, Mexico. FISH & SHELLFISH IMMUNOLOGY 2020; 100:230-237. [PMID: 32169664 DOI: 10.1016/j.fsi.2020.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The geoduck Panopea globosa is an endemic and economic valuable species from the Mexican Northwest coast whose biology has been little studied. No information exists about their hemocytes to date, which is highly important to assess the welfare of wild and cultured organisms. In this study, hemocytes of adult P. globosa were characterized at the morphological, ultrastructural and functional level. The mean number of hemocytes in the hemolymph of P. globosa was 6 × 105 ± 2 × 105 cells mL-1. The cells were identified as granulocytes (Gr) and hyalinocytes (H). The former accounted for 28% of adhered cells in the hemolymph, measured 6-18 μm, showed numerous basophilic granules in the cytoplasm, with round and eccentric nuclei, and a nucleus:cytoplasm ratio of 0.44 ± 0.01. Hyalinocytes were the most abundant cells in the hemolymph of P. globosa (72% adhered cells) and were subdivided, according to their size, in small (Hs) 4-12 μm and large (HL) 6-18 μm. Hyalinocytes were eosinophilic round or ovoid cells with a central or eccentric nucleus, few or no granules in the cytoplasm and similar nucleus:cytoplasm ratio (Hs: 0.63 and HL: 061). Lysosomes and lipids were observed in Gr, while carbohydrates were the most abundant energy substrate in H. Both hemocytic cell types, mainly Gr, were capable to ingest particles and yield superoxide (P > 0.05). The present study shows for the first time the cell types, abundance and immune activities of hemocytes present in the hemolymph of P. globosa. This information provides a useful baseline to carry out further research on the cellular immune response of the clam to potential pathogens or changes in environmental factors.
Collapse
Affiliation(s)
- L S Hernández-Méndez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - E Castro-Longoria
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - C L Araujo-Palomares
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Z García-Esquivel
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - S Castellanos-Martínez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
31
|
Smits M, Artigaud S, Bernay B, Pichereau V, Bargelloni L, Paillard C. A proteomic study of resistance to Brown Ring disease in the Manila clam, Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 99:641-653. [PMID: 32044464 DOI: 10.1016/j.fsi.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Marine mollusk aquaculture has more than doubled over the past twenty years, accounting for over 15% of total aquaculture production in 2016. Infectious disease is one of the main limiting factors to the development of mollusk aquaculture, and the difficulties inherent to combating pathogens through antibiotic therapies or disinfection have led to extensive research on host defense mechanisms and host-pathogen relationships. It has become increasingly clear that characterizing the functional profiles of response to a disease is an essential step in understanding resistance mechanisms and moving towards more effective disease control. The Manila clam, Ruditapes philippinarum, is a main cultured bivalve species of economic importance which is affected by Brown Ring disease (BRD), an infection induced by the bacterium Vibrio tapetis. In this study, juvenile Manila clams were subjected to a 28-day controlled challenge with Vibrio tapetis, and visual and molecular diagnoses were carried out to distinguish two extreme phenotypes within the experimental clams: uninfected ("RES", resistant) and infected ("DIS", diseased) post-challenge. Total protein extractions were carried out for resistant and diseased clams, and proteins were identified using LC-MS/MS. Protein sequences were matched against a reference transcriptome of the Manila clam, and protein intensities based on label-free quantification were compared to reveal 49 significantly accumulated proteins in resistant and diseased clams. Proteins with known roles in pathogen recognition, lysosome trafficking, and various aspects of the energy metabolism were more abundant in diseased clams, whereas those with roles in redox homeostasis and protein recycling were more abundant in resistant clams. Overall, the comparison of the proteomic profiles of resistant and diseased clams after a month-long controlled challenge to induce the onset of Brown Ring disease suggests that redox homeostasis and maintenance of protein structure by chaperone proteins may play important and interrelated roles in resistance to infection by Vibrio tapetis in the Manila clam.
Collapse
Affiliation(s)
- M Smits
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France; Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - S Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - B Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - V Pichereau
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - C Paillard
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
32
|
Hong HK, Choi KS. Temporal changes in hemocyte functions of the oyster Saccostrea kegaki (Torigoe & Inaba, 1981) on Jeju Island off the south coast of Korea are closely associated with annual gametogenesis. MARINE POLLUTION BULLETIN 2020; 152:110780. [PMID: 32479269 DOI: 10.1016/j.marpolbul.2019.110780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/11/2023]
Abstract
Hemocyte parameters have been used as a proxy to characterize the health condition of marine bivalves, as the effects of external and internal stresses are reflected well in these parameters. Marine bivalve hemocyte functions are often depressed during the post-spawning period due to physiological stress and energy depletion. In this study, we analyzed temporal changes in hemocyte parameters of the oyster Saccostrea kegaki on Jeju Island, off the south coast of Korea, using flow cytometry. Total hemocyte count (THC), hemocyte types, hemocyte mortality, and phagocytosis capacity were analyzed. S. kegaki spawned during June and August, when the sea surface temperature increased from 18 to 23 °C. Most of the oysters were in the spent and resting phases from September to January. THC dropped dramatically from September to October, when most oysters completed spawning. Histology revealed that the residual eggs or sperm were actively resorbed through phagocytosis by hemocytes during the spent stage. Hemocyte mortality also showed its annual peak in October, possibly due to increased resorbing activities. The phagocytosis capacities of the granulocytes decreased dramatically from September to February. The level of energy reserves (glycogen) in post-spawning tissues was significantly lower than that prior to spawning. The low energy level reserve during the post-spawning period likely reduced the THC and immune capacities, as oysters may have been unable to acquire sufficient food from the ambient environment.
Collapse
Affiliation(s)
- Hyun-Ki Hong
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea.
| |
Collapse
|
33
|
Luo Y, Zhang YN, Zhang H, Lv HB, Zhang ML, Chen LQ, Du ZY. PPARα activation enhances the ability of nile tilapia (Oreochromis niloticus) to resist Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:675-684. [PMID: 31563556 DOI: 10.1016/j.fsi.2019.09.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays critical physiological roles in energy metabolism, antioxidation and immunity of mammals, however, these functions have not been fully understood in fish. In the present study, Nile tilapia (Oreochromis niloticus) were fed with fenofibrate, an agonist of PPARα, for six weeks, and subsequently challenged with Aeromonas hydrophila. The results showed that PPARα was efficiently activated by fenofibrate through increasing mRNA and protein expressions and protein dephosphorylation. PPARα activation increased significantly mitochondrial fatty acid β-oxidation efficiency, the copy number of mitochondrial DNA and expression of monoamine oxidase (MAO), a marker gene of mitochondria. Meanwhile, PPARα activation also increased significantly the expression of NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 9 (NDUFA9, complex I) and mitochondrial cytochrome c oxidase 1 (MTCO1, complex IV). The fenofibrate-fed fish had higher survival rate when exposed to A. hydrophila. Moreover, the fenofibrate-fed fish also had higher activities of immune and antioxidative enzymes, and gene expressions of anti-inflammatory cytokines, while had lower expressions of pro-inflammatory cytokine genes. Taken together, PPARα activation improved the ability of Nile tilapia to resist A. hydrophila, mainly through enhancing mitochondrial fatty acids β-oxidation, immune and antioxidant capacities, as well as inhibiting inflammation. This is the first study showing the regulatory effects of PPARα activation on immune functions through increasing mitochondria-mediated energy supply in fish.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yun-Ni Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Han Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hong-Bo Lv
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|