1
|
Champigneulle B, Stauffer E, Robach P, Doutreleau S, Howe CA, Pina A, Salazar-Granara AA, Hancco I, Guergour D, Brugniaux JV, Connes P, Pichon A, Verges S. Early effects of acetazolamide on hemoglobin mass and plasma volume in chronic mountain sickness at 5100 m. Pulmonology 2025; 31:2416794. [PMID: 37263861 DOI: 10.1016/j.pulmoe.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Chronic Mountain Sickness (CMS) syndrome, combining excessive erythrocytosis and clinical symptoms in highlanders, remains a public health concern in high-altitude areas, especially in the Andes, with limited therapeutic approaches. The objectives of this study were to assess in CMS-highlanders permanently living in La Rinconada (5100-5300 m, Peru, the highest city in the world), the early efficacy of acetazolamide (ACZ) and atorvastatin to reduce hematocrit (Hct), as well as the underlying mechanisms focusing on intravascular volumes. MATERIALS AND METHODS Forty-one males (46±8 years of age) permanently living in La Rinconada for 15 [10-20] years and suffering from CMS were randomized between ACZ (250 mg once-daily; N = 13), atorvastatin (20 mg once-daily; N = 14) or placebo (N = 14) uptake in a double-blinded parallel study. Hematocrit (primary endpoint) as well as arterial blood gasses, total hemoglobin mass (Hbmass) and intravascular volumes were assessed at baseline and after a mean (±SD) treatment duration of 19±2 days. RESULTS ACZ increased PaO2 by +13.4% (95% CI: 4.3 to 22.5%) and decreased Hct by -5.2% (95% CI: -8.3 to -2.2%), whereas Hct remained unchanged with placebo or atorvastatin. ACZ tended to decrease Hbmass (-2.6%, 95% CI: -5.7 to 0.5%), decreased total red blood cell volume (RBCV, -5.3%, 95% CI: -10.3 to -0.3%) and increased plasma volume (PV, +17.6%, 95% CI: 4.9 to 30.3%). Atorvastatin had no effect on intravascular volumes, while Hbmass and RBCV increased in the placebo group (+6.1%, 95% CI: 4.2 to 7.9% and +7.0%, 95%CI: 2.7 to 11.4%, respectively). CONCLUSIONS Short-term ACZ uptake was effective to reduce Hct in CMS-highlanders living at extreme altitude >5,000 m and was associated with both an increase in PV and a reduction in RBCV.
Collapse
Affiliation(s)
- B Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - E Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, Université de Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France
| | - P Robach
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - S Doutreleau
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, Canada
| | - A Pina
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, S. Luca Hospital, Milan, Italy
| | - A A Salazar-Granara
- Universidad de San Martin de Porres, School of Medicine, Research Centre in Altitude Medicine, Lima, Peru
| | - I Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - D Guergour
- Unité Biochimie Immunoanalyse, Service de Biochimie Biologie Moléculaire et Toxicologie Environnementale, Institut de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - J V Brugniaux
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - P Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, Université de Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - A Pichon
- Laboratoire Move EA 6314, Faculté des Sciences du Sport, Universit. De Poitiers, Poitiers, France
| | - S Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| |
Collapse
|
2
|
Zhou X, Bao Q, Cui Y, Li X, Yang C, Yang Y, Gao Y, Chen D, Huang J. Life destiny of erythrocyte in high altitude erythrocytosis: mechanisms underlying the progression from physiological (moderate) to pathological (excessive) high-altitude erythrocytosis. Front Genet 2025; 16:1528935. [PMID: 40242475 PMCID: PMC12000012 DOI: 10.3389/fgene.2025.1528935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
High-altitude polycythemia (HAPC) represents a pathological escalation of the physiological erythrocytosis induced by chronic hypoxia exposure. While moderate erythroid expansion enhances oxygen delivery, HAPC manifests as hematologic disorder characterized by hemoglobin thresholds (≥21 g/dL males; ≥19 g/dL females) and multi-organ complications including microcirculatory thrombosis, right ventricular hypertrophy, and uric acid dysmetabolism. This review critically evaluates the continuum between adaptive and maladaptive polycythemia through multiscale analysis of erythrocyte biology. We integrate genomic predisposition patterns, bone marrow erythroid kinetic studies, and peripheral erythrocyte pathophenotypes revealed by multi-omics profiling (iron-redox proteome, hypoxia-metabolome crosstalk). Current diagnostic limitations are highlighted, particularly the oversimplification of hemoglobin cutoffs that neglect transitional dynamics in erythrocyte turnover. By reconstructing the erythroid life cycle-from hypoxia-sensitive progenitor commitment to senescent cell clearance-we propose a phase transition model where cumulative epigenetic-metabolic derangements overcome homeostatic buffers, triggering pathological erythroid amplification. These insights reframe HAPC as a systems biology failure of erythroid adaptation, informing predictive biomarkers and targeted interventions to preserve hematological homeostasis in hypoxic environments.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
- College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
3
|
Howe CA, Verges S, Nowak-Flück D, Talbot JS, Champigneulle B, Stauffer E, Brugniaux JV, Doutreleau S, Hancco I, Niroula S, Pichon A, McManus AM, Stembridge M, Ainslie PN. Cerebral blood flow in Andean children and adolescents living above 5,000 m. J Neurophysiol 2025; 133:1138-1145. [PMID: 40049741 DOI: 10.1152/jn.00513.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
A number of indigenous populations have resided at high-altitude for generations, resulting in various phenotypical adaptations promoting successful high-altitude adaptation. Although many of these adaptations have been investigated in adults, little is known regarding how children residing at high-altitudes adapt, particularly with regards to the cerebrovasculature. Under hypoxic environments, compensatory changes in cerebral blood flow (CBF) are necessary to couple oxygen delivery to metabolic demand in the face of reduced oxygen availability. In this study, we aimed to evaluate regional and global cerebral blood flow (CBF) in Andean children and adolescents living in the highest city in the world at 5,100 m. Eighteen Andeans (ages 6-17 yr) living in La Rinconada, Peru (5,100 m) were compared with sex-, age-, size-, and maturity-matched high-altitude Sherpa (3,800 m) living in the Khumbu valley of Nepal (n = 18) and lowlanders (44 m) living at sea-level in Cardiff, Wales (n = 18). Volumetric measurements of CBF were assessed using duplex ultrasound of the internal carotid and vertebral arteries to assess regional and global CBF. End-tidal gases and oxygen saturation were measured in all groups, while hemoglobin concentration was assessed in Andeans. Despite Andeans living under a more severe hypoxic environment, global CBF was similar between Andeans (687.01 ± 138.49 mL/min), Sherpa (711.27 ± 110.27 mL/min), and lowlanders (704.88 ± 59.23 mL/min). In contrast, vertebral artery blood flow was 24% lower in Andeans (72.93 ± 31.60 mL/min) compared with lowlanders (96.09 ± 19.23 mL/min). The similar global CBF in Andean children might be achieved through elevated hemoglobin concentration. However, lower posterior perfusion in Andeans requires further investigation to determine whether it represents an adaptive or maladaptive response.NEW & NOTEWORTHY We have, for the first time, quantified volumetric regional and global cerebral blood flow in indigenous Andean children and adolescents living above 5,000 m in the highest city in the world. Compared with Sherpa living at moderate altitude (3,800 m), and lowlanders residing at sea level, Andeans present with similar global cerebral blood flow, but lower posterior flow despite being more hypoxemic. Similar to adults, differences in high hemoglobin concentration may drive this pattern of cerebral blood flow.
Collapse
Affiliation(s)
- Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Samuel Verges
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Benoit Champigneulle
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Julien V Brugniaux
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Ali M McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Zubieta-Calleja G. Redefining chronic mountain sickness: insights from high-altitude research and clinical experience. MEDICAL REVIEW (2021) 2025; 5:44-65. [PMID: 39974561 PMCID: PMC11834750 DOI: 10.1515/mr-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/31/2024] [Indexed: 02/21/2025]
Abstract
Chronic Mountain Sickness (CMS), characterized by increased red blood cells above average values traditionally attributed to chronic hypobaric hypoxia exposure, is being redefined in light of recent research and clinical experience. We propose a shift in perspective, viewing CMS not as a singular entity but as Poly-erythrocythemia (PEH), as the Hematocrit/Hemoglobin/Red Blood Cells (Ht/Hb/RBCs) increase constitutes a sign, not a disease reflecting a spectrum of oxygen transport alterations in multiple diseases in the chronic hypoxia environment in high-altitude populations. Drawing on over five decades of experience at the High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA) in Bolivia, we advocate for altitude-specific blood parameter norms and emphasize the importance of correct etiological diagnosis for effective management. This updated understanding not only aids in managing chronically hypoxemic patients at various altitudes but also offers valuable insights into global health challenges, including the recovery from COVID-19.
Collapse
|
5
|
Wan Y, Ge RL, Cao Y, Luo L, Ji W. Chronic Hypobaric Hypoxia Stimulates Differential Expression of Cognitive Proteins in Hippocampal Tissue. High Alt Med Biol 2024. [PMID: 39602167 DOI: 10.1089/ham.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Objective: We aimed to determine changes in cognitive function resulting from chronic hypobaric hypoxia through proteomic analysis of hippocampal tissue. We screened cognition-related proteins to provide ideas and directions that could help prevent and treat hypoxia-associated cognitive impairment. Methods: We analyzed hippocampal tissues from mice exposed to high altitudes and control mice using 4 D label-free quantitative proteomics. The data were analyzed by protein quantitative analysis, functional annotation, differential protein screening, clustering analyses, and functional classification and enrichment. Differential protein expression was investigated using targeted quantitative omics based on parallel response monitoring. Results: We identified and quantified 20 target proteins in 12 samples, of which 18 were significant validated proteins that were or might be related to cognitive functions. Signaling pathways that were significantly enriched in differentially expressed proteins were pyrimidine metabolism, 5'-Adenosine Triphosphate-activated protein kinase signaling, phospholipase D signaling, purine metabolism, inflammatory mediator regulation of transient receptor potential channels, hedgehog signaling pathways, dilated cardiomyopathy, platelet activation, insulin resistance, mRNA surveillance pathways, drug metabolism-other enzymes, and drug metabolism-cytochrome P450. Conclusion: Chronic hypoxia alters protein expression in murine hippocampal tissues. Eighteen differentially expressed cognition-related proteins might be related to cognitive impairment in mice exposed to chronic high-altitude hypoxia.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Yaxin Cao
- Tang Du hospital of Air Force Military Medical University, Xi'an, China
| | - Lan Luo
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
6
|
Champigneulle B, Brugniaux JV, Stauffer E, Doutreleau S, Furian M, Perger E, Pina A, Baillieul S, Deschamps B, Hancco I, Connes P, Robach P, Pichon A, Verges S. Expedition 5300: limits of human adaptations in the highest city in the world. J Physiol 2024; 602:5449-5462. [PMID: 38146929 DOI: 10.1113/jp284550] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023] Open
Abstract
Exposure to chronic hypobaric hypoxia imposes a significant physiological burden to more than 80 million humans living above 2500 m throughout the world. Among them, 50 000 live in the world's highest city, La Rinconada, located at 5000-5300 m in southern Peru. Expedition 5300 is the first scientific and medical programme led in La Rinconada to investigate the physiological adaptations and altitude-related health issues in this unique population. Dwellers from La Rinconada have very high haemoglobin concentration (20.3 ± 2.4 g/dL; n = 57) and those with chronic mountain sickness (CMS) exhibit even higher concentrations (23.1 ± 1.7 g/dL; n = 150). These values are associated with large total haemoglobin mass and blood volume, without an associated iron deficit. These changes in intravascular volumes lead to a substantial increase in blood viscosity, which is even larger in CMS patients. Despite these large haematological changes, 24 h blood pressure monitoring is essentially normal in La Rinconada, but some results suggest impaired vascular reactivity. Echocardiography revealed large right heart dilatation and high pulmonary arterial pressure as well as left ventricle concentric remodelling and grade I diastolic dysfunction. These changes in heart dimension and function tend to be more severe in highlanders with CMS. Polygraphy evaluations revealed a large reduction in nocturnal pulse oxygen saturation (median SpO2 = 79%), which is even more severe in CMS patients who also tended to show a higher oxygen desaturation index. The population of La Rinconada offers a unique opportunity to investigate the human responses to chronic severe hypoxia, at an altitude that is probably close to the maximum altitude human beings can permanently tolerate without presenting major health issues.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Julien V Brugniaux
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Emeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Doutreleau
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Alessandra Pina
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Blandine Deschamps
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Robach
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| |
Collapse
|
7
|
Savina Y, Pichon AP, Lemaire L, Howe CA, Ulliel-Roche M, Skinner S, Nader E, Guillot N, Stauffer É, Roustit M, Hancco I, Robach P, Esteve F, Pialoux V, Perger E, Parati G, Ainslie PN, Doutreleau S, Connes P, Verges S, Brugniaux JV. Micro- and macrovascular function in the highest city in the world: a cross sectional study. LANCET REGIONAL HEALTH. AMERICAS 2024; 38:100887. [PMID: 39381083 PMCID: PMC11459627 DOI: 10.1016/j.lana.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Background Since vascular responses to hypoxia in both healthy high-altitude natives and chronic mountain sickness (a maladaptive high-altitude pathology characterised by excessive erythrocytosis and the presence of symptoms-CMS) remain unclear, the role of inflammation and oxidative/nitrosative stress on the endothelium-dependent and -independent responses in both the micro- and macrocirculation, in healthy Andeans at different altitudes and in CMS patients, was examined. Methods 94 men were included: 18 lowlanders (LL), 38 healthy highlanders permanently living at 3800 m (n = 21-HL-3800) or in La Rinconada, the highest city in the world (5100-5300 m) (n = 17-HL-5100/No CMS). Moreover, 14 participants with mild (Mild CMS) and 24 with moderate to severe CMS (Mod/Sev CMS) were recruited. All undertook two reactivity tests: i) local thermal hyperaemia (microcirculation) and ii) flow-mediated dilation (macrocirculation). Endothelium-independent function (glyceryl trinitrate) was also assessed only in La Rinconada. Findings Conductance and skin blood flow velocity during the microcirculation test, as well as macrocirculation progressively decreased with altitude (LL > HL-3800 > HL-5100/No CMS). CMS also induced a decrease in macrocirculation (HL-5100/No CMS > Mild CMS = Mod/Sev CMS), while glyceryl trinitrate restored vascular function. Both oxidative stress and nitric oxide metabolites increased with altitude only. Principal component analysis revealed that increasing inflammation with altitude was associated with a progressive decline in both micro- and macrovascular function in healthy highlanders. Interpretation Both micro and macrovascular function are affected by chronic exposure to hypoxia, the latter being further compounded by CMS. Funding The "Fonds de dotation AGIR pour les maladies chroniques", the "Air Liquide Foundation", and the "French National Research Agency".
Collapse
Affiliation(s)
- Yann Savina
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Aurélien P. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Lucas Lemaire
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Connor A. Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mathilde Ulliel-Roche
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Sarah Skinner
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Elie Nader
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Nicolas Guillot
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Émeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Matthieu Roustit
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Ivan Hancco
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Paul Robach
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - François Esteve
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Philip N. Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Stéphane Doutreleau
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Samuel Verges
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Julien V. Brugniaux
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Zila-Velasque JP, Grados-Espinoza P, Goicochea-Romero PA, Tapia-Sequeiros G, Pascual-Aguilar JE, Ruiz-Yaringaño AJ, Barros-Sevillano S, Ayca-Mendoza J, Nieto-Gutierrez W. Mountain sickness in altitude inhabitants of Latin America: A systematic review and meta-analysis. PLoS One 2024; 19:e0305651. [PMID: 39316567 PMCID: PMC11421813 DOI: 10.1371/journal.pone.0305651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE Chronic and acute mountain sickness is known worldwide, but most of the available information comes from the eastern continent (Himalayas) without taking into account the west which has the most recent group located at altitude, the Andes. The aim of this study was to synthesize the evidence on the prevalence of acute and chronic mountain sickness in Latin American countries (LATAM). METHODS A systematic search of the variables of interest was performed until July 8, 2023 in the Web of Science, Scopus, PubMed and Embase databases. We included studies that assessed the prevalence of mountain sickness in high-altitude inhabitants (>1500 m.a.s.l) who lived in a place more than 12 months. These were analyzed by means of a meta-analysis of proportions. To assess sources of heterogeneity, subgroup analyses and sensitivity analyses were performed by including only studies with low risk of bias and excluding extreme values (0 or 10,000 ratio). PROSPERO (CRD42021286504). RESULTS Thirty-nine cross-sectional studies (10,549 participants) met the inclusion criteria. We identified 5 334 and 2 945 events out of 10,000 with acute and chronic mountain sickness in LATAM countries. The most common physiological alteration was polycythemia (2,558 events), while cerebral edema was the less common (46 events). Clinical conditions were more prevalent at high altitudes for both types of MS. CONCLUSION Acute mountain sickness (AMS) occurs approximately in 5 out of 10 people at high altitude, while chronic mountain sickness (CMS) occurs in 3 out of 10. The most frequent physiological alteration was polycythemia and the least frequent was cerebral edema.
Collapse
Affiliation(s)
| | | | - P. Alejandra Goicochea-Romero
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana, CHANGE Research Working Group, Universidad Científica del Sur, Lima, Peru
| | - Gustavo Tapia-Sequeiros
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Tacna, Peru
| | | | - Arturo J. Ruiz-Yaringaño
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Sociedad Científica de San Fernando, Lima, Peru
- Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Shamir Barros-Sevillano
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad César Vallejo, Trujillo, Perú
| | - Jhon Ayca-Mendoza
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
| | - Wendy Nieto-Gutierrez
- Unidad de Investigación para la Generación de Síntesis de Evidencia en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
9
|
Champigneulle B, Hancco I, Renan R, Doutreleau S, Stauffer E, Pichon A, Brugniaux JV, Péré H, Bouzat P, Veyer D, Verges S. High-Altitude Environment and COVID-19: SARS-CoV-2 Seropositivity in the Highest City in the World. High Alt Med Biol 2024; 25:218-222. [PMID: 34197184 DOI: 10.1089/ham.2021.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Champigneulle, Benoit, Ivan Hancco, Richard Renan, Stéphane Doutreleau, Emeric Stauffer, Aurélien Pichon, Julien V. Brugniaux, Hélène Péré, Pierre Bouzat, David Veyer, and Samuel Verges. High-altitude environment and COVID-19: SARS-CoV-2 seropositivity in the highest city in the world. High Alt Med Biol. 22: 000-000, 2021. Background: A reduced coronavirus disease 2019 (COVID-19) diffusion has been suggested in high-altitude areas but remained questionable. Aims of this study were to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity as well as the risk factors associated in La Rinconada, the highest city in the world (5,100-5,300 m), a gold-mining town located in southeastern Peru where >50,000 dwellers live in precarious sanitary conditions. Materials and Methods: We performed a cross-sectional study during a 1-week period in October 2020, using point-of-care lateral flow serological assays allowing detection of antibodies directed against SARS-CoV-2 among voluntary dwellers in La Rinconada. Participants were also questioned about potential occupational and environmental risk factors of COVID-19 occurrence. Results: In a sample of 159 dwellers tested in La Rinconada, 48.4% [95% confidence interval, CI: 40.5-56.4] were seropositive for the SARS-CoV-2. Occurrence of at least one symptom compatible with the COVID-19 over the past 6 months remained the only significant factor associated with SARS-CoV-2 seropositivity (adjusted odds ratio: 3.27; [95% CI: 1.70-6.44]; p < 0.001). Conclusions: The high rate of SARS-CoV-2 seropositivity observed in this small sample of highlanders does not support a protective effect of high-altitude against the COVID-19 spread and demonstrates its large dissemination in vulnerable populations. Clinical Trial Registration number: NCT04604249.
Collapse
Affiliation(s)
- Benoit Champigneulle
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Richard Renan
- Asociación Científica de Estudiantes de Medicina (ACEM-UNA), Universidad Nacional del Altiplano (UNA), Puno, Perú
| | - Stéphane Doutreleau
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell," University of Lyon 1, Lyon, France
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'activité Physique, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
| | - Aurélien Pichon
- Laboratoire Move EA 6314, Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Julien V Brugniaux
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Hélène Péré
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Unité de Génomique Fonctionnelle des Tumeurs Solides, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Paris, France
| | - Pierre Bouzat
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - David Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Unité de Génomique Fonctionnelle des Tumeurs Solides, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Paris, France
| | - Samuel Verges
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Tang S, Zhou W, Chen L, Yan H, Chen L, Luo F. High altitude polycythemia and its maladaptive mechanisms: an updated review. Front Med (Lausanne) 2024; 11:1448654. [PMID: 39257892 PMCID: PMC11383785 DOI: 10.3389/fmed.2024.1448654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
High altitude polycythemia is a maladaptation of highlanders exposed to hypoxic environment, leading to high blood viscosity and severe cardiorespiratory dysfunction. Prolonged hypoxia causes respiratory depression and severe hypoxemia, and further mediates changes in genetic and molecular mechanisms that regulate erythropoiesis and apoptosis, ultimately resulting in excessive erythrocytosis (EE). This updated review investigated the maladaptive mechanisms of EE, including respiratory chemoreceptor passivation, sleep-related breathing disorders, sex hormones, iron metabolism, and hypoxia-related factors and pathways.
Collapse
Affiliation(s)
- Shijie Tang
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Zhou
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Chen
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yan
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Chen
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Rojas-Chambilla RA, Vilca-Coaquira KM, Tejada-Flores J, Tintaya-Ramos HO, Quispe-Trujillo MM, Calisaya-Huacasi ÁG, Quispe-Humpiri SA, Pino-Vanegas YM, Salazar-Granara AA, Tácuna-Calderón AL, García-Bedoya NM, Yang M, Viscor G, Hancco-Zirena I. Performance in the Six-Minute Walking Test Does Not Discriminate Excessive Erythrocytosis Patients in a Severe Hypoxic Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1119. [PMID: 39338002 PMCID: PMC11431577 DOI: 10.3390/ijerph21091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Chronic exposure to severe hypoxia causes an increase in hematocrit (Hct) and hemoglobin concentration ([Hb]), which can lead to excessive erythrocytosis (EE) and impact physical performance. This work aims to determine the differences in the six-minute walking test (6MWT) between EE and healthy subjects residing at more than 5000 m. METHODS A prospective, cross-sectional study was performed on 71 men (36 healthy and 25 suffering from EE) living in La Rinconada, Peru (5100 m). Basal levels of [Hb] and Hct were obtained. All the subjects performed the 6MWT, and distance reached, vital signs, dyspnea, and fatigue (Borg scale) at the end of the test were recorded. RESULTS The average [Hb] and Hct levels in the control group were 18.7 ± 1.2 g/dL and 60.4 ± 7.1%, respectively, contrasting with EE subjects, who showed 23.4 ± 1.6 g/dL and 73.6 ± 5.9% (p < 0.001). However, no statistically significant differences were observed in BMI or other anthropometric parameters. At the end of the 6MWT, the distance traveled and vital constants were similar between both groups, except for arterial oxygen saturation, which was consistently lower in subjects with EE throughout the test. CONCLUSION EE does not significantly affect 6MWT performance at high altitudes, nor the hemodynamic control during moderate aerobic exercise of subjects who live permanently in a severely hypoxic environment.
Collapse
Affiliation(s)
- Rossela Alejandra Rojas-Chambilla
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Kely Melina Vilca-Coaquira
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Jeancarlo Tejada-Flores
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Henry Oscar Tintaya-Ramos
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Mariela Mercedes Quispe-Trujillo
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Ángel Gabriel Calisaya-Huacasi
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Solanyela Anny Quispe-Humpiri
- Facultad de Medicina Humana, Universidad Nacional del Altiplano, Puno 21000, Peru; (R.A.R.-C.); (K.M.V.-C.); (J.T.-F.); (H.O.T.-R.); (M.M.Q.-T.); (Á.G.C.-H.); (S.A.Q.-H.)
- Asociación Científica de Estudiantes de Medicina (ACEM), Puno 21000, Peru
| | - Yony Martin Pino-Vanegas
- Escuela Profesional de Educación Física, Facultad de Ciencias de la Educación, Universidad Nacional del Altiplano, Puno 21000, Peru;
| | - Alberto Alcibiades Salazar-Granara
- Centro de Investigación en Medicina de Altura (CIMA), Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru; (A.A.S.-G.); (A.L.T.-C.); (N.M.G.-B.)
| | - Ana Lucía Tácuna-Calderón
- Centro de Investigación en Medicina de Altura (CIMA), Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru; (A.A.S.-G.); (A.L.T.-C.); (N.M.G.-B.)
| | - Nancy Mónica García-Bedoya
- Centro de Investigación en Medicina de Altura (CIMA), Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru; (A.A.S.-G.); (A.L.T.-C.); (N.M.G.-B.)
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Bloodworks Northwest Research Institute, Seattle, WA 98102, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98102, USA
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Iván Hancco-Zirena
- Centro de Investigación en Medicina de Altura (CIMA), Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15024, Peru; (A.A.S.-G.); (A.L.T.-C.); (N.M.G.-B.)
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Diekman CO, Thomas PJ, Wilson CG. COVID-19 and silent hypoxemia in a minimal closed-loop model of the respiratory rhythm generator. BIOLOGICAL CYBERNETICS 2024; 118:145-163. [PMID: 38884785 PMCID: PMC11289179 DOI: 10.1007/s00422-024-00989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Silent hypoxemia, or "happy hypoxia," is a puzzling phenomenon in which patients who have contracted COVID-19 exhibit very low oxygen saturation ( SaO 2 < 80%) but do not experience discomfort in breathing. The mechanism by which this blunted response to hypoxia occurs is unknown. We have previously shown that a computational model of the respiratory neural network (Diekman et al. in J Neurophysiol 118(4):2194-2215, 2017) can be used to test hypotheses focused on changes in chemosensory inputs to the central pattern generator (CPG). We hypothesize that altered chemosensory function at the level of the carotid bodies and/or the nucleus tractus solitarii are responsible for the blunted response to hypoxia. Here, we use our model to explore this hypothesis by altering the properties of the gain function representing oxygen sensing inputs to the CPG. We then vary other parameters in the model and show that oxygen carrying capacity is the most salient factor for producing silent hypoxemia. We call for clinicians to measure hematocrit as a clinical index of altered physiology in response to COVID-19 infection.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Christopher G Wilson
- Department of Pediatrics and Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, 11223 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
13
|
Furian M, Ulliel-Roche M, Howe CA, Zerizer F, Marillier M, Bernard AC, Hancco I, Champigneulle B, Baillieul S, Stauffer E, Pichon AP, Doutreleau S, Verges S, Brugniaux JV. Cerebral homeostasis and orthostatic responses in residents of the highest city in the world. Sci Rep 2024; 14:17732. [PMID: 39085313 PMCID: PMC11291767 DOI: 10.1038/s41598-024-68389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Permanent residence at high-altitude and chronic mountain sickness (CMS) may alter the cerebrovascular homeostasis and orthostatic responses. Healthy male participants living at sea-level (LL; n = 15), 3800 m (HL3800m; n = 13) and 5100 m (HL5100m; n = 17), respectively, and CMS highlanders living at 5100 m (n = 31) were recruited. Middle cerebral artery mean blood flow velocity (MCAv), cerebral oxygen delivery (CDO2), mean blood pressure (MAP), heart rate variability and spontaneuous cardiac baroreflex sensitivity (cBRS) were assessed while sitting, initial 30 s and after 3 min of standing. Cerebral autoregulation index (ARI) was estimated (ΔMCAv%baseline)/ΔMAP%baseline) in response to the orthostatic challenge. Altitude and CMS were associated with hypoxemia and elevated hemoglobin concentration. While sitting, MCAv and LFpower negatively correlated with altitude but were not affected by CMS. CDO2 remained preserved. BRS was comparable across all altitudes, but lower with CMS. Within initial 30 s of standing, altitude and CMS correlated with a lesser ΔMAP while ARI remained unaffected. After 3 min standing, MCAv, CDO2 and cBRS remained preserved across altitudes. The LF/HF ratio increased in HL5100m compared to LL and HL3800m from sitting to standing. In contrary, CMS showed blunted autonomic nervous activation in responses to standing. Despite altitude- and CMS-associated hypoxemia, erythrocytosis and impaired blood pressure regulation (CMS only), cerebral homeostasis remained overall preserved.
Collapse
Affiliation(s)
- M Furian
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France.
- Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland.
| | - M Ulliel-Roche
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - C A Howe
- Center for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - F Zerizer
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - M Marillier
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - A C Bernard
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - I Hancco
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - B Champigneulle
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Baillieul
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - E Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - A P Pichon
- Laboratory Mobility, aging & exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - S Doutreleau
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Verges
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - J V Brugniaux
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
14
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Champigneulle B, Caton F, Seyve L, Stauffer É, Pichon A, Brugniaux JV, Furian M, Hancco I, Deschamps B, Kaestner L, Robach P, Connes P, Bouzat P, Polack B, Marlu R, Verges S. Are coagulation profiles in Andean highlanders with excessive erythrocytosis favouring hypercoagulability? Exp Physiol 2024; 109:899-914. [PMID: 38554124 PMCID: PMC11140178 DOI: 10.1113/ep091670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Chronic mountain sickness is a maladaptive syndrome that affects individuals living permanently at high altitude and is characterized primarily by excessive erythrocytosis (EE). Recent results concerning the impact of EE in Andean highlanders on clotting and the possible promotion of hypercoagulability, which can lead to thrombosis, were contradictory. We assessed the coagulation profiles of Andeans highlanders with and without excessive erythrocytosis (EE+ and EE-). Blood samples were collected from 30 EE+ and 15 EE- in La Rinconada (Peru, 5100-5300 m a.s.l.), with special attention given to the sampling pre-analytical variables. Rotational thromboelastometry tests were performed at both native and normalized (40%) haematocrit using autologous platelet-poor plasma. Thrombin generation, dosages of clotting factors and inhibitors were measured in plasma samples. Data were compared between groups and with measurements performed at native haematocrit in 10 lowlanders (LL) at sea level. At native haematocrit, in all rotational thromboelastometry assays, EE+ exhibited hypocoagulable profiles (prolonged clotting time and weaker clot strength) compared with EE- and LL (all P < 0.01). At normalized haematocrit, clotting times were normalized in most individuals. Conversely, maximal clot firmness was normalized only in FIBTEM and not in EXTEM/INTEM assays, suggesting abnormal platelet activity. Thrombin generation, levels of plasma clotting factors and inhibitors, and standard coagulation assays were mostly normal in all groups. No highlanders reported a history of venous thromboembolism based on the dedicated survey. Collectively, these results indicate that EE+ do not present a hypercoagulable profile potentially favouring thrombosis.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
- Department of Anaesthesia and Critical Care, CHU Grenoble Alpes, Grenoble, France
| | | | - Landry Seyve
- Hemostasis Laboratory, Grenoble University Hospital, Grenoble, France
| | - Émeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France
| | - Aurélien Pichon
- Université de Poitiers, Laboratoire Move UR 20296, STAPS, Poitiers, France
| | | | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | | | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, Homburg, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Pierre Bouzat
- Department of Anaesthesia and Critical Care, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Benoit Polack
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Raphael Marlu
- Hemostasis Laboratory, Grenoble University Hospital, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
16
|
Lawrence ES, Gu W, Bohlender RJ, Anza-Ramirez C, Cole AM, Yu JJ, Hu H, Heinrich EC, O’Brien KA, Vasquez CA, Cowan QT, Bruck PT, Mercader K, Alotaibi M, Long T, Hall JE, Moya EA, Bauk MA, Reeves JJ, Kong MC, Salem RM, Vizcardo-Galindo G, Macarlupu JL, Figueroa-Mujíca R, Bermudez D, Corante N, Gaio E, Fox KP, Salomaa V, Havulinna AS, Murray AJ, Malhotra A, Powel FL, Jain M, Komor AC, Cavalleri GL, Huff CD, Villafuerte FC, Simonson TS. Functional EPAS1/ HIF2A missense variant is associated with hematocrit in Andean highlanders. SCIENCE ADVANCES 2024; 10:eadj5661. [PMID: 38335297 PMCID: PMC10857371 DOI: 10.1126/sciadv.adj5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Elijah S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wanjun Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ryan J. Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cecilia Anza-Ramirez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Amy M. Cole
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hao Hu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica C. Heinrich
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Katie A. O’Brien
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carlos A. Vasquez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T. Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Patrick T. Bruck
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Kysha Mercader
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tao Long
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - James E. Hall
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marco A. Bauk
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer J. Reeves
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mitchell C. Kong
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Rany M. Salem
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jose-Luis Macarlupu
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo Figueroa-Mujíca
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Noemi Corante
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Eduardo Gaio
- Laboratório de Fisiologia Respiratória, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Keolu P. Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frank L. Powel
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
18
|
Liu S, Wang F, Sha S, Cai H, Ng CH, Feng Y, Xiang YT. A comparison of quality of life between older adults living in high and low altitude areas. Front Public Health 2023; 11:1184967. [PMID: 38074716 PMCID: PMC10699141 DOI: 10.3389/fpubh.2023.1184967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background High altitude is known to have a significant impact on human physiology and health, therefore, understanding its relationship with quality of life is an important research area. This study compared the quality of life (QOL) in older adults living in high and low altitude areas, and examined the independent correlates of QOL in those living in a high altitude area. Methods Older adults living in three public nursing homes in Xining (high altitude area) and one public nursing home in Guangzhou (low altitude area) were recruited. The WHOQOL-BREF was used to measure the QOL. Results 644 older adults (male: 39.1%) were included, with 207 living in high altitude and 437 living in low altitude areas. After controlling for the covariates, older adults living in the high altitude area had higher QOL in terms of physical (P = 0.035) and social domains (P = 0.002), but had lower QOL in psychological (P = 0.009) domain compared to their counterparts living in the low altitude area. For older adults living in the high altitude area, smoking status was associated with higher social QOL (P = 0.021), good financial status was associated with higher physical QOL (P = 0.035), and fair or good health status was associated with higher physical (p < 0.001) and psychological QOL (P = 0.046), while more severe depressive symptoms were associated with lower QOL. Conclusion Appropriate interventions and support to improve depressive symptoms and both financial and health status should be developed for older adults living in high altitude areas to improve their QOL.
Collapse
Affiliation(s)
- Shou Liu
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Fei Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Cai
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, VIC, Australia
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
19
|
Zhou S, Yan J, Song K, Ge RL. High-Altitude Hypoxia Induces Excessive Erythrocytosis in Mice via Upregulation of the Intestinal HIF2a/Iron-Metabolism Pathway. Biomedicines 2023; 11:2992. [PMID: 38001992 PMCID: PMC10669251 DOI: 10.3390/biomedicines11112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive erythrocytosis (EE) is a preclinical form of chronic mountain sickness (CMS). The dysregulation of iron metabolism in high-altitude hypoxia may induce EE. The intestinal hypoxia-inducible factor 2 alpha (HIF2a) regulates the genes involved in iron metabolism. Considering these findings, we aimed to investigate the function and mechanism of intestinal HIF2α and the iron metabolism pathway in high-altitude EE mice. C57BL/6J mice were randomized into four groups: the low-altitude group, the high-altitude group, the high-altitude + HIF2α inhibitor group, and the high-altitude + vehicle group. In-vitro experiments were performed using the human intestinal cell line HCT116 cultured under hypoxic conditions for 24 h. Results showed that high-altitude hypoxia significantly increased the expression of intestinal HIF2α and iron metabolism-related genes, including Dmt1, Dcytb, Fpn, Tfrc, and Fth in EE mice. Genetic blockade of the intestinal HIF2α-iron metabolism pathway decreased iron availability in HCT116 cells during hypoxia. The HIF2α inhibitor PT2385 suppressed intestinal HIF2α expression, decreased iron hypermetabolism, and reduced excessive erythrocytosis in mice. These data support the hypothesis that exposure to high-altitude hypoxia can lead to iron hypermetabolism by activating intestinal HIF2α transcriptional regulation, and reduced iron availability improves EE by inhibiting intestinal HIF2α signaling.
Collapse
Affiliation(s)
- Sisi Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Kang Song
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (S.Z.); (J.Y.); (K.S.)
- Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| |
Collapse
|
20
|
Diekman CO, Thomas PJ, Wilson CG. COVID-19 and silent hypoxemia in a minimal closed-loop model of the respiratory rhythm generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.536507. [PMID: 37131753 PMCID: PMC10153159 DOI: 10.1101/2023.04.19.536507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Silent hypoxemia, or 'happy hypoxia', is a puzzling phenomenon in which patients who have contracted COVID-19 exhibit very low oxygen saturation (SaO2 < 80%) but do not experience discomfort in breathing. The mechanism by which this blunted response to hypoxia occurs is unknown. We have previously shown that a computational model (Diekman et al., 2017, J. Neurophysiol) of the respiratory neural network can be used to test hypotheses focused on changes in chemosensory inputs to the central pattern generator (CPG). We hypothesize that altered chemosensory function at the level of the carotid bodies and/or the nucleus tractus solitarii are responsible for the blunted response to hypoxia. Here, we use our model to explore this hypothesis by altering the properties of the gain function representing oxygen sensing inputs to the CPG. We then vary other parameters in the model and show that oxygen carrying capacity is the most salient factor for producing silent hypoxemia. We call for clinicians to measure hematocrit as a clinical index of altered physiology in response to COVID-19 infection.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark NJ 07102
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland OH 44106
| | - Christopher G Wilson
- Department of Pediatrics & Basic Sciences, Loma Linda University, Lawrence D. Longo, MD Center for Perinatal Biology, 11223 Campus St, Loma Linda CA 92350
| |
Collapse
|
21
|
Sharma P, Mohanty S, Ahmad Y. A study of survival strategies for improving acclimatization of lowlanders at high-altitude. Heliyon 2023; 9:e14929. [PMID: 37025911 PMCID: PMC10070159 DOI: 10.1016/j.heliyon.2023.e14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human Acclimatization and therapeutic approaches are the core components for conquering the physiological variations at high altitude (≥2500 m) exposure. The declined atmospheric pressure and reduced partial pressure of oxygen at high altitudes tend to decrease the temperature by several folds. Hypobaric hypoxia is a major threat to humanity at high altitudes, and its potential effects include altitude mountain sickness. On severity, it may lead to the development of conditions like high-altitude cerebral edema (HACE) or high-altitude pulmonary edema (HAPE) and cause unexpected physiological changes in the healthy population of travelers, athletes, soldiers, and low landers while sojourning at high altitude. Previous investigations have been done on long-drawn-out acclimatization strategies such as the staging method to prevent the damage caused by high-altitude hypobaric Hypoxia. Inherent Limitations of this strategy hamper the daily lifestyle and time consuming for people. It is not suitable for the rapid mobilization of people at high altitudes. There is a need to recalibrate acclimatization strategies for improving health protection and adapting to the environmental variations at high altitudes. This narrative review details the geographical changes and physiological changes at high altitudes and presents a framework of acclimatization, pre-acclimatization, and pharmacological aspects of high-altitude survival to enhance the government efficacy and capacity for the strategic planning of acclimatization, use of therapeutics, and safe de-induction from high altitude for minimizing the life loss. It's simply too ambitious for the importance of the present review to reduce life loss, and it can be proved as the most essential aspect of the preparatory phase of high-altitude acclimatization in plateau regions without hampering the daily lifestyle. The application of pre-acclimatization techniques can be a boon for people serving at high altitudes, and it can be a short bridge for the rapid translocation of people at high altitudes by minimizing the acclimatization time.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| |
Collapse
|
22
|
Xu Z, Li Q, Shen X. AZU1 (HBP/CAP37) and PRKCG (PKC-gamma) may be candidate genes affecting the severity of acute mountain sickness. BMC Med Genomics 2023; 16:28. [PMID: 36803152 PMCID: PMC9940399 DOI: 10.1186/s12920-023-01457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Acute Mountain Sickness (AMS) is one of the diseases that predispose to sudden ascent to high altitudes above 2500 m. Among the many studies on the occurrence and development of AMS, there are few studies on the severity of AMS. Some unidentified phenotypes or genes that determine the severity of AMS may be vital to elucidating the mechanisms of AMS. This study aims to explore the underlying genes or phenotypes associated with AMS severity and to provide evidence for a better understanding of the mechanisms of AMS. METHODS GSE103927 dataset was downloaded from the Gene Expression Omnibus database, and a total of 19 subjects were enrolled in the study. Subjects were divided into a moderate to severe AMS (MS-AMS, 9 subjects) group and a no or mild AMS (NM-AMS, 10 subjects) group based on the Lake Louise score (LLS). Various bioinformatics analyses were used to compare the differences between the two groups. Another dataset, Real-time quantitative PCR (RT-qPCR), and another grouping method were used to validate the analysis results. RESULT No statistically significant differences in phenotypic and clinical data existed between the MS-AMS and NM-AMS groups. Eight differential expression genes are associated with LLS, and their biological functions are related regulating of the apoptotic process and programmed cell death. The ROC curves showed that AZU1 and PRKCG had a better predictive performance for MS-AMS. AZU1 and PRKCG were significantly associated with the severity of AMS. The expression of AZU1 and PRKCG were significantly higher in the MS-AMS group compared to the NM-AMS group. The hypoxic environment promotes the expression of AZU1 and PRKCG. The results of these analyses were validated by an alternative grouping method and RT-qPCR results. AZU1 and PRKCG were enriched in the Neutrophil extracellular trap formation pathway, suggesting the importance of this pathway in influencing the severity of AMS. CONCLUSION AZU1 and PRKCG may be key genes influencing the severity of acute mountain sickness, and can be used as good diagnostic or predictive indicators of the severity of AMS. Our study provides a new perspective to explore the molecular mechanism of AMS.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| |
Collapse
|
23
|
Doutreleau S, Ulliel-Roche M, Hancco I, Bailly S, Oberholzer L, Robach P, Brugniaux JV, Pichon A, Stauffer E, Perger E, Parati G, Verges S. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness. Eur J Prev Cardiol 2022; 29:2154-2162. [PMID: 35929776 DOI: 10.1093/eurjpc/zwac166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
AIMS A unique Andean population lives in the highest city of the world (La Rinconada, 5100 m, Peru) and frequently develops a maladaptive syndrome, termed chronic mountain sickness (CMS). Both extreme altitude and CMS are a challenge for the cardiovascular system. This study aims to evaluate cardiac remodelling and pulmonary circulation at rest and during exercise in healthy and CMS highlanders. METHODS AND RESULTS Highlanders living permanently at 3800 m (n = 23) and 5100 m (n = 55) with (n = 38) or without CMS (n = 17) were compared with 18 healthy lowlanders. Rest and exercise echocardiography were performed to describe cardiac remodelling, pulmonary artery pressure (PAP), and pulmonary vascular resistance (PVR). Total blood volume (BV) and haemoglobin mass were determined in all people. With the increase in the altitude of residency, the right heart dilated with an impairment in right ventricle systolic function, while the left heart exhibited a progressive concentric remodelling with Grade I diastolic dysfunction but without systolic dysfunction. Those modifications were greater in moderate-severe CMS patients. The mean PAP was higher both at rest and during exercise in healthy highlanders at 5100 m. The moderate-severe CMS subjects had a higher PVR at rest and a larger increase in PAP during exercise. The right heart remodelling was correlated with PAP, total BV, and SpO2. CONCLUSION Healthy dwellers at 5100 m exhibit both right heart dilatation and left ventricle concentric remodelling with diastolic dysfunction. Those modifications are even more pronounced in moderate-severe CMS subjects and could represent the limit of the heart's adaptability before progression to heart failure.
Collapse
Affiliation(s)
- Stéphane Doutreleau
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Mathilde Ulliel-Roche
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Laura Oberholzer
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robach
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France.,National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Julien V Brugniaux
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Aurélien Pichon
- Laboratoire MOVE EA 6314, Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Samuel Verges
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| |
Collapse
|
24
|
Perger E, Baillieul S, Esteve F, Pichon A, Bilo G, Soranna D, Doutreleau S, Savina Y, Ulliel-Roche M, Brugniaux JV, Stauffer E, Oberholzer L, Howe C, Hannco I, Lombardi C, Tamisier R, Pepin JL, Verges S, Parati G. Nocturnal hypoxemia, blood pressure, vascular status and chronic mountain sickness in the highest city in the world. Ann Med 2022; 54:1884-1893. [PMID: 35786084 PMCID: PMC9258438 DOI: 10.1080/07853890.2022.2091791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Chronic mountain sickness (CMS) is a condition characterized by excessive erythrocytosis in response to chronic hypobaric hypoxia. CMS frequently triggers cardiorespiratory diseases such as pulmonary hypertension and right or left heart failure. Ambient hypoxia might be further amplified night-time by intermittent hypoxia related to sleep-disordered breathing (SDB) so that sleep disturbance may be an important feature of CMS. Our aim was to characterize in a cross-sectional study nocturnal hypoxaemia, SDB, blood pressure (BP), arterial stiffness and carotid intima-media thickness (CIMT) in highlanders living at extreme altitude. METHODS Men aged 18 to 55 years were prospectively recruited. Home sleep apnoea test, questionnaires (short-form health survey; Montreal cognitive assessment; Pittsburgh Sleep Questionnaire Index and the Insomnia severity index), 24-h ambulatory BP monitoring, CIMT and arterial stiffness were evaluated in 3 groups: i) Andean lowlanders (sea-level); ii) highlanders living at 3,800 m and iii) highlanders living at 5,100 m. Analyses were conducted in sub-groups according to 1) CMS severity 2) healthy subjects living at the three different altitude. RESULTS Ninety-two males were evaluated at their living altitudes. Among the 54 highlanders living at 5,100 m, subjects with CMS showed lower mean nocturnal oxygen saturation (SpO2), SpO2 nadir, lower pulse wave velocity and higher nocturnal BP variability than those with no-CMS. Lower nocturnal SpO2 nadir was associated with higher CMS severity (ß= -0.14, p=.009). Among the 55 healthy subjects, healthy highlanders at 5,100 m were characterized by lower scores on quality of life and sleep quality scales and lower mean SpO2 compared to lowlanders. CONCLUSIONS Lower nocturnal SpO2 and higher nocturnal BP variability are associated with CMS severity in individuals living permanently at high altitude. The role of lower SpO2 and higher nocturnal BP variability in the cardiovascular progression of CMS and in the overall prognosis of the disease need to be evaluated in further studies.
Collapse
Affiliation(s)
- Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Biostatistic Unit, University of Milano-Bicocca, Milan, Italy
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - François Esteve
- Inserm UA7, Rayonnement Synchrotron pour la Recherche Biomédicale, Grenoble, France
| | - Aurélien Pichon
- Faculty of Sport Sciences, Université de Poitiers, Laboratory Mobility, aging & exercise (MOVE, EA6314), Poitiers, France
| | - Gzregorz Bilo
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Biostatistic Unit, University of Milano-Bicocca, Milan, Italy
| | - Davide Soranna
- Istituto Auxologico Italiano, IRCCS, Biostatistics unit, Milan, Italy
| | - Stéphane Doutreleau
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Yann Savina
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Mathilde Ulliel-Roche
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Julien V Brugniaux
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Oberholzer
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Connor Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, Canada
| | - Ivan Hannco
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Carolina Lombardi
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Biostatistic Unit, University of Milano-Bicocca, Milan, Italy
| | - Renaud Tamisier
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pepin
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Verges
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U1300, CHU Grenoble Alpes, Grenoble, France
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Biostatistic Unit, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
27
|
Juan YY, Hui G, Sen C, Hua JL. Correlation of PDGF and TXA2 expression with platelet parameters and coagulation indices in chronic altitude sickness (CMS) patients. Exp Physiol 2022; 107:807-812. [PMID: 35616548 DOI: 10.1113/ep089735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? ANSWER Are PDGF and TXA2 expressions elevated in chronic altitude patients, and are they related to thrombosis in chronic altitude disease? What is the main finding and its importance? ANSWER The expression of PDGF and TXA2 both in the bone marrow and peripheral blood of patients with chronic altitude disease is elevated, which is considered to be involved in the mechanism of thrombosis in patients with chronic altitude disease. ABSTRACT Objective: The purpose of this study was to evaluate the expression of PDGF and TXA2 with platelet parameters and coagulation indices in chronic mountain sickness (CMS) patients and healthy individuals on a high-elevation plateau. METHOD The levels of PDGF and TXA2 were examined in 22 CMS patients and 25 healthy individuals, and the association between platelet parameters and coagulation indices was investigated. RESULTS The MPV, PLT, PCT, and FDP characteristics of the CMS group were statistically different in the CMS compared to the control group (P<0.001). The levels of PDGF and TXA2 in the bone marrow and peripheral blood of CMS patients were significantly different (P<0.01) in comparison to the control group. The two factors had no statistically significant relationship with platelet parameters or coagulation indices (P>0.159). CONCLUSIONS According to the current findings, platelets in CMS patients were activated, resulting in aberrant coagulation and PDGF and TXA2 expression, which could be due to physiological adjustments to the plateau's high altitude. To summarize, PDGF and TXA2 levels in CMS patients were not correlated with coagulation or platelet parameters, implying that the mechanism behind their increased expression warrants additional investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin Yu Juan
- Department of Hematology, The Affiliated Hospital of Qinghai University, Qinghai province, Xining, 810001, China
| | - Geng Hui
- Department of Hematology, The Affiliated Hospital of Qinghai University, Qinghai province, Xining, 810001, China
| | - Cui Sen
- Department of Hematology, The Affiliated Hospital of Qinghai University, Qinghai province, Xining, 810001, China
| | - Ji Lin Hua
- Department of Hematology, Huadu Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510800, China
| |
Collapse
|
28
|
Wang Y, Shi Y, Li W, Wang S, Zheng J, Xu G, Li G, Shen X, Yang J. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice. FEBS J 2022; 289:4850-4868. [PMID: 35188712 DOI: 10.1111/febs.16409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
The environmental conditions in high-altitude areas can induce gastrointestinal disorders and changes in gut microbiota. The gut microbiota is closely related to a variety of gastrointestinal diseases, although the underlying pathogenic mechanisms are not well-identified. The present study aimed to investigate the regulatory effect of high altitude on intestinal dysfunction via gut microbiota disturbance. Forty C57BL/6J mice were divided into four groups: one plain control group (CON) and three high-altitude exposure groups (HAE) (altitude: 4000 m a.s.l.; oxygen content: 12.7%; 1-, 2- and 4-week exposure). Another set of 40 mice was divided into two CON and two HAE subgroups. Antibiotic cocktails were administered to one CON and HAE groups and autoclaved water was administered to the second CON and HAE groups for 4 weeks, respectively. In the fecal microbiota transplantation experiment, there were four transplantation groups, which received, respectively: phosphate-buffered saline for 2 weeks, feces from CON for 2 weeks, feces from HAE-4W for 2 weeks, and HAE-4W for 4 weeks. Hematoxylin and eosin staining, periodic acid-Schiff staining, a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and a quantitative reverse transcriptase-polymerase chain reaction were applied to detect changes in intestinal cellular structure, morphology, apoptosis and intestinal inflammatory response. Fecal microbiota was analyzed using 16S rDNA amplicon sequencing. A high-altitude environment changed the ecological balance of gut microbiota in mice and caused damage to the intestinal structure and mucosal barrier. Interestingly, similar damage, which was inhibited by antibiotic cocktails at high altitude, was observed in mice transplanted with fecal microbiota from HAE. A high-altitude environment contributes to dyshomeostasis of gut microbiota, thereby impairing the intestinal mucosal barrier, eventually inducing and exacerbating intestinal damage.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiyang Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guixiang Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Champigneulle B, Hancco I, Hamard E, Doutreleau S, Furian M, Brugniaux JV, Bailly S, Vergès S. Excessive erythrocytosis and chronic mountain sickness in the highest city in the world: a longitudinal study. Chest 2021; 161:1338-1342. [PMID: 34896092 DOI: 10.1016/j.chest.2021.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Benoit Champigneulle
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France.
| | - Ivan Hancco
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Etienne Hamard
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Michael Furian
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Julien V Brugniaux
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Vergès
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
30
|
iTRAQ-based quantitative proteomic analysis of the improved effects of total flavones of Dracocephalum Moldavica L. in chronic mountain sickness. Sci Rep 2021; 11:17526. [PMID: 34471201 PMCID: PMC8410788 DOI: 10.1038/s41598-021-97091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
To use isobaric tags for relative and absolute quantification (iTRAQ) technology to study the pathogenesis of chronic mountain sickness (CMS), identify biomarkers for CMS, and investigate the effect of total flavones of Dracocephalum moldavica L. (TFDM) on a rat model of CMS. We simulated high altitude hypobaric hypoxia conditions and generated a rat model of CMS. Following the administration of TFDM, we measured the pulmonary artery pressure and serum levels of hemoglobin (Hb), the hematocrit (Hct), and observed the structure of the pulmonary artery in experimental rats. Furthermore, we applied iTRAQ-labeled quantitative proteomics technology to identify differentially expressed proteins (DEPs) in the serum, performed bioinformatics analysis, and verified the DEPs by immunohistochemistry. Analysis showed that the pulmonary artery pressure, serum levels of Hb, and the Hct, were significantly increased in a rat model of CMS (P < 0.05). Pathological analysis of lung tissue and pulmonary artery tissue showed that the alveolar compartment had obvious hyperplasia and the pulmonary artery degree of muscularization was enhanced. Both pulmonary artery pressure and tissue morphology were improved following the administration of TFDM. We identified 532 DEPs by quantitative proteomics; gene ontology (GO)and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further revealed that metabolic pathways associated with coagulation and complement play crucial roles in the occurrence of CMS. Immunohistochemistry verified that several DEPs (α-1-acid glycoprotein, collagen, fibulin, haptoglobin, PLTP, and TAGLN2) are important biological markers for CMS. Our analyses demonstrated that TFDM can improve CMS and exert action by influencing the metabolic pathways associated with coagulation and complement. This process relieves pulmonary artery pressure and improves lung function. We also identified that α-1-acid glycoprotein, collagen, fibulin, haptoglobin, PLTP, and TAGLN2 may represent potential biomarkers for CMS.
Collapse
|
31
|
Basak N, Norboo T, Mustak MS, Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J Blood Med 2021; 12:287-298. [PMID: 34040473 PMCID: PMC8139737 DOI: 10.2147/jbm.s294564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction High altitude hypoxia is believed to be experienced at elevations of more than 2500 meters above sea level. Several studies have shed light on the biochemical aspects of high altitude acclimatization, where participants were sojourners to the high altitude from low altitude areas. However, information regarding the difference between the high altitude adapted Tibetans living at high altitude and their counterparts who reside at low altitude are lacking. To understand this, we have measured various hematological parameters in the Tibetan populations, who are residing in both high and low altitudes in India. Methods A total of 168 individuals (79 from high altitude (≥4500 meters) and 89 from low altitude (~850 meters) were recruited for this study. Hematological parameters such as red blood cells (RBC) count, hematocrit (HCT), hemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were measured from the individuals from high and low altitudes. Serum erythropoietin (EPO) was measured by ELISA. Statistical analyses were performed to compare data from both of the altitudes. Gender-wise comparison of data was reported. Correlation analysis was performed within relevant parameters. Results Highly significant differences (p <0.0001) between high and low altitude Tibetans were detected in RBC count, HCT, Hb, MCHC in both males and females and in MCV in females. In the case of MCHC, however, age and BMI were potential confounders. Nominally significant differences (p <0.05) were detected in MCV and MCH within males. No significant difference in serum EPO level was found between altitude groups, in any gender. No significant correlation was found between serum EPO with Hb as well as serum EPO with HCT. Discussion Our study explores significantly lower RBC count, HCT, Hb, MCH, MCHC and higher MCV in long-term Tibetan residents living at low altitude compared to their high altitude counterparts, which is likely due to the outcome of hematological adaptation to a relatively hyperoxic environment in low altitude areas.
Collapse
Affiliation(s)
- Nipa Basak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
32
|
Hemostasis in highlanders with excessive erythrocytosis at 5100 m: Preliminary data from the highest city of the world. Respir Physiol Neurobiol 2020; 282:103535. [PMID: 32871284 DOI: 10.1016/j.resp.2020.103535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022]
Abstract
Little is known about hemostasis modifications induced by chronic hypoxic exposure in high-altitude residents, especially in those who develop excessive erythrocytosis (EE, i.e. hemoglobin concentration ≥ 21 g·dL-1 in male and ≥ 19 g·dL-1 in female). The aim of this preliminary study was to assess coagulation alterations in highlanders with or without EE using simple hemostatic tests such as bleeding (BT) and clotting (CT) times. Eighty-one male (43 ± 7 years), permanent residents from La Rinconada (Peru), the highest city in the world (5,100-5,300 m), were evaluated. Thirty-six subjects (44 %) presented with EE. EE subjects compared to non-EE subjects had lower BT (3.6 ± 1.2 vs. 7.0 ± 1.9 min, p < 0.001) and CT (11.7 ± 1.7 vs. 15.1 ± 2.3 min, p < 0.001). These results support the notion that highlanders with EE are in a state of hypercoagulability and call for further hemostasis investigations in this population using more detailed hemostatic methods.
Collapse
|