1
|
Havenga H, Gharbi D, Sewry N, Language B, Neumann FH, Finch JM, Hill T, Boulter J, Jordaan E, Piketh SJ, Schwellnus M, Burger RP. Healthy environments for athleTes (HEAT): environmental conditions along a 90 km ultra-marathon event, South Africa. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1757-1771. [PMID: 38869702 PMCID: PMC11461593 DOI: 10.1007/s00484-024-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
This paper provides an overview of the HEAT (Healthy Environments for AthleTes) project, which aims to understand the impact of environmental conditions on athlete health and performance during major sporting events such as long-distance running, cycling, and triathlons. In collaboration with the SAFER (Strategies to reduce Adverse medical events For the ExerciseR) initiative, the HEAT project carried out a field campaign at the 2022 Comrades Marathon in the KwaZulu-Natal province of South Africa. The measurement campaign deployed seven weather stations, seven PM2.5 monitors and one spore trap along the 90 km route to capture spatially representative measurements of complex micro-climates, allergenic aerospora, and particulate matter exposure. The results indicate that runners were exposed to moderate risk heat stress conditions. Novel findings from this initial campaign shows elevated and potentially harmful PM2.5 levels at spectator areas, possibly coinciding with small fire events around the race day festivities. Our findings show values PM2.5 levels over the WHO 24-h guidelines at all stations, while 2000 µg/m3 at two stations. However, the lack of an acute exposure standard means direct health impacts cannot be quantified in the context of a sport event. The HEAT project highlights important aspects of race day monitoring; regional scale climatology has an impact on the race day conditions, the microclimatic conditions (pollution and meteorology) are not necessarily captured by proximity instruments and direct environmental measurements are required to accurately capture conditions along the route.
Collapse
Affiliation(s)
- H Havenga
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - D Gharbi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - N Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - B Language
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - F H Neumann
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - J M Finch
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - T Hill
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - J Boulter
- Comrades Marathon Association (CMA), Medical Director, Pietermaritzburg, South Africa
| | - E Jordaan
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Statistics and Population Studies Department, University of the Western Cape, Cape Town, Western Cape, South Africa
| | - S J Piketh
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - M Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - R P Burger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Segreti A, Celeski M, Guerra E, Crispino SP, Vespasiano F, Buzzelli L, Fossati C, Papalia R, Pigozzi F, Grigioni F. Effects of Environmental Conditions on Athlete's Cardiovascular System. J Clin Med 2024; 13:4961. [PMID: 39201103 PMCID: PMC11355938 DOI: 10.3390/jcm13164961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental factors such as extreme temperatures, humidity, wind, pollution, altitude, and diving can significantly impact athletes' cardiovascular systems, potentially hindering their performance, particularly in outdoor sports. The urgency of this issue is heightened by the increasing prevalence of climate change and its associated conditions, including fluctuating pollution levels, temperature variations, and the spread of infectious diseases. Despite its critical importance, this topic is often overlooked in sports medicine. This narrative review seeks to address this gap by providing a comprehensive, evidence-based evaluation of how athletes respond to environmental stresses. A thorough assessment of current knowledge is essential to better prepare athletes for competition under environmental stress and to minimize the harmful effects of these factors. Specifically, adaptative strategies and preventative measures are vital to mitigating these environmental influences and ensuring athletes' safety.
Collapse
Affiliation(s)
- Andrea Segreti
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Roma, Italy; (C.F.); (F.P.)
| | - Mihail Celeski
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Emiliano Guerra
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Via del Pozzo, 71, 41124 Modena, Italy;
| | - Simone Pasquale Crispino
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesca Vespasiano
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Buzzelli
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Roma, Italy; (C.F.); (F.P.)
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy;
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Roma, Italy; (C.F.); (F.P.)
| | - Francesco Grigioni
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (M.C.); (S.P.C.); (F.V.); (L.B.); (F.G.)
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
3
|
Dunn RA, Fry LA, Sekiguchi Y, Benjamin CL, Manning CN, Huggins RA, Stearns RL, Casa DJ. Effect of Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training on Maximal Oxygen Uptake. Sports Health 2024:19417381241249470. [PMID: 38708678 DOI: 10.1177/19417381241249470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Maximal oxygen uptake (VO2max) is an important determinant of endurance performance. Heat acclimation/acclimatization (HA/HAz) elicits improvements in endurance performance. Upon heat exposure reduction, intermittent heat training (IHT) may alleviate HA/HAz adaptation decay; however, corresponding VO2max responses are unknown. HYPOTHESIS VO2max is maintained after HAz/HA; IHT mitigates decrements in aerobic power after HAz/HA. STUDY DESIGN Interventional study. LEVEL OF EVIDENCE Level 3. METHODS A total of 27 male endurance runners (mean ± SD; age, 36 ± 12 years; body mass, 73.03 ± 8.97 kg; height, 178.81 ± 6.39 cm) completed VO2max testing at 5 timepoints; baseline, post-HAz, post-HA, and weeks 4 and 8 of IHT (IHT4, IHT8). After baseline testing, participants completed HAz, preceded by 5 days of HA involving exercise to induce hyperthermia for 60 minutes in the heat (ambient temperature, 39.13 ± 1.37°C; relative humidity, 51.08 ± 8.42%). Participants were assigned randomly to 1 of 3 IHT groups: once-weekly, twice-weekly, or no IHT. Differences in VO2max, velocity at VO2max (vVO2), and maximal heart rate (HRmax) at all 5 timepoints were analyzed using repeated-measure analyses of variance with Bonferroni corrections post hoc. RESULTS No significant VO2max or vVO2 differences were observed between baseline, post-HAz, or post-HA (P = 0.36 and P = 0.09, respectively). No significant group or time effects were identified for VO2max or vVO2 at post-HA, IHT4, and IHT8 (P = 0.67 and P = 0.21, respectively). Significant HRmax differences were observed between baseline and post-HA tests (P < 0.01). No significant group or time HRmax differences shown for post-HA, IHT4, and IHT8 (P = 0.59). CONCLUSION VO2max was not reduced among endurance runners after HA/HAz and IHT potentially due to participants' similar aerobic training status and high aerobic fitness levels. CLINICAL RELEVANCE HAz/HA and IHT maintain aerobic power in endurance runners, with HAz/HA procuring reductions in HRmax.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Lauren A Fry
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas and Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Courteney L Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut and Department of Kinesiology, Samford University, Birmingham, Alabama
| | - Ciara N Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Robert A Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Rebecca L Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
4
|
Li H, Early KS, Zhang G, Ma P, Wang H. Personalized Hydration Strategy to Improve Fluid Balance and Intermittent Exercise Performance in the Heat. Nutrients 2024; 16:1341. [PMID: 38732589 PMCID: PMC11085813 DOI: 10.3390/nu16091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Sweat rate and electrolyte losses have a large inter-individual variability. A personalized approach to hydration can overcome this issue to meet an individual's needs. This study aimed to investigate the effects of a personalized hydration strategy (PHS) on fluid balance and intermittent exercise performance. Twelve participants conducted 11 laboratory visits including a VO2max test and two 5-day trial arms under normothermic (NOR) or hyperthermic (HYP) environmental conditions. Each arm began with three days of familiarization exercise followed by two random exercise trials with either a PHS or a control (CON). Then, participants crossed over to the second arm for: NOR+PHS, NOR+CON, HYP+PHS, or HYP+CON. The PHS was prescribed according to the participants' fluid and sweat sodium losses. CON drank ad libitum of commercially-available electrolyte solution. Exercise trials consisted of two phases: (1) 45 min constant workload; (2) high-intensity intermittent exercise (HIIT) until exhaustion. Fluids were only provided in phase 1. PHS had a significantly greater fluid intake (HYP+PHS: 831.7 ± 166.4 g; NOR+PHS: 734.2 ± 144.9 g) compared to CON (HYP+CON: 369.8 ± 221.7 g; NOR+CON: 272.3 ± 143.0 g), regardless of environmental conditions (p < 0.001). HYP+CON produced the lowest sweat sodium concentration (56.2 ± 9.0 mmol/L) compared to other trials (p < 0.001). HYP+PHS had a slower elevated thirst perception and a longer HIIT (765 ± 452 s) compared to HYP+CON (548 ± 283 s, p = 0.04). Thus, PHS reinforces fluid intake and successfully optimizes hydration status, regardless of environmental conditions. PHS may be or is an important factor in preventing negative physiological consequences during high-intensity exercise in the heat.
Collapse
Affiliation(s)
- Haicheng Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.L.); (G.Z.); (P.M.)
| | - Kate S. Early
- Department of Kinesiology & Health Sciences, Columbus State University, Columbus, GA 31907, USA;
| | - Guangxia Zhang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.L.); (G.Z.); (P.M.)
| | - Pengwei Ma
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.L.); (G.Z.); (P.M.)
| | - Haoyan Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.L.); (G.Z.); (P.M.)
| |
Collapse
|
5
|
Brown HA, Topham TH, Clark B, Ioannou LG, Flouris AD, Smallcombe JW, Telford RD, Jay O, Périard JD. Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis. Sports Med 2024; 54:727-741. [PMID: 38051495 DOI: 10.1007/s40279-023-01972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat. OBJECTIVE The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel. ELIGIBILITY CRITERIA Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included. DATA SOURCES MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022. RISK OF BIAS A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias. DATA SYNTHESIS A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated. RESULTS Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of - 0.19 °C [90% CrI: - 0.41 to 0.05, Pd = 91%] and - 6 beats·min-1 [90% CrI: - 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by - 0.24 °C [90% CrI: - 0.67 to 0.20, Pd = 85%] and - 7 beats·min-1 [90% CrI: - 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h-1 [90% CrI: - 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation. CONCLUSIONS Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length. PROSPERO REGISTRATION CRD42022337761.
Collapse
Affiliation(s)
- Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
6
|
Munsters C, Siegers E, Sloet van Oldruitenborgh-Oosterbaan M. Effect of a 14-Day Period of Heat Acclimation on Horses Using Heated Indoor Arenas in Preparation for Tokyo Olympic Games. Animals (Basel) 2024; 14:546. [PMID: 38396514 PMCID: PMC10886293 DOI: 10.3390/ani14040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
To optimise the performance and welfare of horses during equestrian competitions in hot climates, it is advised to acclimate them to the heat. The effects of training in a heated indoor arena were studied. Four Olympic horses (13.3 ± 2.2 years; three eventers, one para-dressage horse) were trained for 14 consecutive days in a heated indoor arena (32 ± 1 °C; 50-60% humidity) following their normal training schedule in preparation for the Tokyo Olympic games. Standardised exercise tests (SETs) were performed on Day 1 and Day 14, measuring heart rate (HR; bpm), plasma lactate concentration (LA; mmol/L), deep rectal temperature (Trec; °C), sweat loss (SL; L), and sweat composition (K+, Cl- and Na+ concentration). The data were analysed using linear mixed models. The Trec and HR were significantly decreased after acclimation (estimate: -0.106, 95% CI -0.134, -0.078; estimate: -4.067, 95% CI -7.535, -0.598, respectively). Furthermore, for all the horses, the time taken to reach their peak Trec and heat storage increased, while their LA concentrations decreased. The SL, Cl-, and Na+ concentrations decreased in three out of the four horses. Conclusions: Fourteen days of normal training in a heated indoor arena resulted in a reduction in cardiovascular and thermal strain. This is advantageous because it shows that elite sport horses can be acclimated while training as usual for a championship.
Collapse
Affiliation(s)
- Carolien Munsters
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands (M.S.v.O.-O.)
- Equine Integration B.V., Groenstraat 2c, 5528 Hoogeloon, The Netherlands
| | - Esther Siegers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands (M.S.v.O.-O.)
| | | |
Collapse
|
7
|
Fenemor SP, Gill ND, Driller MW, Mills B, Sella F, Beaven CM. Small Performance Effects of a Practical Mixed-Methods Cooling Strategy in Elite Team Sport Athletes. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1162-1168. [PMID: 36167423 DOI: 10.1080/02701367.2022.2125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Purpose: The ingestion of ice slurry and application of ice towels can elicit favorable physiological, perceptual, and performance benefits when used individually; however, the combined use and effectiveness of these practical cooling strategies have not been assessed using a sport-specific performance test, based on actual match demands, in an elite team sport context. Methods: Ten non-heat acclimated elite male rugby sevens athletes undertook two cycling heat response tests (HRT) designed to be specific to the demands of rugby sevens in hot conditions (35°C, 80% rH). In a crossover design, the HRTs were conducted with (COOLING) and without (HOT) the combined use of internal (ice slushy ingestion) and external (application of ice towels to the head, neck, and face) pre- and per-cooling strategies. Physiological, perceptual, and performance variables were monitored throughout each HRT. Results: COOLING resulted in reductions in mean tympanic temperature (-0.4 ± 0.2°C; d = 1.18); mean heart rate (-5 ± 8 bpm; d = 0.53); thermal discomfort (-0.5 ± 0.9 AU; d = 0.48); and thirst sensation (-1.0 ± 1.1 AU; d = 0.61) during the HRT. COOLING also resulted in a small increase in 4-min time trial power output (by 7 ± 33 W, ~3%; d = 0.35) compared to HOT. Discussion: A combination of internal and external pre- and per-cooling strategies can result in a range of small physiological, perceptual, and performance benefits during a rugby sevens specific HRT, compared to undertaking no cooling. Practitioners should include such strategies when performing in hot conditions.
Collapse
Affiliation(s)
- S P Fenemor
- University of Waikato Adams Centre for High Performance
- High Performance Sport New Zealand
| | - N D Gill
- University of Waikato Adams Centre for High Performance
- New Zealand Rugby Union
| | | | | | - F Sella
- University of Waikato Adams Centre for High Performance
| | - C M Beaven
- University of Waikato Adams Centre for High Performance
| |
Collapse
|
8
|
Henderson MJ, Grandou C, Chrismas BCR, Coutts AJ, Impellizzeri FM, Taylor L. Core Body Temperatures in Intermittent Sports: A Systematic Review. Sports Med 2023; 53:2147-2170. [PMID: 37526813 PMCID: PMC10587327 DOI: 10.1007/s40279-023-01892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hyperthermia (and associated health and performance implications) can be a significant problem for athletes and teams involved in intermittent sports. Quantifying the highest thermal strain (i.e. peak core body temperature [peak Tc]) from a range of intermittent sports would enhance our understanding of the thermal requirements of sport and assist in making informed decisions about training or match-day interventions to reduce thermally induced harm and/or performance decline. OBJECTIVE The objective of this systematic review was to synthesise and characterise the available thermal strain data collected in competition from intermittent sport athletes. METHODS A systematic literature search was performed on Web of Science, MEDLINE, and SPORTDiscus to identify studies up to 17 April 2023. Electronic databases were searched using a text mining method to provide a partially automated and systematic search strategy retrieving terms related to core body temperature measurement and intermittent sport. Records were eligible if they included core body temperature measurement during competition, without experimental intervention that may influence thermal strain (e.g. cooling), in healthy, adult, intermittent sport athletes at any level. Due to the lack of an available tool that specifically includes potential sources of bias for physiological responses in descriptive studies, a methodological evaluation checklist was developed and used to document important methodological considerations. Data were not meta-analysed given the methodological heterogeneity between studies and therefore were presented descriptively in tabular and graphical format. RESULTS A total of 34 studies were selected for review; 27 were observational, 5 were experimental (2 parallel group and 3 repeated measures randomised controlled trials), and 2 were quasi-experimental (1 parallel group and 1 repeated measures non-randomised controlled trial). Across all included studies, 386 participants (plus participant numbers not reported in two studies) were recruited after accounting for shared data between studies. A total of 4 studies (~ 12%) found no evidence of hyperthermia, 24 (~ 71%) found evidence of 'modest' hyperthermia (peak Tc between 38.5 and 39.5 °C), and 6 (~ 18%) found evidence of 'marked' hyperthermia (peak Tc of 39.5 °C or greater) during intermittent sports competition. CONCLUSIONS Practitioners and coaches supporting intermittent sport athletes are justified to seek interventions aimed at mitigating the high heat strain observed in competition. More research is required to determine the most effective interventions for this population that are practically viable in intermittent sports settings (often constrained by many competing demands). Greater statistical power and homogeneity among studies are required to quantify the independent effects of wet bulb globe temperature, competition duration, sport and level of competition on peak Tc, all of which are likely to be key modulators of the thermal strain experienced by competing athletes. REGISTRATION This systematic review was registered on the Open Science Framework ( https://osf.io/vfb4s ; https://doi.org/10.17605/OSF.IO/EZYFA , 4 January 2021).
Collapse
Affiliation(s)
- Mitchell J Henderson
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia.
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia.
| | - Clementine Grandou
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Aaron J Coutts
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Franco M Impellizzeri
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Lee Taylor
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
9
|
Alkemade P, Daanen HAM, Janssen TWJ, Broad E, Goosey-Tolfrey VL, Ibusuki T, Kneepkens H, Périard JD, Eijsvogels TMH. Heat preparedness and exertional heat illness in Paralympic athletes: A Tokyo 2020 survey. Temperature (Austin) 2022; 10:264-275. [PMID: 37332304 PMCID: PMC10274519 DOI: 10.1080/23328940.2022.2147364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Paralympic athletes may be at increased risk for exertional heat illness (EHI) due to reduced thermoregulatory ability as a consequence of their impairment. This study investigated the occurrence of heat-stress related symptoms and EHI, and the use of heat mitigation strategies in Paralympic athletes, both in relation to the Tokyo 2020 Paralympic Games and previous events. Paralympic athletes competing in Tokyo 2020 were invited to complete an online survey five weeks prior to the Paralympics and up to eight weeks after the Games. 107 athletes (30 [24-38] years, 52% female, 20 nationalities, 21 sports) completed the survey. 57% of respondents had previously experienced heat-stress related symptoms, while 9% had been medically diagnosed with EHI. In Tokyo, 21% experienced at least one heat-stress related symptom, while none reported an EHI. The most common symptom and EHI were, respectively, dizziness and dehydration. In preparation for Tokyo, 58% of respondents used a heat acclimation strategy, most commonly heat acclimatization, which was more than in preparation for previous events (45%; P = 0.007). Cooling strategies were used by 77% of athletes in Tokyo, compared to 66% during past events (P = 0.18). Cold towels and packs were used most commonly. Respondents reported no medically-diagnosed EHIs during the Tokyo 2020 Paralympic Games, despite the hot and humid conditions in the first seven days of competition. Heat acclimation and cooling strategies were used by the majority of athletes, with heat acclimation being adopted more often than for previous competitions.
Collapse
Affiliation(s)
- Puck Alkemade
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hein A. M. Daanen
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Thomas W. J. Janssen
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | | | - Victoria L. Goosey-Tolfrey
- Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LeicestershireLE11 3TU, UK
| | - Tatsuru Ibusuki
- Department of Rehabilitation Medicine, Akeno Central Hospital, Oita, Japan
| | - Hiske Kneepkens
- Sport Medisch Centrum Papendal, NOC*NSF, Arnhem, The Netherlands
| | - Julien D. Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, New south wales, Australia
| | - Thijs M. H. Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
The Multidisciplinary Physical Preparation of a Multiple Paralympic Medal-Winning Cyclist. Int J Sports Physiol Perform 2022; 17:1316-1322. [PMID: 35894985 DOI: 10.1123/ijspp.2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE This case study aims to describe the multidisciplinary preparation of a multiple medal-winning Paralympic cyclist active in the C5 class. Specifically, it describes the 12-month preparation period toward the Tokyo 2020 Paralympic Games. METHOD The participant (height 173 cm; weight approximately 63 kg) is active in the C5 para-cycling class (right arm impairment) and was preparing for the individual pursuit, road time trial, and mass-start race in the Tokyo Paralympic Games. The participant was supported by a multidisciplinary practitioner team focusing on multiple facets of athletic preparation. Morning resting heart rate (HR) and HR variability, as well as daily training data, were collected during the 12 months prior to Tokyo. Weekly and monthly trends in training, performance, and morning measures were analyzed. Training intensity zones were divided into zone 1 (<lactate threshold), zone 2(>lactate threshold, <critical power), and zone 3 (>critical power). RESULTS The participant won a silver (individual pursuit) and a bronze (time trial) medal at the Paralympic Games. Annual sums of volume and total work (in kilojoules) were, respectively, 1039 hours and 620,715 kJ. Analyzing all road sessions, 85% was spent in zone 1, 9% in zone 2, and 6% in zone 3. Physiological (eg, high training loads, hypoxic stimuli) and psychological stressors (ie, significant life events) were clearly reflected in morning HR and HR-variability responses. CONCLUSIONS This case study demonstrates how a multidisciplinary team of specialist practitioners successfully prepared an elite Paralympic cyclist utilizing a holistic approach to training and health using data to manage allostatic load.
Collapse
|
11
|
Teunissen LPJ, Jansen KMB, Janssen E, Kingma BRM, de Korte JQ, Eijsvogels TMH. Impact of different climatic conditions on peak core temperature of elite athletes during exercise in the heat: a Thermo Tokyo simulation study. BMJ Open Sport Exerc Med 2022; 8:e001313. [PMID: 35813127 PMCID: PMC9234798 DOI: 10.1136/bmjsem-2022-001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/04/2022] Open
Abstract
Objectives To evaluate how separate and combined climatic parameters affect peak core temperature during exercise in the heat using computer simulations fed with individual data. Methods The impact of eight environmental conditions on rectal temperature (Tre) was determined for exercise under heat stress using the Fiala-thermal-Physiology-and-Comfort simulation model. Variations in ambient temperature (Ta±6°C), relative humidity (RH±15%) and solar radiation (SR+921 W/m2) were assessed in isolation and combination (worst-case/best-case scenarios) and compared with baseline (Ta32°C, RH 75%, SR 0 W/m2). The simulation model was fed with personal, anthropometric and individual exercise characteristics. Results 54 athletes exercised for 46±10 min at baseline conditions and achieved a peak core temperature of 38.9±0.5°C. Simulations at a higher Ta (38°C) and SR (921 W/m2) resulted in a higher peak Tre compared with baseline (+0.6±0.3°C and +0.5±0.2°C, respectively), whereas a higher RH (90%) hardly affected peak Tre (+0.1±0.1°C). A lower Ta (26°C) and RH (60%) reduced peak Tre by −0.4±0.2°C and a minor −0.1±0.1°C, respectively. The worst-case simulation yielded a 1.5±0.4°C higher Tre than baseline and 2.0±0.7°C higher than the best-case condition. Conclusion Combined unfavourable climatic conditions produce a greater increase in peak core temperature than the sum of its parts in elite athletes exercising in the heat.
Collapse
Affiliation(s)
- Lennart P J Teunissen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Kaspar M B Jansen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Emiel Janssen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Boris R M Kingma
- Department of Training & Performance Innovations, TNO, Unit Defence, Safety & Security, Soesterberg, The Netherlands
| | - Johannus Q de Korte
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
de Korte JQ, Veenstra BJ, van Rijswick M, Derksen EJK, Hopman MTE, Bongers CCWG, Eijsvogels TMH. A Heart Rate Based Algorithm to Estimate Core Temperature Responses in Elite Athletes Exercising in the Heat. Front Sports Act Living 2022; 4:882254. [PMID: 35813051 PMCID: PMC9256956 DOI: 10.3389/fspor.2022.882254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Non-invasive non-obtrusive continuous and real-time monitoring of core temperature (Tc) may enhance pacing strategies, the efficacy of heat mitigation measures, and early identification of athletes at risk for heat-related disorders. The Estimated Core Temperature (ECTemp™) algorithm uses sequential heart rate (HR) values to predict Tc. We examined the validity of ECTemp™ among elite athletes exercising in the heat. Methods 101 elite athletes performed an exercise test in simulated hot and humid environmental conditions (ambient temperature: 31.6 ± 1.0°C, relative humidity: 74 ± 5%). Tc was continuously measured using a validated ingestible telemetric temperature capsule system. In addition, HR was continuously measured and used to compute the estimated core temperature (Tc-est) using the ECTemp™ algorithm. Results Athletes exercised for 44 ± 10 min and n = 5,025 readouts of Tc (range: 35.8-40.4°C), HR (range: 45-207 bpm), and Tc-est (range: 36.7-39.9°C) were collected. Tc-est demonstrated a small yet significant bias of 0.15 ± 0.29°C (p < 0.001) compared to Tc, with a limit of agreement of ±0.45°C and a root mean square error of 0.35 ± 0.18°C. Utilizing the ECTemp™ algorithm as a diagnostic test resulted in a fair to excellent sensitivity (73-96%) and specificity (72-93%) for Tc-est thresholds between 37.75 and 38.75°C, but a low to very-low sensitivity (50-0%) for Tc-est thresholds >39.0°C, due to a high prevalence of false-negative observations. Conclusion ECTemp™ provides a valuable and representative indication of thermal strain in the low- to mid-range of Tc values observed during exercise in the heat. It may, therefore, be a useful non-invasive and non-obtrusive tool to inform athletes and coaches about the estimated core temperature during controlled hyperthermia heat acclimation protocols. However, the ECTemp™ algorithm, in its current form, should not solely be used to identify athletes at risk for heat-related disorders due to low sensitivity and high false-negative rate in the upper end of the Tc spectrum.
Collapse
Affiliation(s)
- Johannus Q. de Korte
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Bertil J. Veenstra
- Institute of Training Medicine & Training Physiology, TGTF, Royal Netherlands Army, Utrecht, Netherlands
| | - Mark van Rijswick
- Institute of Training Medicine & Training Physiology, TGTF, Royal Netherlands Army, Utrecht, Netherlands
| | - Eline J. K. Derksen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Maria T. E. Hopman
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Coen C. W. G. Bongers
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Thijs M. H. Eijsvogels
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| |
Collapse
|
13
|
Vanos JK, Marie Thomas W, Grundstein A, Hosokawa Y, Casa D. Bracing for heat and humidity amidst new challenges in Tokyo: Comment on: Vanos JK, Thomas WM, Grundstein AJ, Hosokawa Y, Liu Y, Casa DJ. A multi-scalar climatological analysis in preparation for extreme heat at the Tokyo 2020 Olympic and Paralympic Games. Temperature 2020;7(2):191-214, DOI: 10.1080/23328940.2020.1737479. Temperature (Austin) 2021; 8:206-208. [PMID: 34595324 DOI: 10.1080/23328940.2021.1960104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Jennifer K Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | | | - Andy Grundstein
- Department of Geography, University of Georgia, Athens, GA, USA
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University: Tokorozawa, Saitama, JP, USA
| | - Doug Casa
- Korey Stringer Institute, Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
14
|
Fukuhara K, Mikami Y, Hasegawa H, Nakashima D, Ikuta Y, Tajima F, Kimura H, Adachi N. Thermoregulatory responses in persons with lower-limb amputation during upper-limb endurance exercise in a hot and humid environment. Prosthet Orthot Int 2021; 45:401-409. [PMID: 34483329 PMCID: PMC9201935 DOI: 10.1097/pxr.0000000000000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Persons with an amputation may have an increased heat strain due to reduced surface area. However, there is limited evidence on the thermoregulatory responses in persons with lower-limb amputation (LLA). Although a previous study reported no difference in their rectal temperatures (Tres) in a hot environment, suggesting compensatory sweating of the intact limb, we examined the thermoregulatory responses of such persons in a hot and humid environment. OBJECTIVE To compare the thermoregulatory responses-through changes in Tre, sweat, and oxygen uptake (O2)-between persons with LLA and able-bodied (AB) individuals, in hot and humid environments. STUDY DESIGN A nonrandomized control trial. METHODS Nine AB men (AB group) and nine persons with LLA group performed the arm ergometer exercise at 60% peak power output intensity for 60 min in a hot and humid environment, and they were tested before and after performing. The O2, Tre and skin temperature, and total body sweating, and local sweating during exercise were measured and compared between the groups. RESULTS The changes in O2 and Tre after the endurance exercise did not differ between the groups (ΔTre: AB group, 1.1°C ± 0.5°C; LLA group, 1.2°C ±0.3 °C; P = 0.65), whereas the amount of local sweating of the chest (group effect, P < 0.01 by two-way analysis of variance [group × time], the group effect size was medium, η2 = 0.10) and dehydration rate (AB group, 1.5% ± 0.5%; LLA group, 2.1% ± 0.5%; P = 0.03) were higher in the LLA than in the AB group. CONCLUSIONS We compared the thermoregulatory responses of persons with LLA with those of AB individuals in hot and humid environments. Core body temperatures of persons with LLAs during endurance exercise were not different from those of AB men even in hot and humid environments. We found compensatory increases in the sweat rate of the chest and increased dehydration rate in persons with LLA. More sweat potentially means that athletes with LLA need to drink more fulids.
Collapse
Affiliation(s)
- Kouki Fukuhara
- Department of Rehabilitation Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
- Sports Medical Center, Hiroshima University Hospital, Japan
| | - Yukio Mikami
- Department of Rehabilitation Medicine, Wakayama Medical University, Japan
| | - Hiroshi Hasegawa
- Graduate School of Humanities and Social Sciences, Hiroshima University, Japan
| | | | - Yasunari Ikuta
- Sports Medical Center, Hiroshima University Hospital, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Japan
| | - Hiroaki Kimura
- Department of Rehabilitation Medicine, Hiroshima University Hospital, Japan
| | - Nobuo Adachi
- Sports Medical Center, Hiroshima University Hospital, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
15
|
de Korte JQ, Bongers CCWG, Hopman MTE, Teunissen LPJ, Jansen KMB, Kingma BRM, Ballak SB, Maase K, Moen MH, van Dijk JW, Daanen HAM, Eijsvogels TMH. Performance and thermoregulation of Dutch Olympic and Paralympic athletes exercising in the heat: Rationale and design of the Thermo Tokyo study: The journal Temperature toolbox. Temperature (Austin) 2021; 8:209-222. [PMID: 34485618 PMCID: PMC8409773 DOI: 10.1080/23328940.2021.1925618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The environmental conditions during the Tokyo Olympic and Paralympic Games are expected to be challenging, which increases the risk for participating athletes to develop heat-related illnesses and experience performance loss. To allow safe and optimal exercise performance of Dutch elite athletes, the Thermo Tokyo study aimed to determine thermoregulatory responses and performance loss among elite athletes during exercise in the heat, and to identify personal, sports-related, and environmental factors that contribute to the magnitude of these outcomes. For this purpose, Dutch Olympic and Paralympic athletes performed two personalized incremental exercise tests in simulated control (15°C, relative humidity (RH) 50%) and Tokyo (32°C, RH 75%) conditions, during which exercise performance and (thermo)physiological parameters were obtained. Thereafter, athletes were invited for an additional visit to conduct anthropometric, dual-energy X-ray absorptiometry (DXA), and 3D scan measurements. Collected data also served as input for a thermophysiological computer simulation model to estimate the impact of a wider range of environmental conditions on thermoregulatory responses. Findings of this study can be used to inform elite athletes and their coaches on how heat impacts their individual (thermo)physiological responses and, based on these data, advise which personalized countermeasures (i.e. heat acclimation, cooling interventions, rehydration plan) can be taken to allow safe and maximal performance in the challenging environmental conditions of the Tokyo 2020 Olympic and Paralympic Games.
Collapse
Affiliation(s)
- Johannus Q de Korte
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Coen C W G Bongers
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.,Faculty of Health Sciences, Thermal Ergonomics Laboratory, The University of Sydney, Sydney, Australia
| | - Maria T E Hopman
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Lennart P J Teunissen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Kaspar M B Jansen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Boris R M Kingma
- Department of Training and Performance Innovations, Unit Defence, Safety and Security, TNO, the Netherlands Organization for Applied Sciences, Soesterberg, The Netherlands.,Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sam B Ballak
- Sport Science & Innovation Papendal, Sportcentrum Papendal, Arnhem, The Netherlands
| | - Kamiel Maase
- Netherlands Olympic Committee Netherlands Sports Federation, Arnhem, The Netherlands
| | - Maarten H Moen
- Netherlands Olympic Committee Netherlands Sports Federation, Arnhem, The Netherlands
| | - Jan-Willem van Dijk
- Institute of Sport and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands.,Sizing Science, Soesterberg, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
17
|
de Korte JQ, Bongers CCWG, Hopman MTE, Eijsvogels TMH. Exercise Performance and Thermoregulatory Responses of Elite Athletes Exercising in the Heat: Outcomes of the Thermo Tokyo Study. Sports Med 2021; 51:2423-2436. [PMID: 34396493 PMCID: PMC8514392 DOI: 10.1007/s40279-021-01530-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
Objective We examined the impact of simulated Tokyo 2020 environmental condition on exercise performance, thermoregulatory responses and thermal perception among Dutch elite athletes. Methods 105 elite athletes from different sport disciplines performed two exercise tests in simulated control (15.9 ± 1.2 °C, relative humidity (RH) 55 ± 6%) and Tokyo (31.6 ± 1.0 °C, RH 74 ± 5%) environmental conditions. Exercise tests consisted of a 20-min warm-up (70% HRmax), followed by an incremental phase until volitional exhaustion (5% workload increase every 3 min). Gastrointestinal temperature (Tgi), heart rate, exercise performance and thermal perception were measured. Results Time to exhaustion was 16 ± 8 min shorter in the Tokyo versus the control condition (− 26 ± 11%, whereas peak power output decreased with 0.5 ± 0.3 W/kg (16 ± 7%). Greater exercise-induced increases in Tgi (1.8 ± 0.6 °C vs. 1.5 ± 0.5 °C, p < 0.001) and higher peak Tgi (38.9 ± 0.6 °C vs. 38.7 ± 0.4 °C, p < 0.001) were found in the Tokyo versus control condition. Large interindividual variations in exercise-induced increase in Tgi (range 0.7–3.5 °C) and peak Tgi (range 37.6–40.4 °C) were found in the Tokyo condition, with greater Tgi responses in endurance versus mixed- and skill-trained athletes. Peak thermal sensation and thermal comfort scores deteriorated in the Tokyo condition, with aggravated responses for power versus endurance- and mixed-trained athletes. Conclusion Large performance losses and Tgi increases were found among elite athletes exercising in simulated Tokyo conditions, with a substantial interindividual variation and significantly different responses across sport disciplines. These findings highlight the importance of an individual approach to optimally prepare athletes for safe and maximal exercise performance during the Tokyo Olympics. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01530-w.
Collapse
Affiliation(s)
- Johannus Q de Korte
- Department of Physiology (392), Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Coen C W G Bongers
- Department of Physiology (392), Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Department of Physiology (392), Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology (392), Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int J Sport Nutr Exerc Metab 2021; 30:83-98. [PMID: 31891914 DOI: 10.1123/ijsnem.2019-0300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete's nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.
Collapse
|
19
|
Roberts IE, Murphy CJ, Goosey-Tolfrey VL. Sleep disruption considerations for Paralympic athletes competing at Tokyo 2020. J Sports Med Phys Fitness 2021; 61:1159-1172. [PMID: 34184496 DOI: 10.23736/s0022-4707.21.12741-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of sleep is now recognized as an important component for success in athletic performance, and sleep is proposed to be one of the most effective recovery strategies available. Insufficient sleep is commonly reported among athletes while several factors have been put forward to explain why elite athletes might experience poor sleep. However, Paralympic athletes may be predisposed to a greater risk of poor sleep due to the associated complexities of some impairment types. In fact, clinical research has previously shown that individuals with disabilities have a higher prevalence of sleep disturbances when compared to their able-bodied counterparts. However, research and evidence-based practices regarding the sleep of elite Paralympic athletes are limited. Firstly, this narrative review aims to identify challenges associated with the Paralympic games to obtain optimal sleep. Secondly, identify the specific risk factors to sleep associated with particular impairment groups within the Paralympic population, and lastly to propose potential sleep-enhancing strategies that might be of relevance for Paralympic athletes. From this review, initial observations have identified that Paralympic athletes may have a heightened risk of sleep-related problems, and importantly highlighted the current lack of understanding within this population group. Furthermore, this review identified where further research is warranted to better understand how specific impairments impact sleep and, consequently, athletic performance. Additionally, this review highlighted that the forthcoming Tokyo games may offer a unique challenge for athletes trying to obtain optimal sleep, due to the anticipated thermal demands and the consequent irregular scheduling of events.
Collapse
Affiliation(s)
- Ifan E Roberts
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| | - Conor J Murphy
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK.,The Peter Harrison Centre for Disability Sports, School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| | - Vicky L Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK - .,The Peter Harrison Centre for Disability Sports, School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
20
|
Annear M, Kidokoro T, Shimizu Y. Existential threats to the Summer Olympic and Paralympic Games? a review of emerging environmental health risks. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:159-166. [PMID: 34981705 DOI: 10.1515/reveh-2020-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 06/14/2023]
Abstract
This review highlights two intersecting environmental phenomena that have significantly impacted the Tokyo Summer Olympic and Paralympic Games: infectious disease outbreaks and anthropogenic climate change. Following systematic searches of five databases and the gray literature, 15 studies were identified that addressed infectious disease and climate-related health risks associated with the Summer Games and similar sports mega-events. Over two decades, infectious disease surveillance at the Summer Games has identified low-level threats from vaccine-preventable illnesses and respiratory conditions. However, the COVID-19 pandemic and expansion of vector-borne diseases represent emerging and existential challenges for cities that host mass gathering sports competitions due to the absence of effective vaccines. Ongoing threats from heat injury among athletes and spectators have also been identified at international sports events from Asia to North America due to a confluence of rising Summer temperatures, urban heat island effects and venue crowding. Projections for the Tokyo Games and beyond suggest that heat injury risks are reaching a dangerous tipping point, which will necessitate relocation or mitigation with long-format and endurance events. Without systematic change to its format or staging location, the Summer Games have the potential to drive deleterious health outcomes for athletes, spectators and host communities.
Collapse
Affiliation(s)
- Michael Annear
- Faculty of Sport Sciences, Waseda University, 2-7-5 Higashi-Fushimi, Nishitokyo city, Tokyo202-0021, Japan
| | - Tetsuhiro Kidokoro
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Hachioji, Tokyo, Japan
| | - Yasuo Shimizu
- Division of Arts & Sciences, International Christian University, Mitaka, Tokyo, Japan
| |
Collapse
|
21
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
22
|
Postexercise Hot-Water Immersion Does Not Further Enhance Heat Adaptation or Performance in Endurance Athletes Training in a Hot Environment. Int J Sports Physiol Perform 2021; 16:480-488. [DOI: 10.1123/ijspp.2020-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022]
Abstract
Purpose: Hot-water immersion (HWI) after training in temperate conditions has been shown to induce thermophysiological adaptations and improve endurance performance in the heat; however, the potential additive effects of HWI and training in hot outdoor conditions remain unknown. Therefore, this study aimed to determine the effect of repeated postexercise HWI in athletes training in a hot environment. Methods: A total of 13 (9 female) elite/preelite racewalkers completed a 15-day training program in outdoor heat (mean afternoon high temperature = 34.6°C). Athletes were divided into 2 matched groups that completed either HWI (40°C for 30–40 min) or seated rest in 21°C (CON), following 8 training sessions. Pre–post testing included a 30-minute fixed-intensity walk in heat, laboratory incremental walk to exhaustion, and 10,000-m outdoor time trial. Results: Training frequency and volume were similar between groups (P = .54). Core temperature was significantly higher during immersion in HWI (38.5 [0.3]) than CON (37.8°C [0.2°C]; P < .001). There were no differences between groups in resting or exercise rectal temperature or heart rate, skin temperature, sweat rate, or the speed at lactate threshold 2, maximal O2 uptake, or 10,000-m performance (P > .05). There were significant (P < .05) pre–post differences for both groups in submaximal exercising heart rate (∼11 beats·min−1), sweat rate (0.34–0.55 L·h−1) and thermal comfort (1.2–1.5 arbitrary units), and 10,000-m racewalking performance time (∼3 min). Conclusions: Both groups demonstrated significant improvement in markers of heat adaptation and performance; however, the addition of HWI did not provide further enhancements. Improvements in adaptation appeared to be maximized by the training program in hot conditions.
Collapse
|
23
|
Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, Kondo N, Mündel T. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am J Physiol Regul Integr Comp Physiol 2021; 320:R780-R790. [PMID: 33787332 DOI: 10.1152/ajpregu.00014.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The current study investigated whether ambient heat augments the inflammatory and postexercise hepcidin response in women and if menstrual phase and/or self-pacing modulate these physiological effects. Eight trained females (age: 37 ± 7 yr; V̇o2max: 46 ± 7 mL·kg-1·min-1; peak power output: 4.5 ± 0.8 W·kg-1) underwent 20 min of fixed-intensity cycling (100 W and 125 W) followed by a 30-min work trial (∼75% V̇o2max) in a moderate (MOD: 20 ± 1°C, 53 ± 8% relative humidity) and warm-humid (WARM: 32 ± 0°C, 75 ± 3% relative humidity) environment in both their early follicular (days 5 ± 2) and midluteal (days 21 ± 3) phases. Mean power output was 5 ± 4 W higher in MOD than in WARM (P = 0.02) such that the difference in core temperature rise was limited between environments (-0.29 ± 0.18°C in MOD, P < 0.01). IL-6 and hepcidin both increased postexercise (198% and 38%, respectively); however, neither was affected by ambient temperature or menstrual phase (all P > 0.15). Multiple regression analysis demonstrated that the IL-6 response to exercise was explained by leukocyte and platelet count (r2 = 0.72, P < 0.01), and the hepcidin response to exercise was explained by serum iron and ferritin (r2 = 0.62, P < 0.01). During exercise, participants almost matched their fluid loss (0.48 ± 0.18 kg·h-1) with water intake (0.35 ± 0.15 L·h-1) such that changes in body mass (-0.3 ± 0.3%) and serum osmolality (0.5 ± 2.0 osmol·kgH2O-1) were minimal or negligible, indicating a behavioral fluid-regulatory response. These results indicate that trained, iron-sufficient women suffer no detriment to their iron regulation in response to exercise with acute ambient heat stress or between menstrual phases on account of a performance-physiological trade-off.
Collapse
Affiliation(s)
- Huixin Zheng
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Claire E Badenhorst
- School of Sport Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | | | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
24
|
Xu M, Wu Z, Dong Y, Qu C, Xu Y, Qin F, Wang Z, Nassis GP, Zhao J. A Mixed-Method Approach of Pre-Cooling Enhances High-Intensity Running Performance in the Heat. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:26-34. [PMID: 33707983 DOI: 10.52082/jssm.2021.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
We investigated whether single or combined methods of pre-cooling could affect high-intensity exercise performance in a hot environment. Seven male athletes were subjected to four experimental conditions for 30 min in a randomised order. The four experimental conditions were: 1) wearing a vest cooled to a temperature of 4 ℃ (Vest), 2) consuming a beverage cooled to a temperature of 4 ℃ (Beverage), 3) simultaneous usage of vest and consumption of beverage (Mix), and 4) the control trial without pre-cooling (CON). Following those experimental conditions, they exercised at a speed of 80% VO2max until exhaustion in the heat (38.1 ± 0.6 ℃, 55.3 ± 0.3% RH). Heart rate (HR), rectal temperature (Tcore), skin temperature (Tskin), sweat loss (SL), urine specific gravity (USG), levels of sodium (Na+) and potassium (K+), rating of perceived exertion (RPE), thermal sensation (TS), and levels of blood lactic acid ([Bla]) were monitored. Performance was improved using the mixed pre-cooling strategy (648.43 ± 77.53 s, p = 0.016) compared to CON (509.14 ± 54.57 s). Tcore after pre-cooling was not different (Mix: 37.01 ± 0.27 ℃, Vest: 37.19 ± 0.33 ℃, Beverage: 37.03 ± 0.35 ℃) in all cooling conditions compared to those of CON (37.31 ±0.29 ℃). A similar Tcore values was achieved at exhaustion in all trials (from 38.10 ℃ to 39.00 ℃). No difference in the level of USG was observed between the conditions. Our findings suggest that pre-cooling with a combination of cold vest usage and cold fluid intake can improve performance in the heat.
Collapse
Affiliation(s)
- Minxiao Xu
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Zhaozhao Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,Physical Education Department, Northwest University, Xi'an, China
| | - Yanan Dong
- Beijing Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Sport Science, Beijing Sport University, Beijing, China
| | - Yaoduo Xu
- Physical Education Department, Northwestern Poly-technical University, Xi'an, China
| | - Fei Qin
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Physical Education, Jinan University, Guangzhou, China
| | - Zhongwei Wang
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - George P Nassis
- Physical Education Department-(CEDU), United Arab Emirates University, Abu Dhabi, United Arab Emirates.,Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
25
|
Kirby NV, Lucas SJE, Armstrong OJ, Weaver SR, Lucas RAI. Intermittent post-exercise sauna bathing improves markers of exercise capacity in hot and temperate conditions in trained middle-distance runners. Eur J Appl Physiol 2020; 121:621-635. [PMID: 33211153 PMCID: PMC7862510 DOI: 10.1007/s00421-020-04541-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/24/2020] [Indexed: 10/27/2022]
Abstract
PURPOSE This study investigated whether intermittent post-exercise sauna bathing across three-weeks endurance training improves exercise heat tolerance and exercise performance markers in temperate conditions, compared to endurance training alone. The subsidiary aim was to determine whether exercise-heat tolerance would further improve following 7-Weeks post-exercise sauna bathing. METHODS Twenty middle-distance runners (13 female; mean ± SD, age 20 ± 2 years, [Formula: see text]O2max 56.1 ± 8.7 ml kg-1 min-1) performed a running heat tolerance test (30-min, 9 km h-1/2% gradient, 40 °C/40%RH; HTT) and temperate (18 °C) exercise tests (maximal aerobic capacity [[Formula: see text]O2max], speed at 4 mmol L-1 blood lactate concentration ([La-]) before (Pre) and following three-weeks (3-Weeks) normal training (CON; n = 8) or normal training with 28 ± 2 min post-exercise sauna bathing (101-108 °C, 5-10%RH) 3 ± 1 times per week (SAUNA; n = 12). Changes from Pre to 3-Weeks were compared between-groups using an analysis of co-variance. Six SAUNA participants continued the intervention for 7 weeks, completing an additional HTT (7-Weeks; data compared using a one-way repeated-measures analysis of variance). RESULTS During the HTT, SAUNA reduced peak rectal temperature (Trec; - 0.2 °C), skin temperature (- 0.8 °C), and heart rate (- 11 beats min-1) more than CON at 3-Weeks compared to Pre (all p < 0.05). SAUNA also improved [Formula: see text]O2max (+ 0.27 L-1 min-1; p = 0.02) and speed at 4 mmol L-1 [La-] (+ 0.6 km h-1; p = 0.01) more than CON at 3-Weeks compared to Pre. Only peak Trec (- 0.1 °C; p = 0.03 decreased further from 3-Weeks to 7-Weeks in SAUNA (other physiological variables p > 0.05). CONCLUSIONS Three-weeks post-exercise sauna bathing is an effective and pragmatic method of heat acclimation, and an effective ergogenic aid. Extending the intervention to seven weeks only marginally improved Trec.
Collapse
|
26
|
Heat and sweat management by a cycling garment impact thermal sensations during exercise in hot and moist conditions. SPORTS ENGINEERING 2020. [DOI: 10.1007/s12283-020-00333-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Malgoyre A, Siracusa J, Tardo-Dino PE, Garcia-Vicencio S, Koulmann N, Charlot K. A basal heat stress test to detect military operational readiness after a 14-day operational heat acclimatization period. Temperature (Austin) 2020; 7:277-289. [PMID: 33123621 DOI: 10.1080/23328940.2020.1742572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A basal heat stress test (HST) to predict the magnitude of adaptive responses during heat acclimatization (HA) would be highly useful for the armed forces. The aim was to identify physiological markers assessed during a HST (three 8-min running sets at 50% of the speed at VO2max) performed just before a 14-day HA period that would identify participants still at "risk" at the end of HA. Individuals that responded poorly (large increases in rectal temperature [Trec] and heart rate [HR]) during the initial HST were more likely to respond favorably to HA (large reductions in Trec and HR). However, they were also more likely to exhibit lower tolerance to HST at D15. Basal Trec was found to efficiently discriminate participants showing a Trec > 38.5°C after HA, who are considered to be "at risk". Finally, participants were classified by quartiles based on basal Trec and HR at the end of the HST and physiological strain index (PSI). Most of the participants "at risk" were among the upper quartile (i.e. the least tolerant) of Trec and PSI (p = 0.011 for both). Overall, these results show that the individuals who are less tolerant to a basal HST are very likely to benefit the most from HA but they also remain less tolerant to heat at the end of HA than those who better tolerated the basal HST. A basal HST could therefore theoretically help the command to select the most-ready personnel in hot conditions while retaining those who are less tolerant 6.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Pierre-Emmanuel Tardo-Dino
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Sebastian Garcia-Vicencio
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France.,Ecole du Val-de-Grâce, Paris, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, France Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
28
|
Nakamura D, Tanabe Y, Arimitsu T, Hasegawa H, Takahashi H. Low caffeine dose improves intermittent sprint performance in hot and humid environments. J Therm Biol 2020; 93:102698. [PMID: 33077119 DOI: 10.1016/j.jtherbio.2020.102698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/27/2022]
Abstract
While the effects of caffeine have been evaluated in relation to endurance exercise, few studies have assessed the ergogenic effects of low caffeine doses on intermittent exercise performance in hot and humid environments. Thus, we aimed to determine the effects of low-dose caffeine supplementation on intermittent exercise performance under these conditions. Eight male soccer players (age, 19.9 ± 0.3 years; height, 173.7 ± 6.3 cm; body mass, 65.1 ± 5.5 kg; V˙O2max, 50.0 ± 3.1 mL ⋅ kg-1⋅ min-1) participated in this double-blind, randomized, cross-over study. Caffeine was orally administered at 60 min before exercise (dosage, 3 mg ⋅ kg-1). The participants completed a 90-min intermittent sprint cycling protocol under two conditions (after receiving caffeine and placebo) at 32 °C and at 70% relative humidity. A significant improvement in the total amount of work was observed in the caffeine condition compared to the placebo condition (155.0 ± 15.8 vs 150.8 ± 14.5 kJ, respectively; p < 0.05, d = 0.28). In contrast, the rectal temperature measured at the end of exercise showed no significant difference between the conditions (38.9 ± 0.4 °C and 38.7 ± 0.5 °C in the caffeine and placebo conditions, respectively; p > 0.05, d = 0.57). Other thermal responses, such as the mean skin temperature, heart rate, or sweat volume, were not significantly different between these conditions. These results suggested that a low caffeine dose improved the intermittent sprint performance and the reasons could be explained by the fact that a low caffeine dose ingestion did not affect the thermoregulatory responses compared to the placebo condition and, thus, did not attenuate its ergogenic effect on exercise in hot and humid environments.
Collapse
Affiliation(s)
- Daisuke Nakamura
- Rikkyo research institute of Wellness, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, 171-8501 Tokyo, Japan; Wheathernews Inc., Makuhari Techno Garden, Nakase 1-3 Mihama-ku, Chiba-shi, 261-0023, Chiba, Japan.
| | - Yoko Tanabe
- Faculty of Health and Sport Sciences at University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| | - Takuma Arimitsu
- Faculty of Health Care, Department of Human Health Hachinohe Gakuin University, 13-98 Oazamihono, Hachinohe, 031-8588, Aomori, Japan
| | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 1-7-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8521, Japan
| | - Hideyuki Takahashi
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056, Japan
| |
Collapse
|
29
|
Affiliation(s)
- Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
30
|
Garrett AT, Maxwell NS, Périard JD, Sunderland C. Editorial: Heat Acclimation for Special Populations. Front Physiol 2020; 11:895. [PMID: 32903516 PMCID: PMC7438765 DOI: 10.3389/fphys.2020.00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew T Garrett
- Department of Sport, Health and Exercise Science, University of Hull, Hull, United Kingdom
| | - Neil S Maxwell
- School of Sport and Service Management, University of Brighton, Brighton, United Kingdom
| | - Julien D Périard
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, Australia
| | - Caroline Sunderland
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
31
|
Ball D. Contrasting effects of heat stress on neuromuscular performance. Exp Physiol 2020; 106:2328-2334. [DOI: 10.1113/ep088191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Derek Ball
- Institute of Education in Medicine and Dental SciencesSchool of MedicineMedical Sciences and NutritionUniversity of Aberdeen Foresterhill Aberdeen UK
| |
Collapse
|
32
|
Bongers CCWG, de Korte JQ, Eijsvogels T. Infographic. Keep it cool and beat the heat: cooling strategies for exercise in hot and humid conditions. Br J Sports Med 2020; 55:bjsports-2020-102294. [PMID: 32561517 DOI: 10.1136/bjsports-2020-102294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Coen C W G Bongers
- Radboud Institute for Health Sciences, Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannus Q de Korte
- Radboud Institute for Health Sciences, Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Thijs Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Song K, Richter M, Waxenbaum J, Samblanet K, Lu M. Novel Acclimatization and Acclimation Strategies for Hot Climates. Curr Sports Med Rep 2020; 19:142-145. [PMID: 32282459 DOI: 10.1249/jsr.0000000000000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercising in hot, humid temperatures increases the risk for heat-related illnesses, ranging from mild heat edema to severe heat stroke. With increasing globalization in the world of sports, athletes are sometimes expected to compete in unforgiving conditions that expose them to these risks. In an effort to improve exercise capacity and reduce the risk of serious heat injury, many athletes are recommended to undergo heat acclimatization program prior to competing in climates with elevated average temperature. This article will look at current recommendations as well as studies on differing techniques for acclimatization and acclimation, with hopes to provide guidance for the modern-day clinician and athletes.
Collapse
Affiliation(s)
- Kaoru Song
- Tripler Army Medical Center, Honolulu, HI
| | | | | | | | | |
Collapse
|
34
|
Vanos JK, Thomas WM, Grundstein AJ, Hosokawa Y, Liu Y, Casa DJ. A multi-scalar climatological analysis in preparation for extreme heat at the Tokyo 2020 Olympic and Paralympic Games. Temperature (Austin) 2020; 7:191-214. [PMID: 33015246 PMCID: PMC7518767 DOI: 10.1080/23328940.2020.1737479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Extreme heat can be harmful to human health and negatively affect athletic performance. The Tokyo Olympic and Paralympic Games are predicted to be the most oppressively hot Olympics on record. An interdisciplinary multi-scale perspective is provided concerning extreme heat in Tokyo-from planetary atmospheric dynamics, including El Niño Southern Oscillation (ENSO), to fine-scale urban temperatures-as relevant for heat preparedness efforts by sport, time of day, and venue. We utilize stochastic methods to link daytime average wet bulb globe temperature (WBGT) levels in Tokyo in August (from meteorological reanalysis data) with large-scale atmospheric dynamics and regional flows from 1981 to 2016. Further, we employ a mesonet of Tokyo weather stations (2009-2018) to interpolate the spatiotemporal variability in near-surface air temperatures at outdoor venues. Using principal component analysis, two planetary (ENSO) regions in the Pacific Ocean explain 70% of the variance in Tokyo's August daytime WBGT across 35 years, varying by 3.95°C WGBT from the coolest to warmest quartile. The 10-year average daytime and maximum intra-urban air temperatures vary minimally across Tokyo (<1.2°C and 1.7°C, respectively), and less between venues (0.6-0.7°C), with numerous events planned for the hottest daytime period (1200-1500 hr). For instance, 45% and 38% of the Olympic and Paralympic road cycling events (long duration and intense) occur midday. Climatologically, Tokyo will present oppressive weather conditions, and March-May 2020 is the critical observation period to predict potential anomalous late-summer WBGT in Tokyo. Proactive climate assessment of expected conditions can be leveraged for heat preparedness across the Game's period.
Collapse
Affiliation(s)
| | | | | | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Ying Liu
- Department of Environmental and Occupational Health, University of Montreal, Montreal, Canada
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
35
|
Affiliation(s)
- Jennifer Vanos
- Arizona State University, School of Sustainability, Tempe, AZ, USA
| |
Collapse
|
36
|
Garrett AT, Dodd E, Biddlecombe V, Gleadall-Siddall D, Burke R, Shaw J, Bray J, Jones H, Abt G, Gritt J. Effectiveness of Short-Term Heat Acclimation on Intermittent Sprint Performance With Moderately Trained Females Controlling for Menstrual Cycle Phase. Front Physiol 2019; 10:1458. [PMID: 31849708 PMCID: PMC6895212 DOI: 10.3389/fphys.2019.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction Investigate the effectiveness of short-term heat acclimation (STHA), over 5-days (permissive dehydration), on an intermittent sprint exercise protocol (HST) with females. Controlling for menstrual cycle phase. Materials and Methods Ten, moderately trained, females (Mean [SD]; age 22.6 [2.7] y; stature 165.3 [6.2] cm; body mass 61.5 [8.7] kg; V.O2peak 43.9 [8.6] mL⋅kg–1⋅min–1) participated. The HST (31.0°C; 50%RH) was 9 × 5 min (45-min) of intermittent exercise, based on exercise intensities of female soccer players, using a motorized treadmill and Wattbike. Participants completed HST1 vs. HST2 as a control (C) trial. Followed by 90 min, STHA (no fluid intake), for five consecutive days in 39.5°C; 60%RH, using controlled-hyperthermia (∼rectal temperature [Tre] 38.5°C). The HST3 occurred within 1 week after STHA. The HST2 vs HST3 trials were in the luteal phase, using self-reported menstrual questionnaire and plasma 17β-estradiol. Results Pre (HST2) vs post (HST3) STHA there was a reduction at 45-min in Tre by 0.20°C (95%CI −0.30 to −0.10°C; d = 0.77); T¯sk (−0.50; −0.90 to −0.10°C; d = 0.80); and T¯b (−0.25; −0.35 to −0.15°C; d = 0.92). Cardiac frequency reduced at 45-min (−8; −16 to −1 b⋅min–1; d = 1.11) and %PV increased (7.0; −0.4 to 14.5%: d = 1.27). Mean power output increased across all nine maximal sprints by 56W (−26 to 139W; d = 0.69; n = 9). There was limited difference (P > 0.05) for these measures in HST1 vs HST2 C trial. Discussion Short-term heat acclimation (5-days) using controlled-hyperthermia, leads to physiological adaptation during intermittent exercise in the heat, in moderately trained females when controlling for menstrual cycle phase.
Collapse
Affiliation(s)
- Andrew T Garrett
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Edward Dodd
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Victoria Biddlecombe
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Damien Gleadall-Siddall
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Rachel Burke
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Jake Shaw
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - James Bray
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Huw Jones
- Mathematics and Physical Science, Faculty of Science and Engineering, University of Hull, Hull, United Kingdom
| | - Grant Abt
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| | - Jarrod Gritt
- Department of Sport, Health and Exercise Science, Faculty of Health Science, University of Hull, Hull, United Kingdom
| |
Collapse
|
37
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
38
|
Willmott AGB, Hayes M, James CA, Gibson OR, Maxwell NS. Heat acclimation attenuates the increased sensations of fatigue reported during acute exercise-heat stress. Temperature (Austin) 2019; 7:178-190. [PMID: 33015245 PMCID: PMC7518764 DOI: 10.1080/23328940.2019.1664370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Athletes exercising in heat stress experience increased perceived fatigue acutely, however it is unknown whether heat acclimation (HA) reduces the magnitude of this perceptual response and whether different HA protocols influence the response. This study investigated sensations of fatigue following; acute exercise-heat stress; short- (5-sessions) and medium-term (10-sessions) HA; and between once- (ODHA) and twice-daily HA (TDHA) protocols. Twenty male participants (peak oxygen uptake: 3.75 ± 0.47 L·min-1) completed 10 sessions (60-min cycling at ~2 W·kg-1, 45°C/20% relative humidity) of ODHA (n = 10) or non-consecutive TDHA (n = 10). Sensations of fatigue (General, Physical, Emotional, Mental, Vigor and Total Fatigue) were assessed using the multi-dimensional fatigue scale inventory-short form pre and post session 1, 5 and 10. Heat adaptation was induced following ODHA and TDHA, with reductions in resting rectal temperature and heart rate, and increased plasma volume and sweat rate (P < 0.05). General, Physical and Total Fatigue increased from pre-to-post for session 1 within both groups (P < 0.05). Increases in General, Physical and Total Fatigue were attenuated in session 5 and 10 vs. session 1 of ODHA (P < 0.05). This change only occurred at session 10 of TDHA (P < 0.05). Whilst comparative heat adaptations followed ODHA and TDHA, perceived fatigue is prolonged within TDHA. ABBREVIATIONS ∆: Change; ANOVA: Analysis of variance; HA: Heat acclimation; HR: Heart rate; IL-6: Interleukin-6; MFS-SF: Multi-dimensional fatigue symptom inventory-short form (MFSI-SF); MTHA: Medium-term heat acclimation; Na+: Sodium; ODHA: Once daily heat acclimation; PV: Plasma volume; RH: Relative humidity; RPE: Rating of perceived exertion; SD: Standard deviation; SE: Standard error of the slope coefficient or intercept; SEE : Standard error of the estimate for the regression equation; STHA: Short-term heat acclimation; TDHA: Twice daily heat acclimation; TC: Thermal Comfort; Tre: Rectal temperature; TSS: Thermal sensation; V̇O2peak: Peak oxygen uptake; WBSL: whole-body sweat loss.
Collapse
Affiliation(s)
- Ashley G B Willmott
- Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, UK
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Carl A. James
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
- Physiology Department, Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, London, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| |
Collapse
|
39
|
Kissling LS, Akerman AP, Cotter JD. Heat-induced hypervolemia: Does the mode of acclimation matter and what are the implications for performance at Tokyo 2020? Temperature (Austin) 2019; 7:129-148. [PMID: 33015241 DOI: 10.1080/23328940.2019.1653736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Tokyo 2020 will likely be the most heat stressful Olympics to date, so preparation to mitigate the effects of humid heat will be essential for performance in several of the 33 sports. One key consideration is heat acclimation (HA); the repeated exposure to heat to elicit physiological and psychophysical adaptations that improve tolerance and exercise performance in the heat. Heat can be imposed in various ways, including exercise in the heat, hot water immersion, or passive exposure to hot air (e.g., sauna). The physical requirements of each sport will determine the impact that the heat has on performance, and the adaptations required from HA to mitigate these effects. This review focuses on one key adaptation, plasma volume expansion (PVE), and how the mode of HA may affect the kinetics of adaptation. PVE constitutes a primary HA-mediated adaptation and contributes to functional adaptations (e.g., lower heart rate and increased heat loss capacity), which may be particularly important in athletes of "sub-elite" cardiorespiratory fitness (e.g., team sports), alongside athletes of prolonged endurance events. This review: i) highlights the ability of exercise in the heat, hot-water immersion, and passive hot air to expand PV, providing the first quantitative assessment of the efficacy of different heating modes; ii) discusses how this may apply to athletes at Tokyo 2020; and iii) provides recommendations regarding the protocol of HA and the prospect for achieving PVE (and the related outcomes).
Collapse
Affiliation(s)
- Lorenz S Kissling
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ashley P Akerman
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James D Cotter
- The School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019. [PMID: 31555140 DOI: 10.3389/fphys.2019.01080, 10.3389/fpls.2019.01080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
| | - Jessica A Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
41
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019; 10:1080. [PMID: 31555140 PMCID: PMC6722194 DOI: 10.3389/fphys.2019.01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
| | - Jessica A Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
42
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019. [PMID: 31555140 PMCID: PMC6722194 DOI: 10.3389/fphys.2019.01080,+10.3389/fpls.2019.01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
- Michael J. Zurawlew
- College of Human Sciences, Bangor University, Bangor, United Kingdom,*Correspondence: Michael J. Zurawlew,
| | - Jessica A. Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P. Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
43
|
Morabito M, Messeri A, Noti P, Casanueva A, Crisci A, Kotlarski S, Orlandini S, Schwierz C, Spirig C, Kingma BRM, Flouris AD, Nybo L. An Occupational Heat-Health Warning System for Europe: The HEAT-SHIELD Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2890. [PMID: 31412559 PMCID: PMC6718993 DOI: 10.3390/ijerph16162890] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Existing heat-health warning systems focus on warning vulnerable groups in order to reduce mortality. However, human health and performance are affected at much lower environmental heat strain levels than those directly associated with higher mortality. Moreover, workers are at elevated health risks when exposed to prolonged heat. This study describes the multilingual "HEAT-SHIELD occupational warning system" platform (https://heatshield.zonalab.it/) operating for Europe and developed within the framework of the HEAT-SHIELD project. This system is based on probabilistic medium-range forecasts calibrated on approximately 1800 meteorological stations in Europe and provides the ensemble forecast of the daily maximum heat stress. The platform provides a non-customized output represented by a map showing the weekly maximum probability of exceeding a specific heat stress condition, for each of the four upcoming weeks. Customized output allows the forecast of the personalized local heat-stress-risk based on workers' physical, clothing and behavioral characteristics and the work environment (outdoors in the sun or shade), also taking into account heat acclimatization. Personal daily heat stress risk levels and behavioral suggestions (hydration and work breaks recommended) to be taken into consideration in the short term (5 days) are provided together with long-term heat risk forecasts (up to 46 days), all which are useful for planning work activities. The HEAT-SHIELD platform provides adaptation strategies for "managing" the impact of global warming.
Collapse
Affiliation(s)
- Marco Morabito
- Institute of BioEconomy-National Research Council, 50019 Florence, Italy.
- Centre of Bioclimatology-University of Florence, 50144 Florence, Italy.
| | | | - Pascal Noti
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich Airport, 8058 Zurich, Switzerland
| | - Ana Casanueva
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich Airport, 8058 Zurich, Switzerland
- Meteorology Group, Dept. Applied Mathematics and Computer Sciences, University of Cantabria, 39005 Santander, Spain
| | - Alfonso Crisci
- Institute of BioEconomy-National Research Council, 50019 Florence, Italy
| | - Sven Kotlarski
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich Airport, 8058 Zurich, Switzerland
| | - Simone Orlandini
- Centre of Bioclimatology-University of Florence, 50144 Florence, Italy
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, 50144 Florence, Italy
| | - Cornelia Schwierz
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich Airport, 8058 Zurich, Switzerland
| | - Christoph Spirig
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich Airport, 8058 Zurich, Switzerland
| | - Boris R M Kingma
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
- Unit Defense, Safety and Security, The Netherlands Organisation of Applied Scientific Research, 3769DE Soesterberg, The Netherlands
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 42100 Karies, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
44
|
Griggs KE, Stephenson BT, Price MJ, Goosey-Tolfrey VL. Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature (Austin) 2019; 7:37-57. [PMID: 32166104 PMCID: PMC7053936 DOI: 10.1080/23328940.2019.1617030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
International sporting competitions, including the Paralympic Games, are increasingly being held in hot and/or humid environmental conditions. Thus, a greater emphasis is being placed on preparing athletes for the potentially challenging environmental conditions of the host cities, such as the upcoming Games in Tokyo in 2020. However, evidence-based practices are limited for the impairment groups that are eligible to compete in Paralympic sport. This review aims to provide an overview of heat-related issues for Paralympic athletes alongside current recommendations to reduce thermal strain and technological advancements in the lead up to the Tokyo 2020 Paralympic Games. When competing in challenging environmental conditions, a number of factors may contribute to an athlete's predisposition to heightened thermal strain. These include the characteristics of the sport itself (type, intensity, duration, modality, and environmental conditions), the complexity and severity of the impairment and classification of the athlete. For heat vulnerable Paralympic athletes, strategies such as the implementation of cooling methods and heat acclimation can be used to combat the increase in heat strain. At an organizational level, regulations and specific heat policies should be considered for several Paralympic sports. Both the utilization of individual strategies and specific heat health policies should be employed to ensure that Paralympics athletes' health and sporting performance are not negatively affected during the competition in the heat at the Tokyo 2020 Paralympic Games.
Collapse
Affiliation(s)
- Katy E. Griggs
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ben T. Stephenson
- Loughborough Performance Centre, English Institute of Sport, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Michael J. Price
- School of Life Sciences, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Victoria L. Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|