1
|
Duan Y, Wang Q, Chen X, Deng G, Huang K, Sun F, Zhu J, Jiang K. Empagliflozin reduces renal calcium oxalate deposition in hyperoxaluria rats induced with ethylene glycol-ammonium chloride. Biochem Biophys Res Commun 2024; 737:150912. [PMID: 39489113 DOI: 10.1016/j.bbrc.2024.150912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
A retrospective study reported that empagliflozin reduced the risk of urinary stone events in patients with diabetes mellitus. To further investigate empagliflozin's potential, we conducted an animal experiment to determine whether empagliflozin can prevent renal stone formation in hyperoxaluria rats. Hyperoxaluria rat models were constructed by administrating 0.75 % ethylene glycol and 1 % ammonium chloride in water. The empagliflozin-treated rats were gauged with empagliflozin at different concentrations, and their body weight and blood sugar data were recorded. After 30 days of treatment, we obtained 24-h urine, kidney, and blood samples. The urine samples were subjected to component detection. Blood samples were prepared for component detection and cytokines detection. Renal samples were subjected to von Kossa staining, transmission electron microscopy, immunohistochemistry, and transcriptome sequencing analysis. Results showed that in empagliflozin-treated hyperoxaluria rats, renal crystal deposition and mitochondria injury, urinary concentration, and excretion of oxalate were significantly decreased. Additionally, plasma levels of VEGF, IL-2, IL-1β, and MCP-1 were decreased. Immunohistochemistry showed that renal expression of KIM-1, MCP-1 was significantly decreased in empagliflozin-treated hyperoxaluria rats. Transcriptome sequencing of renal tissue represented that 25 genes were down-regulated while 12 were up-regulated in empagliflozin-treated hyperoxaluria rats. These regulated genes were mainly enriched in fatty acid metabolism, insulin resistance, muscle contraction, bile secretion, and parathyroid metabolism. Our animal experiments found that empagliflozin could reduce urinary concentration and excretion of oxalate and inhibit renal inflammation, then abating renal calcium oxalate deposition in hyperoxaluria rats in a non-diabetic state.
Collapse
Affiliation(s)
- Yu Duan
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Guanyun Deng
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kunyuan Huang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Fa Sun
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kehua Jiang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Tzoulis P. Empagliflozin: a wonder drug for the treatment of SIAD? Front Endocrinol (Lausanne) 2024; 15:1453159. [PMID: 39435353 PMCID: PMC11491318 DOI: 10.3389/fendo.2024.1453159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Ploutarchos Tzoulis
- Department of Metabolism & Experimental Therapeutics, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
3
|
Shah CV, Sparks MA, Lee CT. Sodium/Glucose Cotransporter 2 Inhibitors and Magnesium Homeostasis: A Review. Am J Kidney Dis 2024; 83:648-658. [PMID: 38372686 DOI: 10.1053/j.ajkd.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Magnesium (Mg2+), also known as "the forgotten ion," is the second most abundant intracellular cation and is essential in a broad range of intracellular physiological and biochemical reactions. Its deficiency, hypomagnesemia (Mg2+<1.8mg/dL), is a prevalent condition and routinely poses challenges in its management in clinical practice. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a new class of drugs with treating hypomagnesemia as their unique extraglycemic benefit. The beneficial effect of SGLT2 inhibitors on magnesium balance in patients with diabetes with or without hypomagnesemia has been noted as a class effect in recent meta-analysis data from randomized clinical trials. Some reports have demonstrated their role in treating refractory hypomagnesemia in patients with or without diabetes. Moreover, studies on animal models have attempted to illustrate the effect of SGLT2 inhibitors on Mg2+homeostasis. In this review, we discuss the current evidence and possible pathophysiological mechanisms, and we provide directions for further research. We conclude by suggesting the effect of SGLT2 inhibitors on Mg2+homeostasis is a class effect, with certain patients gaining significant benefits. Further studies are needed to examine whether SGLT2 inhibitors can become a desperately needed novel class of medicines in treating hypomagnesemia.
Collapse
Affiliation(s)
- Chintan V Shah
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.
| | - Matthew A Sparks
- Division of Nephrology and Department of Medicine, Duke University, and Durham VA Health Care System, Durham, North Carolina
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Kaohsiung Municipal Feng-Shan Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Martinez-Madrid B, Martínez-Cáceres C, Pequeño B, Castaño C, Toledano-Díaz A, Bóveda P, Prieto P, Alvarez-Rodriguez M, Rodriguez-Martinez H, Santiago-Moreno J. Immunolocalisation of aquaporins 3, 7, 9 and 10 in the epididymis of three wild ruminant species (Iberian ibex, mouflon and chamois) and sperm cryoresistance. Reprod Fertil Dev 2023; 35:708-721. [PMID: 37968880 DOI: 10.1071/rd23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
CONTEXT In the epididymis, epithelial cells manage changes in the luminal environment for proper sperm maturation. Moreover, aquaglyceroporins, a subgroup of aquaporins (AQP), modulate the transport of water, glycerol and other small molecules in epithelial cells. AIMS We aim to characterise the lining epithelium, quantify its cell composition and immunolocalise the aquaglyceroporins AQP3, AQP7, AQP9 and AQP10 alongside the epididymal ductus of three wild ruminant species, and to determine if species-specific differences could be associated with cauda sperm cryoresistance variations. METHODS Epididymides from Iberian ibex (n =5), mouflon (n =5) and chamois (n =6) were obtained. Cauda spermatozoa were collected and sperm parameters were analysed before and after freezing. Histology and immunohistochemistry of AQP3, 7, 9, 10 and T-CD3 were performed in the caput, corpus and cauda epididymal regions. KEY RESULTS This work first describes the lining epithelium in Iberian ibex, mouflon and chamois epididymis along the three anatomical regions, consisting of principal, basal, apical, clear and halo cells. However, the percentage of each cell type differed in ibex compared to mouflon and chamois. The positive T-CD3 immunolabeling of all the halo cells confirmed their T-lymphocyte nature. Aquaglyceroporin expression patterns were similar among species, except for differences in AQP7 and AQP10 immunolocalisation in ibex. Species-specific differences in epididymal sperm cryoresistance were confirmed. CONCLUSIONS The epididymal epithelium of the three wild ruminants differ in their relative number of cell types and AQP immunolocalisation, which ultimately appears to affect cauda epidydimal spermatozoa cryoresistance. IMPLICATIONS Our study provides information on the relevance of the quantitative composition and AQP pattern expression in epididymal lining epithelium on sperm cryoresistance.
Collapse
Affiliation(s)
- Belen Martinez-Madrid
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid 28040, Spain
| | - Carlos Martínez-Cáceres
- Pathology core, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Ctra. Buenavista s/n, El Palmar, Murcia 30120, Spain
| | - Belén Pequeño
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Cristina Castaño
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Adolfo Toledano-Díaz
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Paula Bóveda
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Paloma Prieto
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Jaén, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Julián Santiago-Moreno
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| |
Collapse
|
5
|
Shah CV, Hammad N, Bhasin-Chhabra B, Rashidi A. SGLT2 Inhibitors in Management of Severe Hypomagnesemia in Patients Without Diabetes: A Report of 4 Cases. Kidney Med 2023; 5:100697. [PMID: 37602145 PMCID: PMC10432792 DOI: 10.1016/j.xkme.2023.100697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitors have demonstrated a class effect in improving serum magnesium levels in patients with diabetes. Additionally, recent reports have shown their promising beneficial effects in the treatment of refractory hypomagnesemia in patients with diabetes. However, their role in treating hypomagnesemia in patients without diabetes remains unexplored. Here, we report 4 cases of severe and refractory hypomagnesemia that showed dramatic improvement after initiating SGLT2 inhibitors in patients without diabetes. Case 1 had calcineurin inhibitor-associated severe hypomagnesemia. Cases 2, 3, and 4 had refractory hypomagnesemia associated with platinum-based chemotherapy with or without gastrointestinal losses. Case 1 was able to withdraw from high-dose oral magnesium supplementation. Cases 2 and 3 achieved independence from intravenous magnesium supplementation, whereas case 4 had decreased intravenous magnesium requirements. All the cases demonstrated sustainably improved serum magnesium levels. Withdrawal of SGLT2 inhibitors in case 4 resulted in worsening serum magnesium levels and intravenous magnesium requirements. The extraglycemic benefit of this group of medications not only suggests the need for further studies to better understand the effect of SGLT2 inhibitors on magnesium homeostasis but also supports expanded use in a larger patient population.
Collapse
Affiliation(s)
- Chintan V. Shah
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Nour Hammad
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Arash Rashidi
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
6
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Tang H, Xu C, Zhang P, Luo T, Huang Y, Yang X. A profile of SGLT-2 inhibitors in hyponatremia: The evidence to date. Eur J Pharm Sci 2023; 184:106415. [PMID: 36870579 DOI: 10.1016/j.ejps.2023.106415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Hyponatremia is the most common electrolyte disorder in clinical practice, which may lead to life-threatening complications. Several lines of evidence suggest that hyponatremia is associated not only with significant increases in length of stay, cost, and financial burden, but also with increased morbidity and mortality. Hyponatremia is also considered to be a negative prognostic factor in patients with heart failure and cancer. Although multiple therapeutic methods are available for treating hyponatremia, most have some limitations, such as poor compliance, rapid correction of serum Na+, other negative side effects and high cost. Given these limitations, identifying novel therapies for hyponatremia is essential. Recent clinical studies have shown that SGLT-2 inhibitors (SGLT 2i) significantly increased serum Na+ levels and were well tolerated by patients who underwent this treatment. Therefore, oral administration of SGLT 2i appears to be an effective treatment for hyponatremia. This article will briefly review the etiology of hyponatremia and integrated control of sodium within the kidney, current therapies for hyponatremia, potential mechanisms and efficacy of SGLT 2i for hyponatremia, and the benefits in cardiovascular, cancer, and kidney disease by regulating sodium and water balance.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Piao Zhang
- Department of Pharmacy, Ya 'an People's Hospital, Ya 'an, Sichuan 646000, China
| | - Taimin Luo
- Department of pharmacy, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|
10
|
Fan L, Wu P, Li X, Tie L. Aquaporins in Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:125-135. [PMID: 36717490 DOI: 10.1007/978-981-19-7415-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have shown that aquaporins (AQPs) are involved in the regulation of cardiovascular function and the development of related diseases, especially in cerebral ischemia, congestive heart failure, hypertension, and angiogenesis. Therefore, further studies are needed to elucidate the mechanism accounting for the association between AQPs and vascular function-related diseases, which may lead to novel approaches to the prevention and treatment of those diseases. Here we will discuss the expression and physiological roles of AQPs in vascular tissues and summarize recent progress in the research on AQPs related cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| |
Collapse
|
11
|
Sinha F, Federlein A, Biesold A, Schwarzfischer M, Krieger K, Schweda F, Tauber P. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front Pharmacol 2023; 14:1118358. [PMID: 37033639 PMCID: PMC10076569 DOI: 10.3389/fphar.2023.1118358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
The inhibition of renal SGLT2 glucose reabsorption has proven its therapeutic efficacy in chronic kidney disease. SGLT2 inhibitors (SGLTi) have been intensively studied in rodent models to identify the mechanisms of SGLT2i-mediated nephroprotection. So far, the overwhelming effects from clinical trials, could only partially be reproduced in rodent models of renal injury. However, a commonly disregarded observation from these studies, is the increase in kidney weight after SGLT2i administration. Increased kidney mass often relies on tubular growth in response to reabsorption overload during glomerular hyperfiltration. Since SGLT2i suppress hyperfiltration but concomitantly increase renal weight, it seems likely that SGLT2i have a growth promoting effect on the kidney itself, independent of GFR control. This study aimed to investigate the effect of SGLT2i on kidney growth in wildtype animals, to identify enlarged nephron segments and classify the size increase as hypertrophic/hyperplastic growth or cell swelling. SGLT2i empagliflozin increased kidney weight in wildtype mice by 13% compared to controls, while bodyweight and other organs were not affected. The enlarged nephron segments were identified as SGLT2-negative distal segments of proximal tubules and as collecting ducts by histological quantification of tubular cell area. In both segments protein/DNA ratio, a marker for hypertrophic growth, was increased by 6% and 12% respectively, while tubular nuclei number (hyperplasia) was unchanged by empagliflozin. SGLT2-inhibition in early proximal tubules induces a shift of NaCl resorption along the nephron causing compensatory NaCl and H2O reabsorption and presumably cell growth in downstream segments. Consistently, in collecting ducts of empagliflozin-treated mice, mRNA expression of the Na+-channel ENaC and the H2O-channels Aqp-2/Aqp-3 were increased. In addition, the hypoxia marker Hif1α was found increased in intercalated cells of the collecting duct together with evidence for increased proton secretion, as indicated by upregulation of carbonic anhydrases and acidified urine pH in empagliflozin-treated animals. In summary, these data show that SGLT2i induce cell enlargement by hypertrophic growth and possibly cell swelling in healthy kidneys, probably as a result of compensatory glucose, NaCl and H2O hyperreabsorption of SGLT2-negative segments. Particularly affected are the SGLT2-negative proximal tubules (S3) and the collecting duct, areas of low O2 availability.
Collapse
|
12
|
Kravtsova O, Bohovyk R, Levchenko V, Palygin O, Klemens CA, Rieg T, Staruschenko A. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na + transport in Dahl SS rats. Am J Physiol Renal Physiol 2022; 322:F692-F707. [PMID: 35466690 PMCID: PMC9142161 DOI: 10.1152/ajprenal.00053.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022] Open
Abstract
Na+-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na+ channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension. Administration of dapagliflozin (Dapa) at 2 mg/kg/day via drinking water for 3 wk blunted the development of salt-induced hypertension as evidenced by lower blood pressure and a left shift of the pressure natriuresis curve. Urinary flow rate, glucose excretion, and Na+- and Cl--to-creatinine ratios increased in Dapa-treated compared with vehicle-treated rats. To define the contribution of the RAAS, we measured various hormones. Despite apparent effects on Na+- and Cl--to-creatinine ratios, Dapa treatment did not affect RAAS metabolites. Subsequently, we assessed the effects of Dapa on renal Na+ channels and transporters using RT-PCR, Western blot analysis, and patch clamp. Neither mRNA nor protein expression levels of renal transporters (SGLT2, Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter 2, Na+-Cl- cotransporter, and α-, β-, and γ-epithelial Na+ channel subunits) changed significantly between groups. Furthermore, electrophysiological experiments did not reveal any difference in Dapa treatment on the conductance and activity of epithelial Na+ channels. Our data suggest that SGLT2 inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the RAAS or the expression or activity of the main Na+ channels and transporters.NEW & NOTEWORTHY The present study indicates that Na+-glucose cotransporter-2 (SGLT2) inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development and magnitude of salt-induced hypertension. Chronic inhibition of SGLT2 increases glucose and Na+ excretion without secondary effects on the expression and function of other Na+ transporters and channels along the nephron and hormone levels in the renin-angiotensin-aldosterone system. These data provide novel insights into the effects of SGLT2 inhibitors and their potential use in hypertension.
Collapse
Affiliation(s)
- Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Yeoh SE, Docherty KF, Jhund PS, Petrie MC, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Bengtsson O, Boulton DW, Greasley PJ, Langkilde AM, Sjöstrand M, Solomon SD, McMurray JJV. Relationship of Dapagliflozin With Serum Sodium: Findings From the DAPA-HF Trial. JACC. HEART FAILURE 2022; 10:306-318. [PMID: 35483792 DOI: 10.1016/j.jchf.2022.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVES This study aimed to assess the prognostic importance of hyponatremia and the effects of dapagliflozin on serum sodium in the DAPA-HF (Dapagliflozin And Prevention of Adverse outcomes in Heart Failure) trial. BACKGROUND Hyponatremia is common and prognostically important in hospitalized patients with heart failure with reduced ejection fraction, but its prevalence and importance in ambulatory patients are uncertain. METHODS We calculated the incidence of the primary outcome (cardiovascular death or worsening heart failure) and secondary outcomes according to sodium category (≤135 and >135 mmol/L). Additionally, we assessed: 1) whether baseline serum sodium modified the treatment effect of dapagliflozin; and 2) the effect of dapagliflozin on serum sodium. RESULTS Of 4,740 participants with a baseline measurement, 398 (8.4%) had sodium ≤135 mmol/L. Participants with hyponatremia were more likely to have diabetes, be treated with diuretics, and have lower systolic blood pressure, left ventricular ejection fraction, and estimated glomerular filtration rate. Hyponatremia was associated with worse outcomes even after adjustment for predictive variables (adjusted HRs for the primary outcome 1.50 [95% CI: 1.23-1.84] and all-cause death 1.59 [95% CI: 1.26-2.01]). The benefits of dapagliflozin were similar in patients with and without hyponatremia (HR for primary endpoint: 0.83 [95% CI: 0.57-1.19] and 0.73 [95% CI: 0.63-0.84], respectively, P for interaction = 0.54; HR for all-cause death: 0.85 [95% CI: 0.56-1.29] and 0.83 [95% CI: 0.70-0.98], respectively, P for interaction = 0.96). Between baseline and day 14, more patients on dapagliflozin developed hyponatremia (11.3% vs 9.4%; P = 0.04); thereafter, this pattern reversed and at 12 months fewer patients on dapagliflozin had hyponatremia (4.6% vs 6.7%; P = 0.003). CONCLUSIONS Baseline serum sodium concentration was prognostically important, but did not modify the benefits of dapagliflozin on morbidity and mortality in heart failure with reduced ejection fraction. (Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure [DAPA-HF]: NCT03036124).
Collapse
Affiliation(s)
- Su Ern Yeoh
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Kieran F Docherty
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Pardeep S Jhund
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Petrie
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Silvio E Inzucchi
- Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri, Kansas City, Missouri, USA; and The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | | | - Piotr Ponikowski
- Center for Heart Diseases, University Hospital, Wroclaw Medical University, Poland
| | - Marc S Sabatine
- TIMI Study Group, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Olof Bengtsson
- Late Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David W Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Peter J Greasley
- Early Research and Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Maria Langkilde
- Late Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mikaela Sjöstrand
- Late Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Scott D Solomon
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John J V McMurray
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
14
|
Tang J, Ye L, Yan Q, Zhang X, Wang L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front Pharmacol 2022; 13:800490. [PMID: 35281930 PMCID: PMC8905496 DOI: 10.3389/fphar.2022.800490] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert hypoglycemic and diuretic effects by inhibiting the absorption of sodium and glucose from the proximal tubule. Currently available data indicate that SGLT2 inhibitors transiently enhance urinary sodium excretion and urinary volume. When combined with loop diuretics, SGLT2 inhibitors exert a synergistic natriuretic effect. The favorable diuretic profile of SGLT2 inhibitors may confer benefits to volume management in patients with heart failure but this natriuretic effect may not be the dominant mechanism for the superior long-term outcomes observed with these agents in patients with heart failure. The first part of this review explores the causes of transient natriuresis and the diuretic mechanisms of SGLT2 inhibitors. The second part provides an overview of the synergistic effects of combining SGLT2 inhibitors with loop diuretics, and the third part summarizes the mechanisms of cardiovascular protection associated with the diuretic effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Jun Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lifang Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiqi Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Niibo M, Kanasaki A, Iida T, Ohnishi K, Ozaki T, Akimitsu K, Minamino T. d-allulose protects against diabetic nephropathy progression in Otsuka Long-Evans Tokushima Fatty rats with type 2 diabetes. PLoS One 2022; 17:e0263300. [PMID: 35100325 PMCID: PMC8803202 DOI: 10.1371/journal.pone.0263300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
d-allulose is a rare sugar that has been reported to possess anti-hyperglycemic effects. In the present study, we hypothesized that d-allulose is effective in attenuating the progression of diabetic nephropathy in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model of type 2 diabetes mellitus. Drinking water with or without 3% d-allulose was administered to OLETF rats for 13 weeks. Long-Evans Tokushima Otsuka rats that received drinking water without d-allulose were used as non-diabetic control rats. d-allulose significantly attenuated the increase in blood glucose levels and progressive mesangial expansion in the glomerulus, which is regarded as a characteristic of diabetic nephropathy, in OLETF rats. d-allulose also attenuated the significant increases in renal IL-6 and tumor necrosis factor-α mRNA levels in OLETF rats, which is a proinflammatory parameter. Additionally, we showed that d-allulose suppresses mesangial matrix expansion, but its correlation with suppressing renal inflammation in OLETF rats should be investigated further. Collectively, our results support the hypothesis that d-allulose can prevent diabetic nephropathy in rats.
Collapse
Affiliation(s)
- Misato Niibo
- Research and Development, Matsutani Chemical Industry Co., Ltd, Itami City, Hyogo, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd, Itami City, Hyogo, Japan
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd, Itami City, Hyogo, Japan
| | - Keisuke Ohnishi
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Taro Ozaki
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
16
|
Afsar B, Afsar RE, Demiray A, Altay S, Korkmaz H, Yildiz A, Covic A, Ortiz A, Kanbay M. OUP accepted manuscript. Clin Kidney J 2022; 15:1275-1283. [PMID: 35756735 PMCID: PMC9217633 DOI: 10.1093/ckj/sfac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent hereditary kidney disease. Recent evidence suggests that the pathogenesis of ADPKD is a complex web of abnormal cellular processes including altered cell signaling, disordered cell metabolism, impaired autophagy, increased apoptosis, mitochondrial dysfunction and chronic inflammation. Sodium–glucose cotransporter (SGLT) inhibitors (SGLTi) reduce body weight, blood pressure and blood glucose levels, have kidney and cardiovascular protective activity, and have been reported to decrease inflammation, increase autophagy and improve mitochondrial dysfunction. We now review results from preclinical studies on SGLTi for ADPKD identified through a systematic search of the MEDLINE, Cochrane Library, Embase and PubMed databases. Potential underlying mechanisms for the conflicting results reported as well as implications for clinical translation are discussed, as ADPKD patients were excluded from clinical trials exploring kidney protection by SGLT2 inhibitors (SGLT2i). However, they were not excluded from cardiovascular safety trials or trials for cardiovascular conditions. A post-hoc analysis of the kidney function trajectories and safety of SGLT2i in ADPKD patients enrolled in such trials may provide additional information. In conclusion, SGLT2i are cardio- and nephroprotective in diverse clinical situations. Currently, it is unclear whether ADPKD patients may benefit from SGLT2i in terms of kidney function preservation, and their safety in this population remains unexplored. We propose a roadmap to address this unmet clinical need.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sevval Altay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Department of Medicine, Division of Endocrinology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Abdulmecit Yildiz
- Department of Medicine, Division of Nephrology, Uludag University School of Medicine, Bursa, Turkey
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital, and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | | |
Collapse
|
17
|
Miyata KN, Lo CS, Zhao S, Zhao XP, Chenier I, Yamashita M, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Deletion of heterogeneous nuclear ribonucleoprotein F in renal tubules downregulates SGLT2 expression and attenuates hyperfiltration and kidney injury in a mouse model of diabetes. Diabetologia 2021; 64:2589-2601. [PMID: 34370045 PMCID: PMC8992778 DOI: 10.1007/s00125-021-05538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
18
|
Xing YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, Yao XM, Hua Q, Meng XJ, Cheng JH, Zhong M, Zhang Y, Lv K, Kong X. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol 2021; 12:708177. [PMID: 34322029 PMCID: PMC8311522 DOI: 10.3389/fphar.2021.708177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). One of the hallmarks of the DCM is enhanced oxidative stress in myocardium. The aim of this study was to research the underlying mechanisms involved in the effects of dapagliflozin (Dap) on myocardial oxidative stress both in streptozotocin-induced DCM rats and rat embryonic cardiac myoblasts H9C2 cells exposed to high glucose (33.0 mM). In in vivo studies, diabetic rats were given Dap (1 mg/ kg/ day) by gavage for eight weeks. Dap treatment obviously ameliorated cardiac dysfunction, and improved myocardial fibrosis, apoptosis and oxidase stress. In in vitro studies, Dap also attenuated the enhanced levels of reactive oxygen species and cell death in H9C2 cells incubated with high glucose. Mechanically, Dap administration remarkably reduced the expression of membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits gp91phox and p22phox, suppressed the p67phox subunit translocation to membrane, and decreased the compensatory elevated copper, zinc superoxide dismutase (Cu/Zn-SOD) protein expression and total SOD activity both in vivo and in vitro. Collectively, our results indicated that Dap protects cardiac myocytes from damage caused by hyperglycemia through suppressing NADPH oxidase-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu-Jie Xing
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Biao-Hu Liu
- Department of Ultrasound Medicine, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yi Cheng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Si-Min Zhou
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yue Sun
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiang Hua
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Jin-Han Cheng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Min Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Xiang Kong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
19
|
Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (Lond) 2021; 135:943-961. [PMID: 33822013 DOI: 10.1042/cs20210094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.
Collapse
|
20
|
Chua M, Tay DYK, Ng YS, Rajasoorya C. Adipsic diabetes insipidus and SGLT2 inhibitor: A perplexing conundrum. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2021; 50:181-183. [PMID: 33733264 DOI: 10.47102/annals-acadmedsg.2020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Marvin Chua
- Department of General Medicine, Sengkang General Hospital, Singapore
| | | | | | | |
Collapse
|
21
|
Duan S, Lu F, Song D, Zhang C, Zhang B, Xing C, Yuan Y. Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:661185. [PMID: 34177803 PMCID: PMC8223745 DOI: 10.3389/fendo.2021.661185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Over decades, substantial progress has been achieved in understanding the pathogenesis of proteinuria in diabetic kidney disease (DKD), biomarkers for DKD screening, diagnosis, and prognosis, as well as novel hypoglycemia agents in clinical trials, thereby rendering more attention focused on the role of renal tubules in DKD. Previous studies have demonstrated that morphological and functional changes in renal tubules are highly involved in the occurrence and development of DKD. Novel tubular biomarkers have shown some clinical importance. However, there are many challenges to transition into personalized diagnosis and guidance for individual therapy in clinical practice. Large-scale clinical trials suggested the clinical relevance of increased proximal reabsorption and hyperfiltration by sodium-glucose cotransporter-2 (SGLT2) to improve renal outcomes in patients with diabetes, further promoting the emergence of renal tubulocentric research. Therefore, this review summarized the recent progress in the pathophysiology associated with involved mechanisms of renal tubules, potential tubular biomarkers with clinical application, and renal tubular factors in DKD management. The mechanism of kidney protection and impressive results from clinical trials of SGLT2 inhibitors were summarized and discussed, offering a comprehensive update on therapeutic strategies targeting renal tubules.
Collapse
|
22
|
Mengozzi A, Carli F, Guiducci L, Parolini F, Biancalana E, Gastaldelli A, Solini A. SGLT2 inhibitors and thiazide enhance excretion of DEHP toxic metabolites in subjects with type 2 diabetes: A randomized clinical trial. ENVIRONMENTAL RESEARCH 2021; 192:110316. [PMID: 33065070 DOI: 10.1016/j.envres.2020.110316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Phthalates are non-persistent pollutants related to impaired metabolism and high cardiovascular risk. Their toxic metabolites are eliminated through urine and feces. Prevention policies are considered by the governments, although no therapeutic strategy to facilitate their elimination from the human body has been proposed so far. Aim of the present study was to verify, for the first time in humans, whether diuretics might be able to enhance phthalates' toxic metabolites urinary output. DESIGN AND METHODS We conducted a two-armed, parallel-design, randomized clinical trial. Thirty patients with type 2 diabetes and hypertension received a four week-treatment with Dapagliflozin 10 mg or Hydrochlorothiazide 12.5 mg. 24-hours urine were collected to measure urinary excretion of three major 2-ethylhexyl-phthalate (DEHP) metabolites, i.e. mono 2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP) and mono 2-ethyl-5-hydroxyhexyl phthalate (MEHHP). RESULTS 24-h urinary excretion of DEHP and MEHP was increased (+44%, p = 0.036; +49%, p = 0.0016) while MEOHP e MEHHP showed only a positive trend (+25%, p = 0.016; +36%, p = 0.062). Irrespective of the specific treatment, induced variations of daily urinary eliminations of MEHP metabolites were related with the 24-h urinary sodium (r = 0.42, p = 0.0226) and potassium (r = 0.54, p = 0.0026) excretion. Also, DEHP and MEOHP were related to sodium (r = 0·43, p = 0.0205; r = 0·44, p = 0.0168 respectively) but not to potassium. CONCLUSIONS Urinary phthalates excretion seems to occur mainly through sodium- and potassium-related mechanisms, apparently independent from the different diuretic effect. Both thiazide diuretics and SLGT2 inhibitors are effective into the removal of phthalates metabolites from the human body, reducing the human tissues' exposure to their toxicity.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
23
|
Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int J Mol Sci 2020; 21:ijms21217833. [PMID: 33105763 PMCID: PMC7660105 DOI: 10.3390/ijms21217833] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The development of sodium-glucose transporter 2 inhibitor (SGLT2i) broadens the therapeutic strategies in treating diabetes mellitus. By inhibiting sodium and glucose reabsorption from the proximal tubules, the improvement in insulin resistance and natriuresis improved the cardiovascular mortality in diabetes mellitus (DM) patients. It has been known that SGLT2i also provided renoprotection by lowering the intraglomerular hypertension by modulating the pre- and post- glomerular vascular tone. The application of SGLT2i also provided metabolic and hemodynamic benefits in molecular aspects. The recent DAPA-CKD trial and EMPEROR-Reduced trial provided clinical evidence of renal and cardiac protection, even in non-DM patients. Therefore, the aim of the review is to clarify the hemodynamic and metabolic modulation of SGLT2i from the molecular mechanism.
Collapse
|
24
|
Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35:i13-i23. [PMID: 32003834 PMCID: PMC6993197 DOI: 10.1093/ndt/gfz237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin–angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin–angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, GEENDIAB, Valencia, Spain.,REDINREN, Madrid, Spain
| | - Juan F Navarro-González
- REDINREN, Madrid, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, GEENDIAB, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- REDINREN, Madrid, Spain.,IIS-Fundación Jimenez Diaz UAM and School of Medicine, UAM, GEENDIAB, Madrid, Spain
| | - Ander Vergara
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | - Julio Nuñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, INCLIVA, Valencia, Spain.,CIBER Cardiovascular
| | - Conxita Jacobs-Cachá
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | | | - Maria Jose Soler
- REDINREN, Madrid, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| |
Collapse
|
25
|
Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, Vallon V, Nagata D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep 2020; 8:e14360. [PMID: 31994353 PMCID: PMC6987478 DOI: 10.14814/phy2.14360] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/25/2022] Open
Abstract
Most of the filtered glucose is reabsorbed in the early proximal tubule by the sodium-glucose cotransporter SGLT2. The glycosuric effect of the SGLT2 inhibitor ipragliflozin is linked to a diuretic and natriuretic effect that activates compensatory increases in fluid and food intake to stabilize body fluid volume (BFV). However, the compensatory mechanisms that are activated on the level of renal tubules remain unclear. Type 2 diabetic Goto-Kakizaki (GK) rats were treated with vehicle or 0.01% (in diet) ipragliflozin with free access to fluid and food. After 8 weeks, GK rats were placed in metabolic cages for 24-hr. Ipragliflozin decreased body weight, serum glucose and systolic blood pressure, and increased fluid and food intake, urinary glucose and Na+ excretion, urine volume, and renal osmolar clearance, as well as urine vasopressin and solute-free water reabsorption (TcH2O). BFV, measured by bioimpedance spectroscopy, and fluid balance were similar among the two groups. Urine vasopressin in ipragliflozin-treated rats was negatively and positively associated with fluid balance and TcH2O, respectively. Ipragliflozin increased the renal membrane protein expression of SGLT2, aquaporin (AQP) 2 phosphorylated at Ser269 and vasopressin V2 receptor. The expression of SGLT1, GLUT2, AQP1, and AQP2 was similar between the groups. In conclusion, the SGLT2 inhibitor ipragliflozin induced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases in fluid intake and vasopressin-induced TcH2O in proportion to the reduced fluid balance to maintain BFV. These results indicate that the osmotic diuresis induced by SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption to maintain BFV.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Shigeaki Muto
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Keiko Fukuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Minami Watanabe
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Ken Ohara
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and BiophysicsJulius‐von‐Sachs‐Institute of BiosciencesUniversity of WürzburgWürzburgBavariaGermany
| | - Volker Vallon
- Division of Nephrology and HypertensionDepartment of Medicine and PharmacologyUniversity of California San Diego &VA San Diego Healthcare SystemSan DiegoCAUSA
| | - Daisuke Nagata
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
26
|
García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019; 8:E864. [PMID: 31212945 PMCID: PMC6617211 DOI: 10.3390/jcm8060864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the developed world. Until 2016, the only treatment that was clearly demonstrated to delay the DKD was the renin-angiotensin system blockade, either by angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. However, this strategy only partially covered the DKD progression. Thus, new strategies for reno-cardiovascular protection in type 2 diabetic patients are urgently needed. In the last few years, hypoglycaemic drugs, such as sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, demonstrated a cardioprotective effect, mainly in terms of decreasing hospitalization for heart failure and cardiovascular death in type 2 diabetic patients. In addition, these drugs also demonstrated a clear renoprotective effect by delaying DKD progression and decreasing albuminuria. Another hypoglycaemic drug class, dipeptidyl peptidase 4 inhibitors, has been approved for its use in patients with advanced chronic kidney disease, avoiding, in part, the need for insulinization in this group of DKD patients. Studies in diabetic and non-diabetic experimental models suggest that these drugs may exert their reno-cardiovascular protective effect by glucose and non-glucose dependent mechanisms. This review focuses on newly demonstrated strategies that have shown reno-cardiovascular benefits in type 2 diabetes and that may change diabetes management algorithms.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Ander Vergara
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Irene Agraz
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Eugenia Espinel
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Daniel Seron
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - María José Soler
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| |
Collapse
|