1
|
Langenhorst J, Benkert A, Peterss S, Feuerecker M, Scheiermann T, Scheiermann P, Witte M, Benkert A, Bayer A, Prueckner S, Pichlmaier M, Schniepp R. Agreement of in-ear temperature to core body temperature measures during invasive whole-body cooling for hypothermic circulatory arrest in aortic arch surgery. Sci Rep 2024; 14:27607. [PMID: 39528634 PMCID: PMC11554646 DOI: 10.1038/s41598-024-77237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Targeted temperature management (TTM) with therapeutic hypothermia (TH) during aortic arch surgery requires valid estimations of core body temperature. The ear canal and epitympanic region might be an easy-to-assess, noninvasive site for the read-out of supra-aortic, cerebral temperature. This observational cohort study comparatively investigated in-ear temperature and different core body temperature (cBT) measurements during TTM/TH for moderate hypothermic circulatory arrest (mHCA) in aortic arch surgery. In total 24 patients (mean age of 56.8 ± 17.5 years; six females) were measured using infrared-thermography of the epitympanic region (BTtym), thermistor-based measurements at the esophagus (BTeso; gold standard), at the ear canal (BTear), at the nasopharynx (BTnas), in the bladder (BTves), and in the rectum (BTrec). The data analysis comprised absolute agreement (AA), bias, intraclass correlation coefficient (ICC), and limit of agreement (LoA). The results revealed high AAs of BTtym, BTear, BTnas in reference to BTeso (biases 0.3-0.6 °C), with also excellent ICCs > 0.9. BTves and BTrec showed lower AAs, higher biases of + 2.5 °C to 3.1 °C with moderate ICCs during mHCA. In the phases of rapid temperature changes, the biases and LoAs were higher throughout all BT measurements. Herein, BTtym performed best of all measurement sites. The study informs about the BT dynamics at different body sites during the mHCA procedure. It supports the approach of using minimally invasive in-ear techniques to estimate core body temperature in an intrahospital TTM/TH setting of mHCA.
Collapse
Affiliation(s)
- Jonas Langenhorst
- Institut für Notfallmedizin und Medizinmanagement, (INM), LMU Klinikum, LMU München, Germany
- Department of Neurology, LMU Klinikum, LMU München, Germany
| | - Aaron Benkert
- Institut für Notfallmedizin und Medizinmanagement, (INM), LMU Klinikum, LMU München, Germany
- Department of Neurology, LMU Klinikum, LMU München, Germany
| | - Sven Peterss
- Department for Cardiac Surgery, LMU University Hospital, LMU Klinikum, LMU München, Germany
| | | | | | | | - Matthias Witte
- Department of Anesthesiology, LMU Klinikum, LMU München, Germany
| | - Aaron Benkert
- Department of Neurology, LMU Klinikum, LMU München, Germany
| | - Andreas Bayer
- Institut für Notfallmedizin und Medizinmanagement, (INM), LMU Klinikum, LMU München, Germany
| | - Stephan Prueckner
- Institut für Notfallmedizin und Medizinmanagement, (INM), LMU Klinikum, LMU München, Germany
| | - Maximilian Pichlmaier
- Department for Cardiac Surgery, LMU University Hospital, LMU Klinikum, LMU München, Germany
| | - Roman Schniepp
- Institut für Notfallmedizin und Medizinmanagement, (INM), LMU Klinikum, LMU München, Germany.
- Department of Neurology, LMU Klinikum, LMU München, Germany.
| |
Collapse
|
2
|
Masè M, Micarelli A, Roveri G, Falla M, Dal Cappello T, van Veelen MJ, Thomaser E, Brugger H, Strapazzon G. Vital parameter monitoring in harsh environment by the MedSENS in-ear multisensor device. Sci Rep 2024; 14:19117. [PMID: 39155284 PMCID: PMC11330965 DOI: 10.1038/s41598-024-68936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Accurate assessment of vital parameters is essential for diagnosis and triage of critically ill patients, but not always feasible in out-of-hospital settings due to the lack of suitable devices. We performed an extensive validation of a novel prototype in-ear device, which was proposed for the non-invasive, combined measurement of core body temperature (Tc), oxygen saturation (SpO2), and heart rate (HR) in harsh environments. A pilot study with randomized controlled design was conducted in the terraXcube environmental chamber. Participants were subsequently exposed to three 15 min test sessions at the controlled ambient temperatures of 20 °C, 5 °C, and - 10 °C, in randomized order. Vital parameters measured by the prototype were compared with Tc measurements from commercial esophageal (reference) and tympanic (comparator) probes and SpO2 and HR measurements from a finger pulse-oximeter (reference). Performance was assessed in terms of bias and Lin's correlation coefficient (CCC) with respect to the reference measurements and analyzed with linear mixed models. Twenty-three participants (12 men, mean (SD) age, 35 (9) years) completed the experimental protocol. The mean Tc bias of the prototype ranged between - 0.39 and - 0.80 °C at ambient temperatures of 20 °C and 5 °C, and it reached - 1.38 °C only after 15 min of exposure to - 10 °C. CCC values ranged between 0.07 and 0.25. SpO2 and HR monitoring was feasible, although malfunctioning was observed in one third of the tests. SpO2 and HR bias did not show any significant dependence on environmental conditions, with values ranging from - 1.71 to - 0.52% for SpO2 and 1.12 bpm to 5.30 bpm for HR. High CCC values between 0.81 and 0.97 were observed for HR in all environmental conditions. This novel prototype device for measuring vital parameters in cold environments demonstrated reliability of Tc measurements and feasibility of SpO2 and HR monitoring. Through non-invasive and accurate monitoring of vital parameters from the ear canal our prototype may offer support in triage and treatment of critically ill patients in harsh out-of-hospital conditions.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Giulia Roveri
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
| | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
- Department of Neurology/Stroke Unit, Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
- Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Salzburg, Austria
- Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
| | - Michiel Jan van Veelen
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
| | - Eliane Thomaser
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100, Bolzano, Italy.
| |
Collapse
|
3
|
Hong J, Seong D, Kang D, Kim H, Jang JH, Jeon M, Kim J. Imaging of the vascular distribution of the outer ear using optical coherence tomography angiography for highly accurate positioning of a hearable sensor. APL Bioeng 2024; 8:026113. [PMID: 38799376 PMCID: PMC11126325 DOI: 10.1063/5.0203582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Novel hearable technology is securely and comfortably positioned within the ear canal minimizing inaccuracies caused by accessory movements during activities. Despite extensive research on hearable technologies within the outer ear, there is a lack of research in the field of vascular imaging and quantitative analysis in the outer ear in vivo, which is one of the crucial factors to select the appropriate sensor position. Therefore, in this paper, we introduced optical coherence tomography angiography (OCTA)-based qualitative and quantitative analyses to visualize the inner vasculature of the outer ear to acquire vascular maps for microvascular assessments in vivo. By generating maximum amplitude projection images from three-dimensional blood vascular volume, we identified variations of blood vessel signal caused by the different biological characteristics and curvature of the ear among individuals. The performance of micro-vascular mapping using the proposed method was validated through the comparison and analysis of individual vascular parameters using extracted 20 vascular-related variables. In addition, we extracted pulsatile blood flow signals, demonstrating its potential to provide photoplethysmographic signals and ear blood maps simultaneously. Therefore, our proposed OCTA-based method for ear vascular mapping successfully provides quantitative information about ear vasculature, which is potentially used for determining the position of system-on-chip sensors for health monitoring in hearable devices.
Collapse
Affiliation(s)
- Juyeon Hong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Dongwan Kang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Hyunmo Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, South Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| |
Collapse
|
4
|
Ciotola F, Pyxaras S, Rittger H, Buia V. MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. SENSORS (BASEL, SWITZERLAND) 2024; 24:2922. [PMID: 38733027 PMCID: PMC11086351 DOI: 10.3390/s24092922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with significant morbidity, mortality, and healthcare costs. It is characterized by various structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressure and/or inadequate cardiac output at rest and/or during exercise. These dysfunctions can originate from a variety of conditions, including coronary artery disease, hypertension, cardiomyopathies, heart valve disorders, arrhythmias, and other lifestyle or systemic factors. Identifying the underlying cause is crucial for detecting reversible or treatable forms of HF. Recent epidemiological studies indicate that there has not been an increase in the incidence of the disease. Instead, patients seem to experience a chronic trajectory marked by frequent hospitalizations and stagnant mortality rates. Managing these patients requires a multidisciplinary approach that focuses on preventing disease progression, controlling symptoms, and preventing acute decompensations. In the outpatient setting, patient self-care plays a vital role in achieving these goals. This involves implementing necessary lifestyle changes and promptly recognizing symptoms/signs such as dyspnea, lower limb edema, or unexpected weight gain over a few days, to alert the healthcare team for evaluation of medication adjustments. Traditional methods of HF monitoring, such as symptom assessment and periodic clinic visits, may not capture subtle changes in hemodynamics. Sensor-based technologies offer a promising solution for remote monitoring of HF patients, enabling early detection of fluid overload and optimization of medical therapy. In this review, we provide an overview of the CardioMEMS device, a novel sensor-based system for pulmonary artery pressure monitoring in HF patients. We discuss the technical aspects, clinical evidence, and future directions of CardioMEMS in HF management.
Collapse
Affiliation(s)
| | | | | | - Veronica Buia
- Medizinische Klinik I, Klinikum Fürth, Academic Teaching Hospital of the Friedrich-Alexander-University Erlangen-Nürnberg, Jakob-Henle Str. 1, 90766 Fürth, Germany; (F.C.); (S.P.); (H.R.)
| |
Collapse
|
5
|
Kashima Y, Onimaru M, Isogai R, Kawai N, Yoshida Y, Maki K. The Development of a Measuring System for Intraoral SpO 2. SENSORS (BASEL, SWITZERLAND) 2024; 24:435. [PMID: 38257528 PMCID: PMC10820867 DOI: 10.3390/s24020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Blood oxygen saturation (SpO2) is an essential indicator of a patient's general condition. However, conventional measurement methods have some issues such as time delay and interference by ambient light. Improved measurement methods must be developed, and there are no reports on intraoral measurements of SpO2 using wearable devices. Therefore, we aimed to establish an intraoral SpO2 measurement method for the first time. Twelve healthy adults participated in this study. The following steps were taken: (1) to identify the optimal measurement location, mid-perfusion index (PI) values were measured at six places on the mucosa of the maxilla, (2) to validate the optimal measurement pressure, PI values were obtained at different pressures, and (3) using the proposed mouthpiece device, SpO2 values in the oral cavity and on the finger were analyzed during breath-holding. The highest PI values were observed in the palatal gingiva of the maxillary canine teeth, with high PI values at pressures ranging from 0.3 to 0.8 N. In addition, changes in SpO2 were detected approximately 7 s faster in the oral cavity than those on the finger, which is attributed to their proximity to the heart. This study demonstrates the advantage of the oral cavity for acquiring biological information using a novel device.
Collapse
Affiliation(s)
- Yuki Kashima
- Department of Orthodontics, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; (M.O.); (K.M.)
| | - Minako Onimaru
- Department of Orthodontics, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; (M.O.); (K.M.)
| | - Ryosuke Isogai
- Research and Development Department, Seiko Future Creation Inc., 563, Takatsuka Shinden, Chiba 270-2222, Japan (Y.Y.)
| | - Noboru Kawai
- Research and Development Department, Seiko Future Creation Inc., 563, Takatsuka Shinden, Chiba 270-2222, Japan (Y.Y.)
| | - Yoshifumi Yoshida
- Research and Development Department, Seiko Future Creation Inc., 563, Takatsuka Shinden, Chiba 270-2222, Japan (Y.Y.)
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; (M.O.); (K.M.)
| |
Collapse
|
6
|
Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, Clifford GD, Clifton DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, Kyriacou PA, Laguna P, Lázaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol Meas 2023; 44:111001. [PMID: 37494945 PMCID: PMC10686289 DOI: 10.1088/1361-6579/acead2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Stephanie Baker
- College of Science and Engineering, James Cook University, Cairns, 4878 Queensland, Australia
| | - Joachim A Behar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guandong, People’s Republic of China
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harry J Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Cheng Ding
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27708-0187, United States of America
- Duke Clinical Research Institute, Durham, NC 27705-3976, United States of America
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8008, Switzerland
| | - Munia Ferdoushi
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Daniel Franklin
- Institute of Biomedical Engineering, Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, M5G 1M1, Canada
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Md Farhad Hassan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Jussi Hernesniemi
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Computer Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Nan Ji
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
| | - Yasser Khan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Spyridon Kontaxis
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Ilkka Korhonen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Chungkeun Lee
- Digital Health Devices Division, Medical Device Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Jeremy Levy
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Faculty of Electrical and Computer Engineering, Technion Institute of Technology, Haifa, 3200003, Israel
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Chengyu Liu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Jing Liu
- Analog Devices Inc, San Jose, CA 95124, United States of America
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Danilo P Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vaidotas Marozas
- Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Biomedical Engineering Institute, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meir Nitzan
- Department of Physics/Electro-Optic Engineering, Lev Academic Center, 91160 Jerusalem, Israel
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, 4200-465, Portugal
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | | | - Jessica C Ramella-Roman
- Department of Biomedical Engineering and Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33174, United States of America
| | - Harri Saarinen
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Md Mobashir Hasan Shandhi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Hangsik Shin
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Toshiyo Tamura
- Future Robotics Organization, Waseda University, Tokyo, 1698050, Japan
| | - Antti Vehkaoja
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- PulseOn Ltd, Espoo, 02150, Finland
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Yuan-Ting Zhang
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People’s Republic of China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
| | - Tingting Zhu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
7
|
Kim YH, Park HJ, Yoo JH. Effect of eardrum perforation and chronic otitis media on the results of infrared tympanic thermometer in adults: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35932. [PMID: 37960811 PMCID: PMC10637521 DOI: 10.1097/md.0000000000035932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND This study was conducted to determine whether tympanic membrane perforation or chronic otitis media affects the results of an infrared tympanic membrane thermometer in adults. METHODS A literature search was performed using PubMed, Embase, Cochrane Library, Web of Science, and Google Scholar. RESULTS Four nonrandomized studies were included in the analysis. The temperatures of the bilateral eardrums (one eardrum with normal condition [control group] and the other eardrum with perforation or chronic otitis media [experimental group]) were measured for the same subject in the studies. The mean and standard deviation of the bilateral tympanic membrane temperatures were used to calculate the mean difference (MD) with a corresponding 95% confidence interval (CI). The fixed-effect model was utilized based on the results of the heterogeneity measurement using the Chi2 test and I2 statistic. The results of a meta-analysis in the normal eardrum (control group) and perforated eardrum, chronic suppurative otitis media with tympanic membrane perforation, or chronic otitis media with cholesteatoma (experimental group) were 343 subjects (MD = 0.05; 95% CI = -0.00 to 0.11; P = .06). A meta-analysis of the normal eardrum (control group) and perforated eardrum or chronic suppurative otitis media with tympanic membrane perforation except for cholesteatoma (experimental group) found 296 subjects (MD = 0.05; 95% CI = -0.01 to 0.11; P = .10). CONCLUSION When the temperatures of the bilateral eardrums were measured using an infrared tympanic membrane thermometer, no difference was observed between the eardrum with perforation or chronic otitis media and the normal eardrum.
Collapse
Affiliation(s)
- Yee-Hyuk Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Daegu Catholic University School of Medicine, Daegu, Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Daegu Catholic University Medical Center, Daegu, Korea
| | - Hee-Jun Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Daegu Catholic University Medical Center, Daegu, Korea
| | - Jae-Ho Yoo
- Department of Otorhinolaryngology-Head & Neck Surgery, Daegu Catholic University Medical Center, Daegu, Korea
| |
Collapse
|
8
|
Xu Y, De la Paz E, Paul A, Mahato K, Sempionatto JR, Tostado N, Lee M, Hota G, Lin M, Uppal A, Chen W, Dua S, Yin L, Wuerstle BL, Deiss S, Mercier P, Xu S, Wang J, Cauwenberghs G. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng 2023; 7:1307-1320. [PMID: 37770754 PMCID: PMC10589098 DOI: 10.1038/s41551-023-01095-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/14/2023] [Indexed: 09/30/2023]
Abstract
Owing to the proximity of the ear canal to the central nervous system, in-ear electrophysiological systems can be used to unobtrusively monitor brain states. Here, by taking advantage of the ear's exocrine sweat glands, we describe an in-ear integrated array of electrochemical and electrophysiological sensors placed on a flexible substrate surrounding a user-generic earphone for the simultaneous monitoring of lactate concentration and brain states via electroencephalography, electrooculography and electrodermal activity. In volunteers performing an acute bout of exercise, the device detected elevated lactate levels in sweat concurrently with the modulation of brain activity across all electroencephalography frequency bands. Simultaneous and continuous unobtrusive in-ear monitoring of metabolic biomarkers and brain electrophysiology may allow for the discovery of dynamic and synergetic interactions between brain and body biomarkers in real-world settings for long-term health monitoring or for the detection or monitoring of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuchen Xu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Akshay Paul
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Tostado
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Min Lee
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Gopabandhu Hota
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Abhinav Uppal
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - William Chen
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Srishty Dua
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Brian L Wuerstle
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Stephen Deiss
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Patrick Mercier
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Sheng Xu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| | - Gert Cauwenberghs
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Vinetti G, Micarelli A, Falla M, Randi A, Dal Cappello T, Gatterer H, Brugger H, Strapazzon G, Rauch S. Surgical masks and filtering facepiece class 2 respirators (FFP2) have no major physiological effects at rest and during moderate exercise at 3000-m altitude: a randomised controlled trial. J Travel Med 2023; 30:taad031. [PMID: 36881665 PMCID: PMC10481409 DOI: 10.1093/jtm/taad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND During the COVID-19 pandemic, the use of face masks has been recommended or enforced in several situations; however, their effects on physiological parameters and cognitive performance at high altitude are unknown. METHODS Eight healthy participants (four females) rested and exercised (cycling, 1 W/kg) while wearing no mask, a surgical mask or a filtering facepiece class 2 respirator (FFP2), both in normoxia and hypobaric hypoxia corresponding to an altitude of 3000 m. Arterialised oxygen saturation (SaO2), partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2), heart and respiratory rate, pulse oximetry (SpO2), cerebral oxygenation, visual analogue scales for dyspnoea and mask's discomfort were systematically investigated. Resting cognitive performance and exercising tympanic temperature were also assessed. RESULTS Mask use had a significant effect on PaCO2 (overall +1.2 ± 1.7 mmHg). There was no effect of mask use on all other investigated parameters except for dyspnoea and discomfort, which were highest with FFP2. Both masks were associated with a similar non-significant decrease in SaO2 during exercise in normoxia (-0.5 ± 0.4%) and, especially, in hypobaric hypoxia (-1.8 ± 1.5%), with similar trends for PaO2 and SpO2. CONCLUSIONS Although mask use was associated with higher rates of dyspnoea, it had no clinically relevant impact on gas exchange at 3000 m at rest and during moderate exercise, and no detectable effect on resting cognitive performance. Wearing a surgical mask or an FFP2 can be considered safe for healthy people living, working or spending their leisure time in mountains, high-altitude cities or other hypobaric environments (e.g. aircrafts) up to an altitude of 3000 m.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN), Italy
- Department of Neurology, General Hospital of Bolzano, Bolzano, Italy
| | - Anna Randi
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN), Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Anaesthesiology and Intensive Care Medicine, Hospital of Merano (SABES-ASDAA), Merano (BZ), Italy; Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität
| |
Collapse
|
10
|
Romagnoli S, Ripanti F, Morettini M, Burattini L, Sbrollini A. Wearable and Portable Devices for Acquisition of Cardiac Signals while Practicing Sport: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063350. [PMID: 36992060 PMCID: PMC10055735 DOI: 10.3390/s23063350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Wearable and portable devices capable of acquiring cardiac signals are at the frontier of the sport industry. They are becoming increasingly popular for monitoring physiological parameters while practicing sport, given the advances in miniaturized technologies, powerful data, and signal processing applications. Data and signals acquired by these devices are increasingly used to monitor athletes' performances and thus to define risk indices for sport-related cardiac diseases, such as sudden cardiac death. This scoping review investigated commercial wearable and portable devices employed for cardiac signal monitoring during sport activity. A systematic search of the literature was conducted on PubMed, Scopus, and Web of Science. After study selection, a total of 35 studies were included in the review. The studies were categorized based on the application of wearable or portable devices in (1) validation studies, (2) clinical studies, and (3) development studies. The analysis revealed that standardized protocols for validating these technologies are necessary. Indeed, results obtained from the validation studies turned out to be heterogeneous and scarcely comparable, since the metrological characteristics reported were different. Moreover, the validation of several devices was carried out during different sport activities. Finally, results from clinical studies highlighted that wearable devices are crucial to improve athletes' performance and to prevent adverse cardiovascular events.
Collapse
|
11
|
Choi JY, Jeon S, Kim H, Ha J, Jeon GS, Lee J, Cho SI. Health-Related Indicators Measured Using Earable Devices: Systematic Review. JMIR Mhealth Uhealth 2022; 10:e36696. [PMID: 36239201 PMCID: PMC9709679 DOI: 10.2196/36696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Earable devices are novel, wearable Internet of Things devices that are user-friendly and have potential applications in mobile health care. The position of the ear is advantageous for assessing vital status and detecting diseases through reliable and comfortable sensing devices. OBJECTIVE Our study aimed to review the utility of health-related indicators derived from earable devices and propose an improved definition of disease prevention. We also proposed future directions for research on the health care applications of earable devices. METHODS A systematic review was conducted of the PubMed, Embase, and Web of Science databases. Keywords were used to identify studies on earable devices published between 2015 and 2020. The earable devices were described in terms of target health outcomes, biomarkers, sensor types and positions, and their utility for disease prevention. RESULTS A total of 51 articles met the inclusion criteria and were reviewed, and the frequency of 5 health-related characteristics of earable devices was described. The most frequent target health outcomes were diet-related outcomes (9/51, 18%), brain status (7/51, 14%), and cardiovascular disease (CVD) and central nervous system disease (5/51, 10% each). The most frequent biomarkers were electroencephalography (11/51, 22%), body movements (6/51, 12%), and body temperature (5/51, 10%). As for sensor types and sensor positions, electrical sensors (19/51, 37%) and the ear canal (26/51, 51%) were the most common, respectively. Moreover, the most frequent prevention stages were secondary prevention (35/51, 69%), primary prevention (12/51, 24%), and tertiary prevention (4/51, 8%). Combinations of ≥2 target health outcomes were the most frequent in secondary prevention (8/35, 23%) followed by brain status and CVD (5/35, 14% each) and by central nervous system disease and head injury (4/35, 11% each). CONCLUSIONS Earable devices can provide biomarkers for various health outcomes. Brain status, healthy diet status, and CVDs were the most frequently targeted outcomes among the studies. Earable devices were mostly used for secondary prevention via monitoring of health or disease status. The potential utility of earable devices for primary and tertiary prevention needs to be investigated further. Earable devices connected to smartphones or tablets through cloud servers will guarantee user access to personal health information and facilitate comfortable wearing.
Collapse
Affiliation(s)
- Jin-Young Choi
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seonghee Jeon
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hana Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jaeyoung Ha
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gyeong-Suk Jeon
- Department of Nursing, College of Natural Science, Mokpo National University, Mokpo, Republic of Korea
| | - Jeong Lee
- Department of Nursing, College of Health and Medical Science, Chodang University, Muan, Republic of Korea
| | - Sung-Il Cho
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Masè M, Werner A, Putzer G, Avancini G, Falla M, Brugger H, Micarelli A, Strapazzon G. Low Ambient Temperature Exposition Impairs the Accuracy of a Non-invasive Heat-Flux Thermometer. Front Physiol 2022; 13:830059. [PMID: 35309078 PMCID: PMC8931521 DOI: 10.3389/fphys.2022.830059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Indirect core body temperature (CBT) monitoring from skin sensors is gaining attention for in-field applications thanks to non-invasivity, portability, and easy probe positioning. Among skin sensors, heat-flux devices, such as the so-called Double Sensor (DS), have demonstrated reliability under various experimental and clinical conditions. Still, their accuracy at low ambient temperatures is unknown. In this randomized cross-over trial, we tested the effects of cold temperature exposition on DS performance in tracking CBT. Methods Twenty-one participants were exposed to a warm (23.2 ± 0.4°C) and cold (−18.7 ± 1.0°C) room condition for 10 min, following a randomized cross-over design. The accuracy of the DS to estimate CBT in both settings was assessed by quantitative comparison with esophageal (reference) and tympanic (comparator) thermometers, using Bland–Altman and correlation analyses (Pearson’s correlation coefficient, r, and Lin’s concordance correlation coefficient, CCC). Results In the warm room setting, the DS showed a moderate agreement with the esophageal sensor [bias = 0.09 (−1.51; 1.69) °C, r = 0.40 (p = 0.069), CCC = 0.22 (−0.006; 0.43)] and tympanic sensor [bias = 2.74 (1.13; 4.35) °C, r = 0.54 (p < 0.05), CCC = 0.09 (0.008; 0.16)]. DS accuracy significantly deteriorated in the cold room setting, where DS temperature overestimated esophageal temperature [bias = 2.16 (−0.89; 5.22) °C, r = 0.02 (0.94), CCC = 0.002 (−0.05; 0.06)]. Previous exposition to the cold influenced temperature values measured by the DS in the warm room setting, where significant differences (p < 0.00001) in DS temperature were observed between randomization groups. Conclusion DS accuracy is influenced by environmental conditions and previous exposure to cold settings. These results suggest the present inadequacy of the DS device for in-field applications in low-temperature environments and advocate further technological advancements and proper sensor insulation to improve performance in these conditions.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Andreas Werner
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Air Force – Centre of Aerospace Medicine, Aviation Physiology Training Centre, Aviation Physiology Diagnostic and Research, Königsbrück, Germany
| | - Gabriel Putzer
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giovanni Avancini
- Department of Anaesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Centre for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Giacomo Strapazzon,
| |
Collapse
|
13
|
Zhang Y, Liu G, Tang L. Research progress in core body temperature measurement during target temperature management. JOURNAL OF INTEGRATIVE NURSING 2022. [DOI: 10.4103/jin.jin_40_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Ne CKH, Muzaffar J, Amlani A, Bance M. Hearables, in-ear sensing devices for bio-signal acquisition: a narrative review. Expert Rev Med Devices 2021; 18:95-128. [PMID: 34904507 DOI: 10.1080/17434440.2021.2014321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Hearables are ear devices used for multiple purposes including ubiquitous/remote monitoring of vital signals. This can support early detection, prevention, and management of urgent/non-urgent healthcare needs. This review therefore seeks to analyse the challenges and capabilities of hearables used to monitor human physiological signals. AREAS COVERED Studies were identified via search (Medline, Embase, Web of Science, Cochrane Library, Scopus) and conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Bias assessment used the Mixed Methods Appraisal Tool 2018 and Quality Assessment of Diagnostic Accuracy Studies 2nd Edition. 92/631 studies met the inclusion criteria and were qualitatively analysed. The outcomes, applications, advantages and limitations were discussed according to the vital signal measured. The bias risk ranged from low to high, with most studies facing moderate to high risk in subject selection due to small sample sizes. EXPERT OPINION : Most studies reported good outcomes for ear signal acquisition compared to reference devices. To improve practicability and implementation, wireless connectivity, battery life, impact of motion/environmental artifacts and comfort need to be addressed going forward. Hearable technologies have also shown potential synergies with hearing aids. In future, multimodal ear-sensing devices opens the possibility of comprehensive health monitoring within daily life.
Collapse
Affiliation(s)
| | - Jameel Muzaffar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aakash Amlani
- Department of Ear, Nose and Throat Surgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Tavakoli Golpaygani A, Mehdizadeh AR. Future of Wearable Health Devices: Smartwatches VS Smart Headphones. J Biomed Phys Eng 2021; 11:561-562. [PMID: 34722400 PMCID: PMC8546159 DOI: 10.31661/jbpe.v0i0.2109-1396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Affiliation(s)
| | - Ali Reza Mehdizadeh
- MD, PhD, Editor-in-Chief of the Journal of Biomedical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Masè M, Micarelli A, Falla M, Regli IB, Strapazzon G. Insight into the use of tympanic temperature during target temperature management in emergency and critical care: a scoping review. J Intensive Care 2021; 9:43. [PMID: 34118993 PMCID: PMC8199814 DOI: 10.1186/s40560-021-00558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Target temperature management (TTM) is suggested to reduce brain damage in the presence of global or local ischemia. Prompt TTM application may help to improve outcomes, but it is often hindered by technical problems, mainly related to the portability of cooling devices and temperature monitoring systems. Tympanic temperature (TTy) measurement may represent a practical, non-invasive approach for core temperature monitoring in emergency settings, but its accuracy under different TTM protocols is poorly characterized. The present scoping review aimed to collect the available evidence about TTy monitoring in TTM to describe the technique diffusion in various TTM contexts and its accuracy in comparison with other body sites under different cooling protocols and clinical conditions. METHODS The scoping review was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis extension for scoping reviews (PRISMA-ScR). PubMed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 20 years, where TTy was measured in TTM context with specific focus on pre-hospital or in-hospital emergency settings. RESULTS The systematic search identified 35 studies, 12 performing TTy measurements during TTM in healthy subjects, 17 in patients with acute cardiovascular events, and 6 in patients with acute neurological diseases. The studies showed that TTy was able to track temperature changes induced by either local or whole-body cooling approaches in both pre-hospital and in-hospital settings. Direct comparisons to other core temperature measurements from other body sites were available in 22 studies, which showed a faster and larger change of TTy upon TTM compared to other core temperature measurements. Direct brain temperature measurements were available only in 3 studies and showed a good correlation between TTy and brain temperature, although TTy displayed a tendency to overestimate cooling effects compared to brain temperature. CONCLUSIONS TTy was capable to track temperature changes under a variety of TTM protocols and clinical conditions in both pre-hospital and in-hospital settings. Due to the heterogeneity and paucity of comparative temperature data, future studies are needed to fully elucidate the advantages of TTy in emergency settings and its capability to track brain temperature.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.,IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.,ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.,Centre for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.,Department of Anesthesia and Intensive Care, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Drususallee/Viale Druso 1, I-39100, Bolzano, Italy.
| |
Collapse
|
17
|
Brouwer AM. Challenges and Opportunities in Consumer Neuroergonomics. FRONTIERS IN NEUROERGONOMICS 2021; 2:606646. [PMID: 38235238 PMCID: PMC10790888 DOI: 10.3389/fnrgo.2021.606646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/08/2021] [Indexed: 01/19/2024]
Affiliation(s)
- Anne-Marie Brouwer
- TNO The Netherlands Organisation for Applied Scientific Research, Soesterberg, Netherlands
| |
Collapse
|