1
|
Taravat M, Asadpour R, Jafari Jozani R, Fattahi A, Khordadmehr M, Hajipour H. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Syst Biol Reprod Med 2024; 70:3-19. [PMID: 38323586 DOI: 10.1080/19396368.2024.2306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.
Collapse
Affiliation(s)
- Morteza Taravat
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Hajipour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Albougha MS, Sugii H, Adachi O, Mardini B, Soeno S, Hamano S, Hasegawa D, Yoshida S, Itoyama T, Obata J, Maeda H. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024; 14:1455. [PMID: 39595630 PMCID: PMC11591890 DOI: 10.3390/biom14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue.
Collapse
Affiliation(s)
- Mhd Safwan Albougha
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Orie Adachi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Serina Soeno
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Junko Obata
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Yu T, Zhao IS, Pan H, Yang J, Wang H, Deng Y, Zhang Y. Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration. Asian J Pharm Sci 2024; 19:100945. [PMID: 39483718 PMCID: PMC11525715 DOI: 10.1016/j.ajps.2024.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
The clinical need for effective bone regeneration in compromised conditions continues to drive demand for innovative solutions. Among emerging strategies, extracellular vesicles (EVs) have shown promise as an acellular approach for bone regeneration. However, their efficacy is hindered by rapid sequestration and clearance when administered via bolus injection. To address this challenge, EV-functionalized scaffolds have recently been proposed as an alternative delivery strategy to enhance EV retention and subsequent healing efficacy. This review aims to consolidate recent advancements in the development of EV-functionalized scaffolds for augmenting bone regeneration. It explores various sources of EVs and different strategies for integrating them into biomaterials. Furthermore, the mechanisms underlying their therapeutic effects in bone regeneration are elucidated. Current limitations in clinical translation and perspectives on the design of more efficient EVs for improved therapeutic efficacy are also presented. Overall, this review can provide inspiration for the development of novel EV-assisted grafts with superior bone regeneration potential.
Collapse
Affiliation(s)
- Taozhao Yu
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| | - Hongguang Pan
- Department of Otolaryngology, Shenzhen Children Hospital, Shenzhen 518034, China
| | - Jianhua Yang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Deng
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
5
|
Li Z, Li J, Dai S, Liu R, Guo Q, Liu F. Research Status and Trends in Periodontal Ligament Stem Cells: A Bibliometric Analysis over the Past Two Decades. Stem Cells Int 2024; 2024:9955136. [PMID: 39372680 PMCID: PMC11452234 DOI: 10.1155/2024/9955136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Currently, the summaries of research on periodontal ligament stem cells (PDLSCs) are mainly reviews, and the systematic evaluation of all relevant studies is lacking. The aim of our study was to reveal the research status and developmental trends of PDLSCs using bibliometric analyses. Methods Publications on PDLSC from 2004 to 2023 in the PubMed database were searched and then screened according to certain inclusion and exclusion criteria. Two researchers browsed the included papers and recorded information such as the research type and research model. The VOSviewer software was used to analyze the distribution of authors, journals, and institutions. The contents and directions of PDLSC research were summarized by analyzing high-frequency keywords. The CiteSpace software was used to monitor burst words, determine hot factors, and indicate developmental trends. Results During the past two decades, the number of studies on PDLSCs increased. China published the most related papers. The primary type of article was basic research. Among core journals, the Journal of Periodontal Research had the highest number of publications. The Fourth Military Medical University (China) was leading in the number of articles on PDLSCs. Research topics mainly included mechanism of periodontal diseases, tissue engineering and regeneration, biological characteristics of PDLSCs, and comparison with other stem cells. Infectious inflammation and mechanical stimulation were important pathological conditions and research topics. Conclusion The research of PDLSCs is still in a rapid development stage. Our study provides new insights into the current research status and future trend in this field.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
6
|
Chen Z, Xiao N, Luo L, Zhang L, Yin F, Hu W, Wu Z, Chen Y, Luo K, Xu X. Nanosilicates facilitate periodontal regeneration potential by activating the PI3K-AKT signaling pathway in periodontal ligament cells. J Nanobiotechnology 2024; 22:532. [PMID: 39223550 PMCID: PMC11370094 DOI: 10.1186/s12951-024-02798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The recent development of nanobiomaterials has shed some light on the field of periodontal tissue regeneration. Laponite (LAP), an artificially synthesized two-dimensional (2D) disk-shaped nanosilicate, has garnered substantial attention in regenerative biomedical applications owing to its distinctive structure, exceptional biocompatibility and bioactivity. This study endeavors to comprehensively evaluate the influence of LAP on periodontal regeneration. The effects of LAP on periodontal ligament cells (PDLCs) on osteogenesis, cementogenesis and angiogenesis were systematically assessed, and the potential mechanism was explored through RNA sequencing. The results indicated that LAP improved osteogenic and cementogenic differentiation of PDLCs, the regulatory effects of LAP on PDLCs were closely correlated with activation of PI3K-AKT signaling pathway. Moreover, LAP enhanced angiogenesis indirectly via manipulating paracrine of PDLCs. Then, LAP was implanted into rat periodontal defect to confirm its regenerative potential. Both micro-CT and histological analysis indicated that LAP could facilitate periodontal tissue regeneration in vivo. These findings provide insights into the bioactivity and underlying mechanism of LAP on PDLCs, highlighting it might be a potential therapeutic option in periodontal therapy.
Collapse
Affiliation(s)
- Ziqin Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Nianqi Xiao
- Gannan Health Vocational College, Ganzhou, Jiangxi, 341000, P.R. China
| | - Lan Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Fan Yin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Weiqiang Hu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Zekai Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Yuling Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| |
Collapse
|
7
|
Wan X, Zhang W, Dai L, Chen L. The Role of Extracellular Vesicles in Bone Regeneration and Associated Bone Diseases. Curr Issues Mol Biol 2024; 46:9269-9285. [PMID: 39329900 PMCID: PMC11430372 DOI: 10.3390/cimb46090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with a lipid bilayer membrane structure secreted by various cell types. Nearly all human cells secrete EVs, primarily mediating intercellular communication. In recent years, scientists have discovered that EVs can carry multiple biological cargos, such as DNA, non-coding RNAs (ncRNAs), proteins, cytokines, and lipids, and mediate intercellular signal transduction. Bone is a connective tissue with a nerve supply and high vascularization. The repair process after injury is highly complex, involving interactions among multiple cell types and biological signaling pathways. Bone regeneration consists of a series of coordinated osteoconductive and osteoinductive biological processes. As mediators of intercellular communication, EVs can promote bone regeneration by regulating osteoblast-mediated bone formation, osteoclast-mediated bone resorption, and other pathways. This review summarizes the biogenesis of EVs and the mechanisms by which EV-mediated intercellular communication promotes bone regeneration. Additionally, we focus on the research progress of EVs in various diseases related to bone regeneration. Finally, based on the above research, we explore the clinical applications of engineered EVs in the diagnosis and treatment of bone regeneration-related diseases.
Collapse
Affiliation(s)
- Xinyue Wan
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Lingyan Dai
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Liang Chen
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing 400030, China
| |
Collapse
|
8
|
Li S, Guan X, Yu W, Zhao Z, Sun Y, Bai Y. Effect of human periodontal ligament stem cell-derived exosomes on cementoblast activity. Oral Dis 2024; 30:2511-2522. [PMID: 37448205 DOI: 10.1111/odi.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Exosomes derived from stem cells are a potential cell-free tool for tissue regeneration with therapeutic potential. However, its application in cementum repair is unclear. This study aimed to investigate the effect of human periodontal ligament stem cell-derived exosomes on the biological activity of cementoblasts, the main effector cells in cementum synthesis. MATERIALS AND METHODS OCCM-30 cementoblasts were cultured with various human periodontal ligament stem cell-derived exosome concentrations. OCCM-30 cells proliferation, migration, and cementogenic mineralization were examined, along with the gene and protein expression of factors associated with cementoblastic mineralization. RESULTS Exosomal promoted the migration, proliferation, and mineralization of OCCM-30 cells. The exosome-treated group significantly increased the expression of cementogenic-related genes and proteins. Furthermore, the expression of p-PI3K and p-AKT was enhanced by exosome administration. Treatment with a PI3K/AKT inhibitor markedly attenuated the gene and protein expression of cementoblastic factors, and this effect was partially reversed by exosome administration. CONCLUSIONS Human periodontal ligament stem cell-derived exosomes can promote the activity of cementoblasts via the PI3K/AKT signaling pathway, providing a scientific basis for promoting the repair process in orthodontically induced inflammatory root resorption.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yaxi Sun
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
10
|
Ponnaiyan D, Rughwani RR, Victor DJ, Shetty G. Stem Cells in the Periodontium-Anatomically Related Yet Physiologically Diverse. Eur J Dent 2024; 18:1-13. [PMID: 36588293 PMCID: PMC10959637 DOI: 10.1055/s-0042-1759487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a complex chronic disease discernible by the deterioration of periodontal tissue. The goal of periodontal therapy is to achieve complete tissue regeneration, and one of the most promising treatment options is to harness the regenerative potential of stem cells available within the periodontal complex. Periodontal ligament stem cells, gingival mesenchymal stem cells, oral periosteal stem cells, and dental follicle stem cells have structural similarities, but their immunological responses and features differ. The qualities of diverse periodontal stem cells, their immune-modulatory effects, and variances in their phenotypes and characteristics will be discussed in this review. Although there is evidence on each stem cell population in the periodontium, understanding the differences in markers expressed, the various research conducted so far on their regenerative potential, will help in understanding which stem cell population will be a better candidate for tissue engineering. The possibility of selecting the most amenable stem cell population for optimal periodontal regeneration and the development and current application of superior tissue engineering treatment options such as autologous transplantation, three-dimensional bioengineered scaffolds, dental stem cell-derived extracellular vesicles will be explored.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Roshan R. Rughwani
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Ganesh Shetty
- Dental and Orthodontic Clinic, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Santilli F, Fabrizi J, Santacroce C, Caissutti D, Spinello Z, Candelise N, Lancia L, Pulcini F, Delle Monache S, Mattei V. Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders. Stem Cell Rev Rep 2024; 20:159-174. [PMID: 37962698 PMCID: PMC10799818 DOI: 10.1007/s12015-023-10652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Jessica Fabrizi
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 29900161, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| |
Collapse
|
12
|
Olaechea A, Benabdellah K, Vergara-Buenaventura A, Gómez-Melero S, Cafferata EA, Meza-Mauricio J, Padial-Molina M, Galindo-Moreno P. Preclinical Evidence for the Use of Oral Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone Regenerative Therapy: A Systematic Review. Stem Cells Transl Med 2023; 12:791-800. [PMID: 37715961 PMCID: PMC10726404 DOI: 10.1093/stcltm/szad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023] Open
Abstract
The development of extracellular vesicles (EVs) therapies has revolutionized personalized medicine, opening up new possibilities for treatment. EVs have emerged as a promising therapeutic tool within this field due to their crucial role in intercellular communication across various cell types and organisms. This systematic review aims to evaluate the therapeutic potential of oral mesenchymal stem cell (MSC)-derived EVs for bone regeneration, specifically focusing on findings from preclinical models. Sixteen articles meeting the inclusion criteria were selected following document analysis. The biological effects of oral MSC-derived EVs predominantly involve the upregulation of proteins associated with angiogenesis, and inflammation resolution, alongside the downregulation of proinflammatory cytokines. Moreover, these therapeutic agents have been found to contain a significant quantity of different molecules (proteins, lipids, DNA, microRNAs, etc) further contributing to their modulatory potential. The findings from this systematic review underscore that oral MSC-derived EVs, irrespective of their specific population, have the ability to enhance the osteogenic repair response in maxillary bone or periodontal defects. In summary, this systematic review highlights the promising potential of oral MSC-derived EVs for bone regeneration based on evidence from preclinical models. The comprehensive assessment of their biological effects and the presence of microRNAs underscores their therapeutic significance. These findings support the utilization of oral MSC-derived EVs in enhancing the osteogenic repair response in various maxillary bone or periodontal defects, providing insights into the mechanisms involved and potential therapeutic applications in the field of personalized medicine.
Collapse
Affiliation(s)
- Allinson Olaechea
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto Biosanitario IBS Granada, Granada, Spain
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada, Granada, Spain
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | | | - Sara Gómez-Melero
- Maimonides Biomedical research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Emilio A Cafferata
- School of Dentistry, Universidad Científica del Sur, Lima, Perú
- Department of Oral Surgery and Implantology, Carolinum, Goethe-Universität Frankfurt am Main, Germany
| | - Jonathan Meza-Mauricio
- School of Dentistry, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto Biosanitario IBS Granada, Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto Biosanitario IBS Granada, Granada, Spain
| |
Collapse
|
13
|
Ai L, Chen L, Tao Y, Wang H, Yi W. Icariin promotes osteogenic differentiation through the mmu_circ_0000349/mmu-miR-138-5p/Jumonji domain-containing protein-3 axis. Heliyon 2023; 9:e21885. [PMID: 38045146 PMCID: PMC10692785 DOI: 10.1016/j.heliyon.2023.e21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Circular RNAs (circRNAs) regulate Jumonji domain-containing protein-3 (JMJD3) by sponging with microRNAs (miRNAs). This study aimed to investigate the role of icariin on specific circRNA/miRNA/JMJD3 axis in osteogenic differentiation of MC3T3-E1 cells. CircRNA sequencing was performed on the MC3T3-E1 cells induced by osteogenic differentiation medium for 1 d (negative control (NC) group) and 14 d (osteogenesis group). And mmu_circ_0000349 was verified using Sanger sequencing, ribonuclease R degradation, and actinomycin D assay. The function of mmu_circ_0000349 was validated by detecting the expressions of osteogenic differentiation markers, alkaline phosphatase (ALP), and runt-related transcription (RUNX2), via real-time quantitative PCR (qPCR) and Western blotting or ALP and alizarin red staining assay. Dual luciferase reporter gene assay confirmed the relationship between mmu_circ_0000349 and mmu-miR-138-5p (or mmu-miR-138-5p and JMJD3). Meanwhile, the JMJD3 binding to mmu_circ_0000349 was screened using an RNA pull-down assay. qPCR and Western blotting confirmed the effect of icariin on the mmu_circ_0000349/mmu-miR-138-5p/JMJD3 axis and osteogenic differentiation. As MC3T3-E1 osteogenic differentiation progressed, the JMJD3 expression level increased. A total of 361 circRNAs exhibited differences between the NC and osteogenesis groups. After validation, mmu_circ_0000349 was further analyzed as it exhibited the largest expression. And mmu_circ_0000349 was identified as a stable circular structure. Overexpression of mmu_circ_0000349 increased the expression levels of ALP and RUNX2, enhanced ALP activity, and increased the number of mineralized nodules; contrarily, inhibition of mmu_circ_0000349 exerted opposite effects. The data also confirmed that mmu_circ_0000349 regulated JMJD3 by sponging with mmu-miR-138-5p. With the increase in icariin concentration and time for treatment, the expression levels of mmu_circ_0000349, JMJD3, ALP, and RUNX2 also increased, whereas that of mmu-miR-138-5p decreased. In conclusion, Icariin promoted osteogenic differentiation by regulating the mmu_circ_0000349/mmu-miR-138-5p/JMJD3 pathway. Therefore, this provides a theoretical basis for the treatment of diseases related to osteogenic differentiation.
Collapse
Affiliation(s)
- Liang Ai
- Department of TCM, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Liudan Chen
- Department of TCM and Acupuncture, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yangu Tao
- Department of TCM, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weimin Yi
- Department of TCM and Acupuncture, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
14
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum Oxide Nanoparticles Reinforced Collagen ƙ-Carrageenan Hydroxyapatite Biocomposite as Angio-Osteogenic Biomaterial for In Vivo Osseointegration and Bone Repair. Adv Biol (Weinh) 2023; 7:e2300039. [PMID: 37080950 DOI: 10.1002/adbi.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Indexed: 04/22/2023]
Abstract
A composite biomatrix fabricated with collagen, ƙ-carrageenan, hydroxyapatite reinforced with lanthanum oxide nanoparticles is explored as proangiogenic and osteogenic bone tissue repair biomaterial. The biomatrix shows increased physical and biological stability as observed from proteolytic degradation and thermal stability studies. The addition of lanthanum oxide nanoparticles facilitates good osseointegration coupled with simultaneous activation of proangiogenic properties to act as a bone mimicking material. The minimal level of reactive oxygen species and superior cytocompatibility help the as-synthesized biomatrix in achieving capillary migration into the bone micro environment. The composite biomatrix upregulates the expression of VEGF, VEGF-R2 genes in endothelial cells and osteopontin, osteocalcin in osteoblasts cells, respectively. The in vivo hard tissue repair experiment conducted in a rat model shows complete healing of the bone defect by eight weeks with the application of collagen-ƙ-carrageenan-hydroxyapatite-lanthanum oxide nanoparticle biomaterial when compared to the biomaterial made out of individual constituents alone. The biomaterial matrix gets biointegrated into the bone tissue and exerts its therapeutic value in bringing a faster osseo repair process. The study shows the feasibility of using rare-earth metal nanoparticles in combination with protein-polysaccharide biopolymers for bone regeneration.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
| | - Sreelekshmi Sreekumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kannoth Madappurakkal Ahina
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Marconi GD, Diomede F, Pizzicannella J, Trubiani O. Emerging Role of Oral Mesenchymal Stem/Stromal Cells and Their Derivates. Int J Mol Sci 2023; 24:12003. [PMID: 37569380 PMCID: PMC10418405 DOI: 10.3390/ijms241512003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have fewer ethical, moral, and safety problems in comparison with embryonic stem cells [...].
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| |
Collapse
|
17
|
Davies OG. Extracellular vesicles: From bone development to regenerative orthopedics. Mol Ther 2023; 31:1251-1274. [PMID: 36869588 PMCID: PMC10188641 DOI: 10.1016/j.ymthe.2023.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Regenerative medicine aims to promote the replacement of tissues lost to damage or disease. While positive outcomes have been observed experimentally, challenges remain in their clinical translation. This has led to growing interest in applying extracellular vesicles (EVs) to augment or even replace existing approaches. Through the engineering of culture environments or direct/indirect manipulation of EVs themselves, multiple avenues have emerged to modulate EV production, targeting, and therapeutic potency. Drives to modulate release using material systems or functionalize implants for improved osseointegration have also led to outcomes that could have real-world impact. The purpose of this review is to highlight advantages in applying EVs for the treatment of skeletal defects, outlining the current state of the art in the field and emphasizing avenues for further investigation. Notably, the review identifies inconsistencies in EV nomenclature and outstanding challenges in defining a reproducible therapeutic dose. Challenges also remain in the scalable manufacture of a therapeutically potent and pure EV product, with a need to address scalable cell sources and optimal culture environments. Addressing these issues will be critical if we are to develop regenerative EV therapies that meet the demands of regulators and can be translated from bench to bedside.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise, and Health Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
18
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
19
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:ijms24065790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
20
|
Song X, Xu L, Zhang W. Biomimetic synthesis and optimization of extracellular vesicles for bone regeneration. J Control Release 2023; 355:18-41. [PMID: 36706840 DOI: 10.1016/j.jconrel.2023.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Critical-size bone defect repair is in high demand but is difficult to treat. Modern therapies, such as autograft and cell-based treatments, face limitations, including potential immunological rejection and tumorigenesis. Therefore, extracellular vesicle (EV)-based strategies have been proposed as a novel approach for tissue regeneration owing to EVs' complex composition of lipids, proteins, and nucleic acids, as well as their low immunogenicity and congenital cell-targeting features. Despite these remarkable features of EVs, biomimetic synthesis and optimization of natural EVs can lead to enhanced bioactivity, increased cellular uptake, and specific cell targeting, aiming to achieve optimal therapeutic efficacy. To maximize their function, these nanoparticles can be integrated into bone graft biomaterials for superior bone regeneration. Herein, we summarize the role of naturally occurring EVs from distinct cell types in bone regeneration, the current strategies for optimizing biomimetic synthetic EVs in bone regeneration, and discuss the recent advances in applying bone graft biomaterials for the delivery of EVs to bone defect repair. We focused on distinct strategies for optimizing EVs with different functions and the most recent research on achieving time-controlled release of nanoparticles from EV-loaded biomaterials. Furthermore, we thoroughly discuss several current challenges and proposed solutions, aiming to provide insight into current progress, inspiration for future development directions, and incentives for clinical application in this field.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ling Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
21
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
22
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
23
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Pishavar E, Trentini M, Zanotti F, Camponogara F, Tiengo E, Zanolla I, Bonora M, Zavan B. Exosomes as Neurological Nanosized Machines. ACS NANOSCIENCE AU 2022; 2:284-296. [PMID: 37102062 PMCID: PMC10125174 DOI: 10.1021/acsnanoscienceau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In the past few decades, nanomedicine research has advanced dramatically. In spite of this, traditional nanomedicine faces major obstacles, such as blood-brain barriers, low concentrations at target sites, and rapid removal from the body. Exosomes as natural extracellular vesicles contain special bioactive molecules for cell-to-cell communications and nervous tissue function, which could overcome the challenges of nanoparticles. Most recently, microRNAs, long noncoding RNA, and circulating RNA of exosomes have been appealing because of their critical effect on the molecular pathway of target cells. In this review, we have summarized the important role of exosomes of noncoding RNAs in the occurrence of brain diseases.
Collapse
Affiliation(s)
- Elham Pishavar
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Martina Trentini
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Francesca Camponogara
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department
of Medical Science, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Massimo Bonora
- Department
of Medical Science, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Guo H, Bai X, Wang X, Qiang J, Sha T, Shi Y, Zheng K, Yang Z, Shi C. Development and regeneration of periodontal supporting tissues. Genesis 2022; 60:e23491. [PMID: 35785409 DOI: 10.1002/dvg.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.
Collapse
Affiliation(s)
- Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xueying Bai
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaoling Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yan Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
26
|
Mohebichamkhorami F, Fattahi R, Niknam Z, Aliashrafi M, Khakpour Naeimi S, Gilanchi S, Zali H. Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Res Ther 2022; 13:273. [PMID: 35729595 PMCID: PMC9210648 DOI: 10.1186/s13287-022-02942-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The damaged neuronal cells of adult mammalian lack the regenerative ability to replace the neuronal connections. Periodontal ligament stem cells (PDLSCs) are the promising source for neuroregenerative applications that can improve the injured microenvironment of the damaged neural system. They provide neuronal progenitors and neurotrophic, anti-apoptotic and anti-inflammatory factors. In this study, we aimed to comprehensively explore the various neuronal differentiation potentials of PDLSCs for application in neural regeneration therapy. MAIN TEXT PDLSCs have superior potential to differentiate into various neural-like cells through a dedifferentiation stage followed by differentiation process without need for cell division. Diverse combination of nutritional factors can be used to induce the PDLSCs toward neural lineage. PDLSCs when coupled with biomaterials could have significant implications for neural tissue repair. PDLSCs can be a new clinical research target for Alzheimer's disease treatment, multiple sclerosis and cerebral ischemia. Moreover, PDLSCs have beneficial effects on retinal ganglion cell regeneration and photoreceptor survival. PDLSCs can be a great source for the repair of injured peripheral nerve through the expression of several neural growth factors and differentiation into Schwann cells. CONCLUSION In conclusion, these cells are an appealing source for utilizing in clinical treatment of the neuropathological disorders. Although significant in vitro and in vivo investigations were carried out in order for neural differentiation evaluation of these cells into diverse types of neurons, more preclinical and clinical studies are needed to elucidate their therapeutic potential for neural diseases.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
| | | | - Samira Gilanchi
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Kong Y, Zhang X, Ma X, Wu L, Chen D, Su B, Liu D, Wang X. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis. J Biomater Appl 2022; 37:459-473. [PMID: 35623361 DOI: 10.1177/08853282221105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanhang Kong
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xin Zhang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xinnan Ma
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Leilei Wu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Chen
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Su
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daqian Liu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Yi M, Wang G, Niu J, Peng M, Liu Y. Pterostilbene attenuates the proliferation and differentiation of TNF‑α‑treated human periodontal ligament stem cells. Exp Ther Med 2022; 23:304. [PMID: 35340874 PMCID: PMC8931590 DOI: 10.3892/etm.2022.11233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Min Yi
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Guanglei Wang
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Jianhua Niu
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Minghui Peng
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| |
Collapse
|
29
|
Petrillo S, Genova T, Chinigò G, Roato I, Scarpellino G, Kopecka J, Altruda F, Tolosano E, Riganti C, Mussano F, Munaron L. Endothelial Cells Promote Osteogenesis by Establishing a Functional and Metabolic Coupling With Human Mesenchymal Stem Cells. Front Physiol 2022; 12:813547. [PMID: 35087424 PMCID: PMC8787057 DOI: 10.3389/fphys.2021.813547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiating stem cells. This functional interplay is greatly mediated by the paracrine and autocrine action of soluble factors released at the vasculature-bone interface. This study elucidates the molecular and functional responses triggered by this intimate interaction. In this study, we showed that human dermal microvascular endothelial cells (HMEC) induced the expression of pro-angiogenic factors in stem cells from human exfoliated deciduous teeth (SHED) and sustain their osteo-differentiation at the same time. In contrast, osteodifferentiating SHED increased EC recruitment and promoted the formation of complex vascular networks. Moreover, HMEC enhanced anaerobic glycolysis in proliferating SHED without compromising their ability to undergo the oxidative metabolic shift required for adequate osteo-differentiation. Taken together, these findings provide novel insights into the molecular mechanism underlying the synergistic cooperation between EC and stem cells during bone tissue renewal.
Collapse
Affiliation(s)
- Sara Petrillo
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Federico Mussano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci 2022; 14:2. [PMID: 34980877 PMCID: PMC8724288 DOI: 10.1038/s41368-021-00152-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Dental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.
Collapse
|
31
|
Marconi GD, Diomede F, Trubiani O, Porcheri C, Mitsiadis TA. Exosomes as Carriers for Notch Molecules. Methods Mol Biol 2022; 2472:197-208. [PMID: 35674902 DOI: 10.1007/978-1-0716-2201-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exosomes are extracellular vesicles involved in cell-to-cell communication as well as extrusion of biological material. Using dental pulp stem cells culture as a model, we hereby describe a method for the packaging of Delta-like 4 (DLL4), a representative Notch ligand, into newly generated exosomes. We then provide methods of analysis to confirm the presence of Notch proteins and transcripts internalization and transport via exosomes.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Cristina Porcheri
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Kouhestani F, Aghandeh P, Isamorad F, Akbari S, Tanbakuchi B, Motamedian S. Efficacy of Application of Periodontal Ligament Stem Cells in Bone Regeneration: A Systematic Review of Animal Studies. DENTAL HYPOTHESES 2022. [DOI: 10.4103/denthyp.denthyp_136_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Bar JK, Lis-Nawara A, Grelewski PG. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int J Mol Sci 2021; 22:ijms222112018. [PMID: 34769446 PMCID: PMC8584775 DOI: 10.3390/ijms222112018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.
Collapse
|
34
|
Qi DD, Ding MY, Wang T, Hayat MA, Liu T, Zhang JT. The Therapeutic Effects of Oral Intake of Hydrogen Rich Water on Cutaneous Wound Healing in Dogs. Vet Sci 2021; 8:vetsci8110264. [PMID: 34822637 PMCID: PMC8618955 DOI: 10.3390/vetsci8110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
This study explored the effects of drinking Hydrogen-rich water (HRW) on skin wound healing in dogs. Eight circular wounds were analyzed in each dog. The experimental group was treated with HRW thrice daily, while the control group was provided with distilled water (DW). The wound tissues of dogs were examined histopathologically. The fibroblasts, inflammatory cell infiltration, the average number of new blood vessels, and the level of malondialdehyde (MDA) and superoxide dismutase (SOD) activity in the skin homogenate of the wound was measured using the corresponding kits. The expressions of Nrf-2, HO-1, NQO-1, VEGF, and PDGF were measured using the real-time fluorescence quantitative method. We observed that HRW wounds showed an increased rate of wound healing, and a faster average healing time compared with DW. Histopathology showed that in the HRW group, the average thickness of the epidermis was significantly lower than the DW group. The average number of blood vessels in the HRW group was higher than the DW group. The MDA levels were higher in the DW group than in the HRW group, but the SOD levels were higher in the HRW group than in the DW group. The results of qRT-PCR showed that the expression of each gene was significantly different between the two groups. HRW treatment promoted skin wound healing in dogs, accelerated wound epithelization, reduced inflammatory reaction, stimulated the expression of cytokines related to wound healing, and shortened wound healing time.
Collapse
Affiliation(s)
- Dong-Dong Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Meng-Yuan Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Ting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Muhammad Abid Hayat
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Jian-Tao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (D.-D.Q.); (M.-Y.D.); (T.W.); (M.A.H.); (T.L.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
- Correspondence: ; Tel.: +86-0451-5519-0470
| |
Collapse
|
35
|
Angiogenic Potential of VEGF Mimetic Peptides for the Biofunctionalization of Collagen/Hydroxyapatite Composites. Biomolecules 2021; 11:biom11101538. [PMID: 34680173 PMCID: PMC8534000 DOI: 10.3390/biom11101538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, the focus on bioinspired concepts for the development of tissue engineering constructs is increasing. For this purpose, the combination of collagen (Coll) and hydroxyapatite (HA) comes closest to the natural composition of the bone. In order to confer angiogenic properties to the scaffold material, vascular endothelial growth factor (VEGF) is frequently used. In the present study, we used a VEGF mimetic peptide (QK) and a modified QK-peptide with a poly-glutamic acid tag (E7-QK) to enhance binding to HA, and analyzed in detail binding efficiency and angiogenic properties. We detected a significantly higher binding efficiency of E7-QK peptides to hydroxyapatite particles compared to the unmodified QK-peptide. Tube formation assays revealed similar angiogenic functions of E7-QK peptide (1µM) as induced by the entire VEGF protein. Analyses of gene expression of angiogenic factors and their receptors (FLT-1, KDR, HGF, MET, IL-8, HIF-1α, MMP-1, IGFBP-1, IGFBP-2, VCAM-1, and ANGPT-1) showed higher expression levels in HUVECs cultured in the presence of 1 µM E7-QK and VEGF compared to those detected in the negative control group without any angiogenic stimuli. In contrast, the expression of the anti-angiogenic gene TIMP-1 showed lower mRNA levels in HUVECs cultured with E7-QK and VEGF. Sprouting assays with HUVEC spheroids within Coll/HA/E7-QK scaffolds showed significantly longer sprouts compared to those induced within Coll/HA/QK or Coll/HA scaffolds. Our results demonstrate a significantly better functionality of the E7-QK peptide, electrostatically bound to hydroxyapatite particles compared to that of unmodified QK peptide. We conclude that the used E7-QK peptide represents an excellently suited biomolecule for the generation of collagen/hydroxyapatite composites with angiogenic properties.
Collapse
|
36
|
Badis D, Ouafa D. Comparative study of the therapeutic efficacy of autologous platelet-rich plasma and honey in healing skin wounds in sheep. Vet World 2021; 14:2170-2177. [PMID: 34566336 PMCID: PMC8448649 DOI: 10.14202/vetworld.2021.2170-2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: This investigation is the continuation of a published preliminary study examining the therapeutic efficacy of platelet-rich plasma (PRP) as a topical treatment for skin wounds in sheep. The study aimed to compare the healing effects of autologous PRP with that of natural honey. Materials and Methods: This study involved nine clinically healthy male sheep. After sterile skin preparation, full-thickness longitudinal incision wounds were created on the backs of each animal. The animals were randomly divided into three groups of three sheep each. In Group I, the wounds were treated with PRP; in Group II, the wounds were treated with honey; and in Group III, the wounds were treated with saline solution. The different treatments were administered topically every 3 days. Healing was assessed by a semi-quantitative histopathological study from biopsies taken on the 3rd, 7th, 14th, 21st, and 28th days of healing. The data obtained were compared using the non-parametric Mann–Whitney U-test, and p<0.05 and 0.01 were used to determine the level of significance of the recorded differences. Results: Semi-quantitative histopathological evaluation showed significant differences in the progression of wound healing between the three study groups. Recorded data showed that PRP may reduce inflammation during the first 3 days after the incision. Moreover, the synthesis and organization of collagen fibers were significantly improved in the group treated with PRP compared with those in the group treated with honey. Conclusion: PRP offers a promising therapeutic option for healing skin wounds in sheep compared with honey.
Collapse
Affiliation(s)
- Daikh Badis
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Biotechnology's Laboratory of the Bioactive Molecules and the Cellular Physiopathology, University of Batna 2, Batna, Algeria
| | - Deffa Ouafa
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
| |
Collapse
|
37
|
Periodontal and Dental Pulp Cell-Derived Small Extracellular Vesicles: A Review of the Current Status. NANOMATERIALS 2021; 11:nano11071858. [PMID: 34361246 PMCID: PMC8308278 DOI: 10.3390/nano11071858] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 μm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV–miRNAs, EV–circRNAs, EV–mRNAs and EV–lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications.
Collapse
|
38
|
da Silva Sasso GR, Florencio-Silva R, Sasso-Cerri E, Gil CD, de Jesus Simões M, Cerri PS. Spatio-temporal immunolocalization of VEGF-A, Runx2, and osterix during the early steps of intramembranous ossification of the alveolar process in rat embryos. Dev Biol 2021; 478:133-143. [PMID: 34245724 DOI: 10.1016/j.ydbio.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/10/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is expressed by several cell types and is a crucial factor for angiogenic-osteogenic coupling. However, the immunolocalization of VEGF-A during the early stages of the alveolar process formation remains underexplored. Thus, we analyzed the spatio-temporal immunolocalization of VEGF-A and its relationship with Runt-related transcription factor 2 (Runx2) and osterix (Osx) during the early steps of intramembranous ossification of the alveolar process in rat embryos. Embryo heads (E) of 16, 18 and 20-day-old rats were processed for paraffin embedding. Histomorphometry and immunohistochemistry to detect VEGF-A, Runx2, and Osx (osteoblast differentiation markers) were performed. The volume density of bone tissue including bone cells and blood vessels increased significantly in E18 and E20. Cells showing high VEGF-A immunoreactivity were initially observed within a perivascular niche in the ectomesenchyme; afterwards, these cells were diffusely located near bone formation sites. Runx2-and Osx-immunopositive cells were observed in corresponded regions of cells showing strong VEGF-A immunoreactivity. Although these immunostained cells were observed in all specimens, this immunolocalization pattern was more evident in E16 specimens and gradually decreased in E18 and E20 specimens. Double immunofluorescence labelling showed intracellular co-localization of Osx and VEGF-A in cells surrounding the developing alveolar process, indicating a crucial role of VEGF-A in osteoblast differentiation. Our results showed VEGF-A immunoexpression in osteoblasts and its precursors during the maxillary alveolar process formation of rat embryos. Moreover, the VEGF-A-positive cells located within a perivascular niche at the early stages of the alveolar process development suggest a crosstalk between endothelium and ectomesenchymal cells, reinforcing the angiogenic-osteogenic coupling in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil.
| |
Collapse
|
39
|
Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. BIOLOGY 2021; 10:biology10070579. [PMID: 34202598 PMCID: PMC8301056 DOI: 10.3390/biology10070579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.
Collapse
|
40
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Yan D, Zhang S, Yu F, Gong D, Lin J, Yao Q, Fu Y. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr Polym 2021; 269:118341. [PMID: 34294349 DOI: 10.1016/j.carbpol.2021.118341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
The rehabilitation of visual acuity with severe conjunctival fibrosis depends on ocular reconstruction with suitable conjunctival substitutes. In this study, we have developed poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) surface coated by cellulose nanofibrils (CNF) and/or silk peptide (SP). The CNF coating improved the hydrophilicity and the SP coating proliferated conjunctival epithelial cells (CjECs). To prevent post-operative infections, the composite scaffolds were loaded with levofloxacin (LF), constantly exerting efficient bactericidal effects. In in vivo evaluations, the PLA EFMs presented excellent therapeutic effects by promoting structural and functional restoration of conjunctiva after transplant. Even with reduced topical administration of antibiotics, the coloboma treated with LF loaded scaffolds presented no infections. It could be deduced that the potent bacterial inhibition feature could save troubles for patients by minimizing the application of antibiotics post-surgery. Hence, the developed PLA EFMs loaded with LF could be promising conjunctival substitutes.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
42
|
Zhou T, Chen S, Ding X, Hu Z, Cen L, Zhang X. Fabrication and Characterization of Collagen/PVA Dual-Layer Membranes for Periodontal Bone Regeneration. Front Bioeng Biotechnol 2021; 9:630977. [PMID: 34178953 PMCID: PMC8219956 DOI: 10.3389/fbioe.2021.630977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Guided tissue regeneration (GTR) is a promising treatment for periodontal tissue defects, which generally uses a membrane to build a mechanical barrier from the gingival epithelium and hold space for the periodontal regeneration especially the tooth-supporting bone. However, existing membranes possess insufficient mechanical properties and limited bioactivity for periodontal bone regenerate. Herein, fish collagen and polyvinyl alcohol (Col/PVA) dual-layer membrane were developed via a combined freezing/thawing and layer coating method. This dual-layer membrane had a clear but contact boundary line between collagen and PVA layers, which were both hydrophilic. The dual membrane had an elongation at break of 193 ± 27% and would undergo an in vitro degradation duration of more than 17 days. Further cell experiments showed that compared with the PVA layer, the collagen layer not only presented good cytocompatibility with rat bone marrow-derived mesenchymal stem cells (BMSCs), but also promoted the osteogenic genes (RUNX2, ALP, OCN, and COL1) and protein (ALP) expression of BMSCs. Hence, the currently developed dual-layer membranes could be used as a stable barrier with a stable degradation rate and selectively favor the bone tissue to repopulate the periodontal defect. The membranes could meet the challenges encountered by GTR for superior defect repair, demonstrating great potential in clinical applications.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siwei Chen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinxin Ding
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth Peoples’ Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaomeng Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth Peoples’ Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184:648-665. [PMID: 34102239 DOI: 10.1016/j.ijbiomac.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Nanofibers have a particular benefit when delivering a spectrum of therapeutic drugs for diverse biomedical applications. Nanofibers are easily fabricated from cellulose acetate, chitosan, polycaprolactone, and other polymers with regulated morphology and release profiles due to nanotechnology's recent advancement. This review will provide the latest approaches to the fabrication of electrospun nanofibers containing herbal extracts, antimicrobial peptides, and antibiotics for wound-healing potential. Besides, synthesis and evaluation of nanofibrous mats, including conducting polymer and evaluate their possibility for wound healing. In addition, nanofibers are loaded with some drugs for skin cancer treatment and contain growth factors for tissue regeneration. Also, the current two-dimensional nanofibers limitations and the various techniques for convert two-dimensional to three-dimension nanofibers to avoid these drawbacks. Moreover, the future direction in improving the three-dimensional structure and functionality has been including.
Collapse
Affiliation(s)
- Asma M Alturki
- Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| |
Collapse
|
44
|
Murali VP, Holmes CA. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone Rep 2021; 14:101093. [PMID: 34095360 PMCID: PMC8166743 DOI: 10.1016/j.bonr.2021.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To analyze preclinical bone regeneration studies employing mesenchymal stromal cell (MSC)- derived extracellular vesicles (EVs) and highlight any commonalities in EV biomarker expression, miRNA cargo(s) or pathway activation that will aid in understanding the underlying therapeutic mechanisms. Methods Articles employing EVs derived from either MSCs or MSC-like osteogenic stromal cells in preclinical bone regeneration studies are included in this review. Results EVs derived from a variety of MSC types were able to successfully induce bone formation in preclinical models. Many studies failed to perform in-depth EV characterization. The studies with detailed EV characterization data report very different miRNA cargos, even in EVs isolated from the same species and cell types. Few preclinical studies have analyzed the underlying mechanisms of MSC-EV therapeutic action. Conclusion There is a critical need for mechanistic preclinical studies with thorough EV characterization to determine the best therapeutic MSC-EV source for bone regeneration therapies. Issues including controlled EV delivery, large scale production, and proper storage also need to be addressed before EV-based bone regeneration therapies can be translated for clinical bone repair. EVs from different MSC sources successfully regenerate bone in preclinical models. Studies were reviewed to find commonalities in EV cargo(s)/pathways activated in MSC-EV-based bone regeneration therapies. Issues that need to be overcome to enable clinical translation of EV-based therapies were addressed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| |
Collapse
|
45
|
Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021; 22:ijms22105236. [PMID: 34063438 PMCID: PMC8156243 DOI: 10.3390/ijms22105236] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
Collapse
|
46
|
胡 星, 周 明, 柳 海, 李 盛, 陈 彦, 刘 一, 王 鹏, 赵 秋, 肖 振. [Expression of Ras-Associated Protein 1 in the Vascular Endothelium of Bone Tissue with Non-Traumatic Osteonecrosis of Femoral Head]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:452-457. [PMID: 34018364 PMCID: PMC10409190 DOI: 10.12182/20210560503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 11/23/2022]
Abstract
Objective To investigate the difference in the expression of Ras-associated protein 1 (Rap1) in necrotic and healthy areas of non-traumatic osteonecrosis of femoral head (NONFH) patients. Methods Femoral head tissue samples from 30 cases of NONFH and 30 cases of traumatic osteonecrosis of the femoral head (TONFH) were collected after hip replacement surgery, respectively. No significant difference of Association Research Circulation Osseous (ARCO) staging was found between the NONFH and the TONFH groups ( Z=-0.769, P=0.442). In the NONFH group, 8 patients were ARCO stage IIIb, 10 were stage IV, and 12 were stage V, while in the TONFH ground, 11 patients were ARCO stage IIIb, 9 were stage IV, and 10 were stage V. There were 19 males and 11 females in the NONFH group, with an average age of 49.6 yr. (26-69 yr.), and 16 males and 14 females in the TONFH group, with an average age of 54.2 yr. (37-68 yr.). There was no significant difference in gender or age between the two groups ( P>0.05). Specimens were collected from different bone areas, including those from the necrotic areas (area A) and the healthy areas (area B) of the NONFH group, and those from the healthy areas (area B') of the TONFH group, i.e., the control group. Western blot and quantitative real-time reverse transcription PCR (qRT-PCR) were used to analyze the different expression of Rap1, vascular endothelial growth factor (VEGF) protein, phosphoinositide 3-kinase (PI3K), and Akt protein and their corresponding mRNA in the three areas of bone tissue. HE staining and immunohistochemisty staining were done in order to observe the morphological changes of each area. Results Western blot results indicated that there was no statistical difference in the relative expression of Rap1, VEGF, PI3K, and Akt proteins ( P>0.05). The relative expressions of Rap1, VEGF, PI3K, and Akt proteins in the area A were lower than those in the area B and the difference was statistically significant ( P<0.05). qRT-PCR results showed that the relative expressions of Rap1, VEGF, PI3 K and Akt mRNA in area A were lower than those of area B, and a statistical difference was found ( P<0.05). The relative expression of the mRNA of Rap1, VEGF , PI3 K and Akt in area B and area B' were not significantly different ( P>0.05). HE staining and immunohistochemisty staining showed that chondrocytes decreased in the necrotic area (area A) of NONFH, chondrocytes nucleus disappeared, subchondral bone trabeculae were broken, bone trabeculae thickened, and empty bone lacunae appeared. Granulation tissues composed of new capillaries and fibrous cells have proliferated and crawled around the necrotic area. Positive expressions of the Rap1, VEGF, PI3K and Akt proteins in area A were weaker than those of the normal area. In addition, there were positive expressions of Rap1, PI3K and Akt on the trabecular bone of both area A and area B at similar intensity of expression. There were strong positive expressions of Rap1, VEGF, PI3K and Akt on the intima of arterioles and venules, and on the peripheral stromal cell membrane, but the positive expression in area A was significantly lower than that in area B. However, the positive expression positions and intensity of all indicators were similar in area B and area B'. Conclusion The necrosis in NONFH may be related to vascular endothelial damages caused by the inhibition of the Rap1-PI3K/Akt signaling pathways and the subsequent decline in the protein expression.
Collapse
Affiliation(s)
- 星荣 胡
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 明旺 周
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 海平 柳
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 盛华 李
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 彦同 陈
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 一飞 刘
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 鹏志 王
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 秋玥 赵
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 振 肖
- 甘肃中医药大学 (兰州 730000)Gansu University of Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
47
|
Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs 2021; 34:567-586. [PMID: 32754790 PMCID: PMC7402079 DOI: 10.1007/s40259-020-00434-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Davod Jafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shajari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosna Gomari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ganji
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Tan L, Cao Z, Chen H, Xie Y, Yu L, Fu C, Zhao W, Wang Y. Curcumin reduces apoptosis and promotes osteogenesis of human periodontal ligament stem cells under oxidative stress in vitro and in vivo. Life Sci 2021; 270:119125. [PMID: 33513394 DOI: 10.1016/j.lfs.2021.119125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Human periodontal ligament stem cells (hPDLSCs) tether the teeth to the surrounding bone and are considered as major functional stem cells responsible for regeneration of the alveolar bone and periodontal ligament tissue. However, the outcome of stem cell regenerative therapy is affected by the survival rate and their differentiation potential of transplanted cells. This is primarily because of local oxidative stress and chronic inflammation at the transplantation site. Therefore, our study aimed to explore whether a natural antioxidant, curcumin could increase the tissue regeneration ability of transplanted hPDLSCs. MAIN METHODS A hydrogen peroxide environment and a rat cranial bone defect model were built to mimic the oxidative stress conditions in vitro and in vivo, respectively. We evaluated the effect of curcumin on oxidative status, apoptosis, mitochondrial function and osteogenic differentiation of H2O2-stimulated hPDLSCs in vitro. We also measured the effect of curcumin on cell viability and bone repair ability of transplanted hPDLSCs in vivo. KEY FINDINGS Our data showed that curcumin enhanced cell proliferation, reduced the reactive oxygen species (ROS) levels and apoptosis, maintained the standard mitochondrial structure and function, and promoted osteogenic differentiation of H2O2-stimulated hPDLSCs. The extracellular regulated protein kinases 1/2 (Erk1/2) signaling pathway was determined to be involved in the osteogenic differentiation of the H2O2-stimulated hPDLSCs. Moreover, curcumin enhanced the viability and the bone repair ability of hPDLSCs in vivo. SIGNIFICANCE Curcumin reduced apoptosis and promoted osteogenesis of the hPDLSCs under oxidative stress, and might therefore have a potential clinical use with respect to tissue regeneration.
Collapse
Affiliation(s)
- Lingping Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Zeyuan Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Huan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Yunyi Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Le Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Chuanqiang Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56 Lingyuanxi Road, Guangzhou 510055, China.
| |
Collapse
|
49
|
Murali VP, Holmes CA. Biomaterial-based extracellular vesicle delivery for therapeutic applications. Acta Biomater 2021; 124:88-107. [PMID: 33454381 DOI: 10.1016/j.actbio.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicle (EV)- based therapies have been successfully tested in preclinical models for several biomedical applications, including tissue engineering, drug delivery and cancer therapy. However, EVs are most commonly delivered via local or systemic injection, which results in rapid clearance. In order to prolong the retention of EVs at target site and improve their therapeutic efficacy, biomaterial-based delivery systems are being investigated. This review discusses the various biomaterial-based systems that have been used to deliver EVs for therapeutic applications, specifically highlighting any strategies for controlled release. Further, challenges to clinical translation of biomaterial-based EV delivery systems are also discussed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| |
Collapse
|
50
|
A human chorionic gonadotropin (hCG) delivery platform using engineered uterine exosomes to improve endometrial receptivity. Life Sci 2021; 275:119351. [PMID: 33737084 DOI: 10.1016/j.lfs.2021.119351] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
AIM Endometrial exosomes carry bioactive agents to uterine epithelial cells and trophectoderm to promote implantation. On the other hand, intrauterine administration of human chorionic gonadotropin (hCG) could improve endometrial receptivity. Therefore, we investigated the delivery of hCG to the endometrial cells by uterine exosomes to increase endometrial receptivity. MAIN METHODS Exosomes were isolated from uterine fluid and characterized by dynamic light scattering, transmission electron microscopy, and western blotting. The freeze-thaw cycle and sonication methods were used to load hCG into the exosomes. The drug release pattern and uptake of exosomes into the endometrial cells were evaluated. Finally, the influence of hCG loaded-exosomes on the expression of several endometrial receptivity markers was evaluated. KEY FINDINGS The isolated uterine fluid exosomes had a cup-shaped or spherical morphology with a mean size of 91.8 nm and zeta potential of -9.75 mV. The average loading capacity of exosomes for hCG was 710.05 ± 73.74 and 245.06 ± 95.66 IU/mg using the sonication and freeze-thaw cycle methods, respectively. The effect of hCG loaded-exosomes on the endometrial receptivity was greater than the hCG or exosomes alone. We found that hCG upregulated LIF and Trophinin and downregulated Muc-16 and IGFBP1 genes. Interestingly, the effect of hCG on the expression of LIF and Muc-16 was significantly intensified when used in the form of hCG loaded-exosomes. SIGNIFICANCE These findings strengthen our hope in using uterine fluid-derived exosome as an effective carrier for proteins or other therapeutic agents to effective delivery into endometrial cells.
Collapse
|