1
|
Wen Y, Li Y, Liu T, Huang L, Yao L, Deng D, Luo W, Cai W, Zhong S, Jin T, Yang X, Wang Q, Wang W, Xue J, Mukherjee R, Hong J, Phillips AR, Windsor JA, Sutton R, Li F, Sun X, Huang W, Xia Q. Chaiqin chengqi decoction treatment mitigates hypertriglyceridemia-associated acute pancreatitis by modulating liver-mediated glycerophospholipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155968. [PMID: 39217651 DOI: 10.1016/j.phymed.2024.155968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The incidence of hypertriglyceridemia-associated acute pancreatitis (HTG-AP) is increasing globally and more so in China. The characteristics of liver-mediated metabolites and related key enzymes are rarely reported in HTG-AP. Chaiqin chengqi decoction (CQCQD) has been shown to protect against AP including HTG-AP in both patients and rodent models, but the underlying mechanisms in HTG-AP remain unexplored. PURPOSE To assess the characteristics of liver-mediated metabolism and the therapeutic mechanisms of CQCQD in HTG-AP. METHODS Male human apolipoprotein C3 transgenic (hApoC3-Tg; leading to HTG) mice or wild-type littermates received 7 intraperitoneal injections of cerulein (100 μg/kg) to establish HTG-AP and CER-AP, respectively. In HTG-AP, some mice received CQCQD (5.5 g/kg) gavage at 1, 5 or 9 h after disease induction. AP severity and related liver injury were determined by serological and histological parameters; and underlying mechanisms were identified by lipidomics and molecular biology. Molecular docking was used to identify key interactions between CQCQD compounds and metabolic enzymes, and subsequently validated in vitro in hepatocytes. RESULTS HTG-AP was associated with increased disease severity indices including augmented liver injury compared to CER-AP. CQCQD treatment reduced severity and liver injury of HTG-AP. Glycerophospholipid (GPL) metabolism was the most disturbed pathway in HTG-AP in comparison to HTG alone. In HTG-AP, the mRNA level of GPL enzymes involved in phosphocholine (PC) and phosphatidylethanolamine (PE) synthesis (Pcyt1a, Pcyt2, Pemt, and Lpcat) were markedly upregulated in the liver. Of the GPL metabolites, lysophosphatidylethanolamine LPE(16:0) in serum of HTG-AP was significantly elevated and positively correlated with the pancreas histopathology score (r = 0.65). In vitro, supernatant from Pcyt2-overexpressing hepatocytes co-incubated with LPE(16:0) or phospholipase A2 (a PC- and PE-hydrolyzing enzyme) alone induced pancreatic acinar cell death. CQCQD treatment downregulated PCYT1a and PCYT2 enzyme levels in the liver. Hesperidin and narirutin were identified top two CQCQD compounds with highest affinity docking to PCYT1a and PCYT2. Both hesperidin and narirutin reduced the level of some GPL metabolites in hepatocytes. CONCLUSION Liver-mediated GPL metabolism is excessively activated in HTG-AP with serum LPE(16:0) level correlating with disease severity. CQCQD reduces HTG-AP severity partially via modulating key enzymes in GPL metabolism pathway.
Collapse
Affiliation(s)
- Yongjian Wen
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijia Huang
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linbo Yao
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Deng
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shaoqi Zhong
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinmin Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine Centre, and National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Xue
- Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpoo,l L69 3GE, UK
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpoo,l L69 3GE, UK
| | - Fei Li
- Department of Pharmacy, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Sun
- Chinese Evidence-based Medicine Centre, and National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhao LJ, Chen P, Huang L, He WQ, Tang YR, Wang R, Luo ZL, Ren JD. Heparan sulfate acts as an activator of the NLRP3 inflammasome promoting inflammatory response in the development of acute pancreatitis. J Gastroenterol 2024; 59:869-879. [PMID: 38864913 DOI: 10.1007/s00535-024-02127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Accumulating evidence has shown that the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the inflammatory cascades involved in the development of acute pancreatitis (AP). However, the specific agonist responsible for activating the NLRP3 inflammasome in this process has not yet been identified. The purpose of this study is to clarify whether heparan sulfate (HS) works as an NLRP3 inflammasome activator to evoke inflammatory cascades in the progression of AP. METHODS Two experimental mouse models of AP were utilized to investigate the pro-inflammatory activity of HS in the development of AP by measuring the secretion of inflammatory cytokines and the neutrophil infiltration in pancreatic tissue. The ability of HS to activate the NLRP3 inflammasome was evaluated both in vitro and in vivo. The nuclear factor kappa B (NF-κB)-mediated expression of NLRP3 inflammasome components in response to HS treatment was determined to decipher the role of HS in transcriptional priming of NLRP3 inflammasome. Furthermore, HS-triggered deubiquitination of NLRP3 was analyzed to reveal the promoting effect of HS on the NLRP3 inflammasome priming via a non-transcriptional pathway. RESULTS High plasma level of HS was observed with a positive correlation to that of inflammatory cytokines in AP mice. Administration of HS to mice resulted in an exacerbated inflammatory profile, while reducing HS production by an inhibitor of heparanase significantly attenuated inflammatory response. Pharmacological inhibition or genetic deletion of NLRP3 substantially suppressed the HS-stimulated elevation of IL-1β levels in AP mice. The in vitro data demonstrated that HS primarily serves as a priming signal for the activation of the NLRP3 inflammasome. HS possesses the ability to increase the transcriptional activity of NF-κB and TLR4/NF-κB-driven transcriptional pathway is employed for NLRP3 inflammasome priming. Moreover, HS-induced deubiquitination of NLRP3 is another pathway responsible for non-transcriptional priming of NLRP3 inflammasome. CONCLUSIONS Our current work has unveiled HS as a new activator of the NLRP3 inflammasome responsible for the secondary inflammatory cascades during the development of AP, highlighting the HS-NLRP3 pathway as a potential target for future preventive and therapeutic approaches of AP.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Chen
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, 610097, China
| | - Ling Huang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wen-Qi He
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ying-Rui Tang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Wang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhu-Lin Luo
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Jian-Dong Ren
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
3
|
Hou X, Yu M, Xu Y, Wang L, Chen Y, Tao R, Zhang Q, Zhu Y. Antioxidative effect of astragalosides on acute pancreatitis in mice. Front Vet Sci 2024; 11:1418899. [PMID: 39086768 PMCID: PMC11288803 DOI: 10.3389/fvets.2024.1418899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The research examined the antioxidative impact of astragalosides (AST) on experimental acute pancreatitis (AP) in mice. This study aims to assess the correlation between varying doses of astragalosides and superoxide dismutase (SOD) activity in an acute pancreatitis mouse model. By examining the interplay between astragaloside's protective effects and its antioxidant properties, we aim to deepen our understanding of its therapeutic potential in acute pancreatitis. Methods The AP model in mice was induced by retrograde injection of sodium deoxycholate into the biliary and pancreatic ducts. Serum amylase activity was monitored at various time points following induction. Furthermore, 24 hours post-induction, levels of serum nitric oxide (NO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in pancreatic tissue were assessed. Results The findings of this study illustrated that AST, while exhibiting a protective effect in experimental AP, could effectively lower the elevated serum NO levels, reduce MDA production, and enhance SOD activity in model mice. AST notably reduced MDA levels in the pancreatic tissue of AP mice, underscoring its ability to inhibit membrane peroxidation induced by oxygen free radicals. Furthermore, AST was observed to elevate SOD activity in scavenging oxygen free radicals in pancreatic tissue. Conclusion These findings suggest that AST enhances recovery in an experimental acute pancreatitis mouse model by exerting antioxidative effects.
Collapse
Affiliation(s)
- Xueting Hou
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Miao Yu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Yang Xu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Liuwei Wang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Yishan Chen
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Ruisong Tao
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Qixin Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yong Zhu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
4
|
Topsakal S, Ozmen O, Karakuyu NF, Bedir M, Sancer O. Cannabidiol Mitigates Lipopolysaccharide-Induced Pancreatic Pathology: A Promising Therapeutic Strategy. Cannabis Cannabinoid Res 2024; 9:809-818. [PMID: 37903028 DOI: 10.1089/can.2023.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Background: Lipopolysaccharides (LPSs) are a component of certain types of bacteria and can induce an inflammatory response in the body, including in the pancreas. Cannabidiol (CBD), a nonpsychoactive compound found in cannabis, has been shown to have anti-inflammatory effects and may offer potential therapeutic benefits for conditions involving inflammation and damage. The aim of this study was to investigate any potential preventative effects of CBD on experimental LPS-induced pancreatic pathology in rats. Materials and Methods: Thirty-two rats were randomly divided into four groups as control, LPS (5 mg/kg, intraperitoneally [i.p.]), LPS+CBD, and CBD (5 mg/kg, i.p.) groups. Six hours after administering LPS, the rats were euthanized, and blood and pancreatic tissue samples were taken for biochemical, polymerase chain reaction (PCR), histopathological, and immunohistochemical examinations. Results: The results indicated that LPS decreased serum glucose levels and increased lipase levels. It also caused severe hyperemia, increased vacuolization in endocrine cells, edema, and slight inflammatory cell infiltrations at the histopathological examination. Insulin and amylin expressions decreased during immunohistochemical analyses. At the PCR analysis, Silent Information Regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha expressions decreased and tumor protein p53 expressions increased in the LPS group. CBD improved the biochemical, PCR, histopathological, and immunohistochemical results. Conclusions: The findings of the current investigation demonstrated that LPS damages both the endocrine and exocrine pancreas. However, CBD demonstrated marked ameliorative effects in the pancreas in LPS induced rat model pancreatitis.
Collapse
Affiliation(s)
- Senay Topsakal
- Department of Endocrinology and Metabolism, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Bedir
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Okan Sancer
- Genetic Research Unit, Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Wiley MB, Bauer J, Alvarez V, Mehrotra K, Cheng W, Kolics Z, Giarrizzo M, Ingle K, Bialkowska AB, Jung B. Activin A signaling stimulates neutrophil activation and macrophage migration in pancreatitis. Sci Rep 2024; 14:9382. [PMID: 38654064 PMCID: PMC11039671 DOI: 10.1038/s41598-024-60065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Kleemann J, Cinatl J, Hoffmann S, Zöller N, Özistanbullu D, Zouboulis CC, Kaufmann R, Kippenberger S. Alcohol Promotes Lipogenesis in Sebocytes-Implications for Acne. Cells 2024; 13:328. [PMID: 38391942 PMCID: PMC10886960 DOI: 10.3390/cells13040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The oral consumption of alcohol (ethanol) has a long tradition in humans and is an integral part of many cultures. The causal relationship between ethanol consumption and numerous diseases is well known. In addition to the well-described harmful effects on the liver and pancreas, there is also evidence that ethanol abuse triggers pathological skin conditions, including acne. In the present study, we addressed this issue by investigating the effect of ethanol on the energy metabolism in human SZ95 sebocytes, with particular focus on qualitative and quantitative lipogenesis. It was found that ethanol is a strong trigger for lipogenesis, with moderate effects on cell proliferation and toxicity. We identified the non-oxidative metabolism of ethanol, which produced fatty acid ethyl esters (FAEEs), as relevant for the lipogenic effect-the oxidative metabolism of ethanol does not contribute to lipogenesis. Correspondingly, using the Seahorse extracellular flux analyzer, we found an inhibition of the mitochondrial oxygen consumption rate as a measure of mitochondrial ATP production by ethanol. The ATP production rate from glycolysis was not affected. These data corroborate that ethanol-induced lipogenesis is independent from oxygen. In sum, our results give a causal explanation for the prevalence of acne in heavy drinkers, confirming that alcoholism should be considered as a systemic disease. Moreover, the identification of key factors driving ethanol-dependent lipogenesis may also be relevant in the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Johannes Kleemann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany;
- Dr. Petra Joh-Forschungshaus, 60528 Frankfurt am Main, Germany
| | - Stephanie Hoffmann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Nadja Zöller
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Deniz Özistanbullu
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergy and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany;
| | - Roland Kaufmann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Stefan Kippenberger
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| |
Collapse
|
8
|
Yuan C, Xu Y, Lu G, Hu Y, Mao W, Ke L, Tong Z, Xia Y, Ma S, Dong X, Xian X, Wu X, Liu G, Li B, Li W. AAV-mediated hepatic LPL expression ameliorates severe hypertriglyceridemia and acute pancreatitis in Gpihbp1 deficient mice and rats. Mol Ther 2024; 32:59-73. [PMID: 37974401 PMCID: PMC10787151 DOI: 10.1016/j.ymthe.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.
Collapse
Affiliation(s)
- Chenchen Yuan
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yao Xu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Guotao Lu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yan Xia
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Sisi Ma
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xiaoyan Dong
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaobing Wu
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - George Liu
- GeneCradle Therapeutics Inc, Beijing 100176, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
9
|
Wu Y, Han C, Luo R, Cai W, Xia Q, Jiang R, Ferdek PE, Liu T, Huang W. Molecular mechanisms of pain in acute pancreatitis: recent basic research advances and therapeutic implications. Front Mol Neurosci 2023; 16:1331438. [PMID: 38188196 PMCID: PMC10771850 DOI: 10.3389/fnmol.2023.1331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.
Collapse
Affiliation(s)
- Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pawel E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics and Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Piseddu I, Weidinger C, Mayerle J. Fine tuning calcium dynamics by inhibition of Store-operated Calcium Entry as a novel therapeutic approach for the treatment of chronic pancreatitis. Cell Calcium 2023; 116:102802. [PMID: 37757535 DOI: 10.1016/j.ceca.2023.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Chronic pancreatitis (CP) is a complex inflammatory disorder characterized by progressive fibrosis, leading to pancreatic dysfunction, reduced quality of life and an elevated pancreatic cancer risk. Current therapeutic options for CP are restricted to symptomatic treatment. Using ex vivo and in vivo preclinical disease models, Szabó et al. now explored for the first time the involvement of Store-operated Ca2+ entry (SOCE) in the progression of CP and propose that a selective pharmacological inhibition of the SOCE signaling component Orai1 might serve as specific treatment option for CP[1,2].
Collapse
Affiliation(s)
- Ignazio Piseddu
- Department of Medicine II, University Hospital, LMU, Munich, Germany; Gene Center and Department of Biochemistry, LMU, Munich, Germany
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU, Munich, Germany
| |
Collapse
|
11
|
Qiu M, Zhou X, Zippi M, Goyal H, Basharat Z, Jagielski M, Hong W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann Med 2023; 55:2265939. [PMID: 37813108 PMCID: PMC10563627 DOI: 10.1080/07853890.2023.2265939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
It is well known, that the inflammatory process that characterizes acute pancreatitis (AP) can lead to both pancreatic damage and systemic inflammatory response syndrome (SIRS). During the last 20 years, there has been a growing incidence of episodes of acute pancreatitis associated with hypertriglyceridaemia (HTAP). This review provides an overview of triglyceride metabolism and the potential mechanisms that may contribute to developing or exacerbating HTAP. The article comprehensively discusses the various pathological roles of free fatty acid, inflammatory response mechanisms, the involvement of microcirculation, serum calcium overload, oxidative stress and the endoplasmic reticulum, genetic polymorphism, and gut microbiota, which are known to trigger or escalate this condition. Future perspectives on HTAP appear promising, with ongoing research focused on developing more specific and effective treatment strategies.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Department of Surgery, University of TX Health Sciences Center, Houston, TX, United States
| | | | - Mateusz Jagielski
- Department of General, Gastroenterological and Oncological Surgery, Nicolaus Copernicus University in Toruń, Poland
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Pang K, Kong F, Wu D. Prospect of Mesenchymal Stem-Cell-Conditioned Medium in the Treatment of Acute Pancreatitis: A Systematic Review. Biomedicines 2023; 11:2343. [PMID: 37760784 PMCID: PMC10525511 DOI: 10.3390/biomedicines11092343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in both clinical and pre-clinical research for mitigating tissue damage and inflammation associated with acute pancreatitis (AP) via paracrine mechanisms. Hence, there has been a recent surge of interest among researchers in utilizing MSC cultured medium (CM) and its components for the treatment of AP, which is recognized as the primary cause of hospitalization for gastrointestinal disorders globally. A systematic review was conducted by searching the MEDLINE, EMBASE, and Web of Science databases. Studies that involve the administration of MSC-CM, extracellular vesicles/microvesicles (EVs/MVs), or exosomes to AP animal models are included. A total of six research studies, including eight experiments, were identified as relevant. The findings of this study provide evidence in favor of a beneficial impact of MSC-CM on both clinical and immunological outcomes. Nevertheless, prior to clinical trials, large animal models should be used and prolonged observation periods conducted in pre-clinical research. Challenges arise due to the lack of standardization and consensus on isolation processes, quantifications, and purity testing, making it difficult to compare reports and conduct meta-analyses in MSC-CM-based therapies.
Collapse
Affiliation(s)
- Ke Pang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
| | - Fanyi Kong
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Yuan C, Dong X, Xu S, Zhu Q, Xu X, Zhang J, Gong W, Ding Y, Pan J, Lu G, Chen W, Xie T, Li B, Xiao W. AKBA alleviates experimental pancreatitis by inhibiting oxidative stress in Macrophages through the Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 121:110501. [PMID: 37364326 DOI: 10.1016/j.intimp.2023.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition of the pancreas characterized by oxidative stress and inflammation in its pathophysiology. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid with antioxidant activity. This article seeks to assess the impact of AKBA on AP and investigate its underlying mechanisms. METHODS AP was induced in wild-type, Lyz2+/cre Nrf2fl/fl mice and Pdx1+/cre Nrf2fl/fl mice by caerulein. Serum amylase and lipase levels, along with histological grading, were utilized to evaluate the severity of AP. Murine bone marrow-derived macrophages (BMDMs) were isolated, cultured, and polarized to the M1 subtype. Flow cytometry and ELISA were utilized to identify the macrophage phenotype. Alterations in oxidative stress damage and intracellular ROS were observed. Nrf2/HO-1 signaling pathways were also evaluated. RESULTS In a caerulein-induced mouse model of AP, treatment with AKBA reduced blood amylase and lipase activity and ameliorated pancreatic tissue histological and pathological features. Furthermore, AKBA significantly mitigated oxidative stress-induced damage and induced the expression of Nrf2 and HO-1 protein. Additionally, by using conditional knockout mice (Lyz2+/cre Nrf2fl/fl and Pdx1+/cre Nrf2fl/fl mice), we verified that Nrf2 primarily functions in macrophages rather than acinar cells. In vitro, AKBA inhibits pro-inflammatory M1-subtype macrophage polarization and reduces ROS generation through Nrf2/HO-1 oxidative stress pathway. Moreover, the protective effects of AKBA against AP were abolished in myeloid-specific Nrf2-deficient mice and BMDMs. Molecular docking results revealed interactions between AKBA and Nrf2. CONCLUSION Our results confirm that AKBA exerts protective effects against AP in mice by inhibiting oxidative stress in macrophages through the Nrf2/HO-1 Pathway.
Collapse
Affiliation(s)
- Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Songxin Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Junxian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Jiajia Pan
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China; Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ting Xie
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China.
| |
Collapse
|
14
|
Yang L, Ye F, Liu J, Klionsky DJ, Tang D, Kang R. Extracellular SQSTM1 exacerbates acute pancreatitis by activating autophagy-dependent ferroptosis. Autophagy 2023; 19:1733-1744. [PMID: 36426912 PMCID: PMC10262765 DOI: 10.1080/15548627.2022.2152209] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
ABBREVIATIONS 5-HETE, 5-hydroxyeicosatetraenoic acid; ACSL4, acyl-CoA synthetase long chain family member 4; AP, acute pancreatitis; ATG, autophagy related; AGER, advanced glycosylation end-product specific receptor; DAMPs, danger/damage-associated molecular patterns; FTH1, ferritin heavy chain 1; GPX4, glutathione peroxidase 4; IL, interleukin; INSR, insulin receptor; MAP1LC3B, microtubule associated protein 1 light chain 3 beta; MDA, malondialdehyde; MPO, myeloperoxidase; PRRs, pattern recognition receptors; PUFA, polyunsaturated fatty acid; RNAi, RNA interference; SQSTM1, sequestosome 1; TNF, tumor necrosis factor; TLR, toll like receptor.
Collapse
Affiliation(s)
- Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Tomaszewska E, Świątkiewicz M, Muszyński S, Donaldson J, Ropka-Molik K, Arciszewski MB, Murawski M, Schwarz T, Dobrowolski P, Szymańczyk S, Dresler S, Bonior J. Repetitive Cerulein-Induced Chronic Pancreatitis in Growing Pigs-A Pilot Study. Int J Mol Sci 2023; 24:ijms24097715. [PMID: 37175426 PMCID: PMC10177971 DOI: 10.3390/ijms24097715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic pancreatitis (CP) is an irreversible and progressive inflammatory disease. Knowledge on the development and progression of CP is limited. The goal of the study was to define the serum profile of pro-inflammatory cytokines and the cell antioxidant defense system (superoxidase dismutase-SOD, and reduced glutathione-GSH) over time in a cerulein-induced CP model and explore the impact of these changes on selected cytokines in the intestinal mucosa and pancreatic tissue, as well as on selected serum biochemical parameters. The mRNA expression of CLDN1 and CDH1 genes, and levels of Claudin-1 and E-cadherin, proteins of gut barrier, in the intestinal mucosa were determined via western blot analysis. The study showed moderate pathomorphological changes in the pigs' pancreas 43 days after the last cerulein injection. Blood serum levels of interleukin (IL)-1-beta, IL-6, tumor necrosis factor alpha (TNF-alpha), C-reactive protein (CRP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGTP), SOD and GSH were increased following cerulein injections. IL-1-beta, IL-6, TNF-alpha and GSH were also increased in jejunal mucosa and pancreatic tissue. In duodenum, decreased mRNA expression of CDH1 and level of E-cadherin and increased D-lactate, an indicator of leaky gut, indicating an inflammatory state, were observed. Based on the current results, we can conclude that repetitive cerulein injections in growing pigs not only led to CP over time, but also induced inflammation in the intestine. As a result of the inflammation, the intestinal barrier was impaired.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Maciej Murawski
- Department of Animal Nutrition, Biotechnology and Fisheries, Faculty of Animal Science, University of Agriculture in Kraków, 30-059 Kraków, Poland
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Kraków, 30-059 Kraków, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland
| |
Collapse
|
16
|
Rao P, Niemann B, Szeligo B, Ivey AD, Murthy P, Schmidt CR, Boone BA. Acute pancreatitis induces a transient hypercoagulable state in murine models. Pancreatology 2023; 23:306-313. [PMID: 36898897 PMCID: PMC10121939 DOI: 10.1016/j.pan.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND/OBJECTIVES Although understudied, risk of venous thromboembolism (VTE) appears to be increased during acute pancreatitis (AP). We aimed to further characterize a hypercoagulable state associated with AP utilizing thromboelastography (TEG), a readily available, point of care test. METHODS AP was induced in C57/Bl6 mice using l-arginine and caerulein. TEG was performed with citrated native samples. The maximum amplitude (MA) and coagulation index (CI), a composite marker of coagulability, were evaluated. Platelet aggregation was assessed using whole blood collagen-activated platelet impedance aggregometry. Circulating tissue factor (TF), the initiator of extrinsic coagulation, was measured with ELISA. A VTE model using IVC ligation followed by measurement of clot size and weight was evaluated. After IRB approval and consent, blood samples from patients hospitalized with a diagnosis of AP were evaluated by TEG. RESULTS Mice with AP displayed a significant increase in MA and CI, consistent with hypercoagulability. Hypercoagulability peaked at 24 h after induction of pancreatitis, then returned to baseline by 72 h. AP resulted in significantly increased platelet aggregation and elevated circulating TF. Increased clot formation with AP was observed in an in vivo model of deep vein thrombosis. In a proof of concept, correlative study, over two thirds of patients with AP demonstrated an elevated MA and CI compared to the normal range, consistent with hypercoagulability. CONCLUSIONS Murine acute pancreatitis results in a transient hypercoagulable state that can be assessed by TEG. Correlative evidence for hypercoagulability was also demonstrated in human pancreatitis. Further study to correlate coagulation measures to incidence of VTE in AP is warranted.
Collapse
Affiliation(s)
- Pavan Rao
- Department of Surgery, Allegheny Health System, Pittsburgh, PA, USA; Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Britney Niemann
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Brett Szeligo
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Abby D Ivey
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carl R Schmidt
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Brian A Boone
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV, USA; Cancer Cell Biology, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
17
|
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2022; 13:metabo13010004. [PMID: 36676930 PMCID: PMC9863893 DOI: 10.3390/metabo13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis still means a serious challenge in clinical practice. Its pathomechanism is complex and has yet to be fully elucidated. Rheological properties of blood play an important role in tissue perfusion and show non-specific changes in acute pancreatitis. An increase in blood and plasma viscosity, impairment of red blood cell deformability, and enhanced red blood cell aggregation caused by metabolic, inflammatory, free radical-related changes and mechanical stress contribute to the deterioration of the blood flow in the large vessels and also in the microcirculation. Revealing the significance of these changes in acute pancreatitis may better explain the pathogenesis and optimize the therapy. In this review, we give an overview of the role of impaired microcirculation by changes in hemorheological properties in acute pancreatitis.
Collapse
Affiliation(s)
- Robert Kotan
- Endocrine Surgery Unit, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Zsolt Szentkereszty
- Department of Surgery, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
18
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
19
|
Effects of Berberine against Pancreatitis and Pancreatic Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238630. [PMID: 36500723 PMCID: PMC9738201 DOI: 10.3390/molecules27238630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The pancreas is a glandular organ with endocrine and exocrine functions necessary for the maintenance of blood glucose homeostasis and secretion of digestive enzymes. Pancreatitis is characterized by inflammation of the pancreas leading to temporary or permanent pancreatic dysfunction. Inflammation and fibrosis caused by chronic pancreatitis exacerbate malignant transformation and significantly increase the risk of developing pancreatic cancer, the world's most aggressive cancer with a 5-year survival rate less than 10%. Berberine (BBR) is a naturally occurring plant-derived polyphenol present in a variety of herbal remedies used in traditional medicine to treat ulcers, infections, jaundice, and inflammation. The current review summarizes the existing in vitro and in vivo evidence on the effects of BBR against pancreatitis and pancreatic cancer with a focus on the signalling mechanisms underlying the effects of BBR.
Collapse
|
20
|
Tran QT, Sendler M, Wiese ML, Doller J, Zierke L, Gischke M, Glaubitz J, Tran VH, Lalk M, Bornscheuer UT, Weiss FU, Lerch MM, Aghdassi AA. Systemic Bile Acids Affect the Severity of Acute Pancreatitis in Mice Depending on Their Hydrophobicity and the Disease Pathogenesis. Int J Mol Sci 2022; 23:13592. [PMID: 36362379 PMCID: PMC9655547 DOI: 10.3390/ijms232113592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2023] Open
Abstract
Acute pancreatitis (AP) is a major, globally increasing gastrointestinal disease and a biliary origin is the most common cause. However, the effects of bile acids (BAs), given systemically, on the pancreas and on disease severity remains elusive. In this study, we have investigated the roles of different circulating BAs in animal models for AP to elucidate their impact on disease severity and the underlying pathomechanisms. BAs were incubated on isolated acini and AP was induced through repetitive injections of caerulein or L-arginine; pancreatic duct ligation (PDL); or combined biliopancreatic duct ligation (BPDL). Disease severity was assessed using biochemical and histological parameters. Serum cholecystokinin (CCK) concentrations were determined via enzyme immunoassay. The binding of the CCK1 receptor was measured using fluorescence-labeled CCK. In isolated acini, hydrophobic BAs mitigated the damaging effects of CCK. The same BAs further enhanced pancreatitis in L-arginine- and PDL-based pancreatitis, whereas they ameliorated pancreatic damage in the caerulein and BPDL models. Mechanistically, the binding affinity of the CCK1 receptor was significantly reduced by hydrophobic BAs. The hydrophobicity of BAs and the involvement of CCK seem to be relevant in the course of AP. Systemic BAs may affect the severity of AP by interfering with the CCK1 receptor.
Collapse
Affiliation(s)
- Quang Trung Tran
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Matthias Sendler
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Mats L. Wiese
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Julia Doller
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Lukas Zierke
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Marcel Gischke
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Juliane Glaubitz
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Van Huy Tran
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Michael Lalk
- Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Ludwig Maximilian University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Ali A. Aghdassi
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
21
|
Yang DJ, Wang XD, Fu XY, Lu HM, Zhou ZG, Liu Y. MyD88 deficiency aggravates the severity of acute pancreatitis by promoting MyD88-independent TRIF pathway-mediated necrosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1214. [PMID: 36544673 PMCID: PMC9761135 DOI: 10.21037/atm-22-5134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Background With uncontrolled inflammatory progression, acute pancreatitis (AP) can progress to severe acute pancreatitis (SAP). Inflammation and parenchymal cell death are key pathologic responses of AP. Toll-like receptor 4 (TLR4) plays a pro-inflammatory role in AP. Myeloid differentiation primary response protein 88 (MyD88) is the most essential utilized adaptor of TLR4, but its role in AP remains unclear. We investigated the potential role of MyD88 in the pathogenesis of AP. Methods An AP model was induced by administering either cerulein or L-arginine to wild-type or MyD88-deficient mice. Additionally, receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 (Nec-1) was administered to the MyD88-/- mice. The severity of AP was determined by measuring serum amylase and lipase activities, quantifying pancreatic myeloperoxidase (MPO) activity, and histological examination. The effects of MyD88 deletion on cell death and the inflammatory response were determined by measuring apoptosis, necrosis, and inflammatory cytokines. Western blot was used to assess the necrotic mediators, RIP1 and RIP3. Results The deletion of MyD88 resulted in more severe acute experimental pancreatitis as assessed by increased amylase and lipase activities, increased pancreatic MPO activity, a reduced anti-inflammatory response, reduced apoptosis, and increased necrosis. Additionally, Nec-1 treatment significantly reduced necrosis in the MyD88-/- mice. Conclusions The deletion of MyD88 inhibited the TLR4/MyD88-dependent pathway mediated protective immune defense response and enhanced TLR4/MyD88-independent TRIF pathway-mediated pancreatic necrosis, which in turn aggravated the severity of AP. The critical role of MyD88 in immune defense response and cell death indicates that MyD88 represents a potential therapeutic target in the management of AP.
Collapse
Affiliation(s)
- Du-Jiang Yang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Dong Wang
- Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ying Fu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Min Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China;,Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China;,Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Activation of pancreatic stellate cells attenuates intracellular Ca 2+ signals due to downregulation of TRPA1 and protects against cell death induced by alcohol metabolites. Cell Death Dis 2022; 13:744. [PMID: 36038551 PMCID: PMC9421659 DOI: 10.1038/s41419-022-05186-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Alcohol abuse, an increasing problem in developed societies, is one of the leading causes of acute and chronic pancreatitis. Alcoholic pancreatitis is often associated with fibrosis mediated by activated pancreatic stellate cells (PSCs). Alcohol toxicity predominantly depends on its non-oxidative metabolites, fatty acid ethyl esters, generated from ethanol and fatty acids. Although the role of non-oxidative alcohol metabolites and dysregulated Ca2+ signalling in enzyme-storing pancreatic acinar cells is well established as the core mechanism of pancreatitis, signals in PSCs that trigger fibrogenesis are less clear. Here, we investigate real-time Ca2+ signalling, changes in mitochondrial potential and cell death induced by ethanol metabolites in quiescent vs TGF-β-activated PSCs, compare the expression of Ca2+ channels and pumps between the two phenotypes and the consequences these differences have on the pathogenesis of alcoholic pancreatitis. The extent of PSC activation in the pancreatitis of different aetiologies has been investigated in three animal models. Unlike biliary pancreatitis, alcohol-induced pancreatitis results in the activation of PSCs throughout the entire tissue. Ethanol and palmitoleic acid (POA) or palmitoleic acid ethyl ester (POAEE) act directly on quiescent PSCs, inducing cytosolic Ca2+ overload, disrupting mitochondrial functions, and inducing cell death. However, activated PSCs acquire remarkable resistance against ethanol metabolites via enhanced Ca2+-handling capacity, predominantly due to the downregulation of the TRPA1 channel. Inhibition or knockdown of TRPA1 reduces EtOH/POA-induced cytosolic Ca2+ overload and protects quiescent PSCs from cell death, similarly to the activated phenotype. Our results lead us to review current dogmas on alcoholic pancreatitis. While acinar cells and quiescent PSCs are prone to cell death caused by ethanol metabolites, activated PSCs can withstand noxious signals and, despite ongoing inflammation, deposit extracellular matrix components. Modulation of Ca2+ signals in PSCs by TRPA1 agonists/antagonists could become a strategy to shift the balance of tissue PSCs towards quiescent cells, thus limiting pancreatic fibrosis.
Collapse
|
23
|
Yang X, Yao L, Yuan M, Zhang X, Jakubowska MA, Ferdek PE, Dai L, Yang J, Jin T, Deng L, Fu X, Du D, Liu T, Criddle DN, Sutton R, Huang W, Xia Q. Transcriptomics and Network Pharmacology Reveal the Protective Effect of Chaiqin Chengqi Decoction on Obesity-Related Alcohol-Induced Acute Pancreatitis via Oxidative Stress and PI3K/Akt Signaling Pathway. Front Pharmacol 2022; 13:896523. [PMID: 35754467 PMCID: PMC9213732 DOI: 10.3389/fphar.2022.896523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity-related acute pancreatitis (AP) is characterized by increasing prevalence worldwide and worse clinical outcomes compared to AP of other etiologies. Chaiqin chengqi decoction (CQCQD), a Chinese herbal formula, has long been used for the clinical management of AP but its therapeutic actions and the underlying mechanisms have not been fully elucidated. This study has investigated the pharmacological mechanisms of CQCQD in a novel mouse model of obesity-related alcohol-induced AP (OA-AP). The mouse OA-AP model was induced by a high-fat diet for 12 weeks and subsequently two intraperitoneal injections of ethanol, CQCQD was administered 2 h after the first injection of ethanol. The severity of OA-AP was assessed and correlated with changes in transcriptomic profiles and network pharmacology in the pancreatic and adipose tissues, and further docking analysis modeled the interactions between compounds of CQCQD and their key targets. The results showed that CQCQD significantly reduced pancreatic necrosis, alleviated systemic inflammation, and decreased the parameters associated with multi-organ dysfunction. Transcriptomics and network pharmacology analysis, as well as further experimental validation, have shown that CQCQD induced Nrf2/HO-1 antioxidant protein response and decreased Akt phosphorylation in the pancreatic and adipose tissues. In vitro, CQCQD protected freshly isolated pancreatic acinar cells from H2O2-elicited oxidative stress and necrotic cell death. The docking results of AKT1 and the active compounds related to AKT1 in CQCQD showed high binding affinity. In conclusion, CQCQD ameliorates the severity of OA-AP by activating of the antioxidant protein response and down-regulating of the PI3K/Akt signaling pathway in the pancreas and visceral adipose tissue.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.,Institutes for Systems Genetics & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
25
|
Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D, Jakubowska MA. When healing turns into killing ‐ the pathophysiology of pancreatic and hepatic fibrosis. J Physiol 2022; 600:2579-2612. [DOI: 10.1113/jp281135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Pawel E. Ferdek
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Agnieszka A. Kusiak
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Milena Paw
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Dawid Wnuk
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | | |
Collapse
|
26
|
Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, Sang X, Zou S, Liu T, Mukherjee R, Criddle DN, Zheng X, Xia Q, Berggren PO, Huang W, Sutton R, Tian Y, Huang W, Fu X. A microRNA checkpoint for Ca 2+ signaling and overload in acute pancreatitis. Mol Ther 2022; 30:1754-1774. [PMID: 35077860 PMCID: PMC9077382 DOI: 10.1016/j.ymthe.2022.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common digestive disease without specific treatment, and its pathogenesis features multiple deleterious amplification loops dependent on translation, triggered by cytosolic Ca2+ ([Ca2+]i) overload; however, the underlying mechanisms in Ca2+ overload of AP remains incompletely understood. Here we show that microRNA-26a (miR-26a) inhibits pancreatic acinar cell (PAC) store-operated Ca2+ entry (SOCE) channel expression, Ca2+ overload, and AP. We find that major SOCE channels are post-transcriptionally induced in PACs during AP, whereas miR-26a expression is reduced in experimental and human AP and correlated with AP severity. Mechanistically, miR-26a simultaneously targets Trpc3 and Trpc6 SOCE channels and attenuates physiological oscillations and pathological elevations of [Ca2+]i in PACs. MiR-26a deficiency increases SOCE channel expression and [Ca2+]i overload, and significantly exacerbates AP. Conversely, global or PAC-specific overexpression of miR-26a in mice ameliorates pancreatic edema, neutrophil infiltration, acinar necrosis, and systemic inflammation, accompanied with remarkable improvements on pathological determinants related with [Ca2+]i overload. Moreover, pancreatic or systemic administration of an miR-26a mimic to mice significantly alleviates experimental AP. These findings reveal a previously unknown mechanism underlying AP pathogenesis, establish a critical role for miR-26a in Ca2+ signaling in the exocrine pancreas, and identify a potential target for the treatment of AP.
Collapse
Affiliation(s)
- Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Pawel E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Monika A Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Shiyu Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xinyue Zhu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Jiayu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiongbo Sang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David N Criddle
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Xiaofeng Zheng
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Per-Olof Berggren
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| |
Collapse
|
27
|
Zhang L, Shi J, Du D, Niu N, Liu S, Yang X, Lu P, Shen X, Shi N, Yao L, Zhang R, Hu G, Lu G, Zhu Q, Zeng T, Liu T, Xia Q, Huang W, Xue J. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. EBioMedicine 2022; 78:103959. [PMID: 35339899 PMCID: PMC8960978 DOI: 10.1016/j.ebiom.2022.103959] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Innate immunity and metabolites link to the pathogenesis and severity of acute pancreatitis (AP). However, liver metabolism and its role in immune response and AP progression remain elusive. We investigated the function of liver metabolism in the pathogenesis of AP. Methods Circulating ketone body β-hydroxybutyrate (βOHB) levels were determined in AP clinical cohorts and caerulein-induced AP (CER-AP) mouse models receiving seven (Cer*7) or twelve (Cer*12) injection regimens at hourly intervals. Liver transcriptomics and metabolomics were compared between CER-AP (Cer*7) and CER-AP (Cer*12). Inhibition of fatty acid β-oxidation (FAO)-ketogenesis, or supplementation of βOHB was performed in mouse models of AP. The effect and mechanism of βOHB were examined in vitro. Findings Elevated circulating βOHB was observed in patients with non-severe AP (SAP) but not SAP. These findings were replicated in CER-AP (Cer*7) and CER-AP (Cer*12), which manifested as limited and hyperactive immune responses, respectively. FAO-ketogenesis was activated in CER-AP (Cer*7), while impaired long-chain FAO and mitochondrial function were observed in the liver of CER-AP (Cer*12). Blockage of FAO-ketogenesis (Cpt1a antagonism or Hmgcs2 knockdown) worsened, while supplementation of βOHB or its precursor 1,3-butanediol alleviated the severity of CER-AP. Mechanistically, βOHB had a discernible effect on pancreatic acinar cell damage, instead, it greatly attenuated the activation of pancreatic and systemic proinflammatory macrophages via class I histone deacetylases. Interpretation Our findings reveal that hepatic ketogenesis is activated as an endogenous protective programme to restrain AP progression, indicating its potential therapeutic value. Funding This work was supported by the National Natural Science Foundation of China, Shanghai Youth Talent Support Programme, and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Dan Du
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Advanced Mass Spectrometry Centre, Research Core Facility, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Shiyu Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Na Shi
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Linbo Yao
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Ruling Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guoyong Hu
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guotao Lu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Qingtian Zhu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Tao Zeng
- Zhangjiang Laboratory, Institute of Brain-Intelligence Technology, Shanghai, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Wei Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Centre for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China.
| |
Collapse
|
28
|
Moore M, Avula N, Wong A, Beetch M, Jo S, Alejandro EU. Reduction in O-GlcNAcylation Mitigates the Severity of Inflammatory Response in Cerulein-Induced Acute Pancreatitis in a Mouse Model. BIOLOGY 2022; 11:biology11030347. [PMID: 35336721 PMCID: PMC8945657 DOI: 10.3390/biology11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Acute pancreatitis (AP) involves premature trypsinogen activation, which mediates a cascade of pro-inflammatory signaling that causes early stages of pancreatic injury. Activation of the transcription factor κB (NF-κB) and secretion of pro-inflammatory mediators are major events in AP. O-GlcNAc transferase (OGT), a stress-sensitive enzyme, was recently implicated to regulate NF-κB activation and inflammation in AP in vitro. This study aims to determine whether a pancreas-specific transgenic reduction in OGT in a mouse model affects the severity of AP in vivo. Mice with reduced pancreatic OGT (OGTPanc+/-) at 8 weeks of age were randomized to cerulein, which induces pancreatitis, or saline injections. AP was confirmed by elevated amylase levels and on histological analysis. The histological scoring demonstrated that OGTPanc+/- mice had decreased severity of AP. Additionally, serum lipase, LDH, and TNF-α in OGTPanc+/- did not significantly increase in response to cerulein treatment as compared to controls, suggesting attenuated AP induction in this model. Our study reveals the effect of reducing pancreatic OGT levels on the severity of pancreatitis, warranting further investigation on the role of OGT in the pathology of AP.
Collapse
Affiliation(s)
- Mackenzie Moore
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Nandini Avula
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Alicia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Correspondence: ; Tel.: +1-612-301-7685
| |
Collapse
|
29
|
Walter FR, Harazin A, Tóth AE, Veszelka S, Santa-Maria AR, Barna L, Kincses A, Biczó G, Balla Z, Kui B, Maléth J, Cervenak L, Tubak V, Kittel Á, Rakonczay Z, Deli MA. Blood-brain barrier dysfunction in L-ornithine induced acute pancreatitis in rats and the direct effect of L-ornithine on cultured brain endothelial cells. Fluids Barriers CNS 2022; 19:16. [PMID: 35177109 PMCID: PMC8851707 DOI: 10.1186/s12987-022-00308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In severe acute pancreatitis (AP) the CNS is affected manifesting in neurological symptoms. Earlier research from our laboratory showed blood-brain barrier (BBB) permeability elevation in a taurocholate-induced AP model. Here we aimed to further explore BBB changes in AP using a different, non-invasive in vivo model induced by L-ornithine. Our goal was also to identify whether L-ornithine, a cationic amino acid, has a direct effect on brain endothelial cells in vitro contributing to the observed BBB changes. METHODS AP was induced in rats by the intraperitoneal administration of L-ornithine-HCl. Vessel permeability and the gene expression of the primary transporter of L-ornithine, cationic amino acid transporter-1 (Cat-1) in the brain cortex, pancreas, liver and lung were determined. Ultrastructural changes were followed by transmission electron microscopy. The direct effect of L-ornithine was tested on primary rat brain endothelial cells and a triple co-culture model of the BBB. Viability and barrier integrity, including permeability and TEER, nitrogen monoxide (NO) and reactive oxygen species (ROS) production and NF-κB translocation were measured. Fluorescent staining for claudin-5, occludin, ZO-1, β-catenin, cell adhesion molecules Icam-1 and Vcam-1 and mitochondria was performed. Cell surface charge was measured by laser Doppler velocimetry. RESULTS In the L-ornithine-induced AP model vessel permeability for fluorescein and Cat-1 expression levels were elevated in the brain cortex and pancreas. On the ultrastructural level surface glycocalyx and mitochondrial damage, tight junction and basal membrane alterations, and glial edema were observed. L-ornithine decreased cell impedance and elevated the BBB model permeability in vitro. Discontinuity in the surface glycocalyx labeling and immunostaining of junctional proteins, cytoplasmic redistribution of ZO-1 and β-catenin, and elevation of Vcam-1 expression were measured. ROS production was increased and mitochondrial network was damaged without NF-κB, NO production or mitochondrial membrane potential alterations. Similar ultrastructural changes were seen in L-ornithine treated brain endothelial cells as in vivo. The basal negative zeta potential of brain endothelial cells became more positive after L-ornithine treatment. CONCLUSION We demonstrated BBB damage in the L-ornithine-induced rat AP model suggesting a general, AP model independent effect. L-ornithine induced oxidative stress, decreased barrier integrity and altered BBB morphology in a culture BBB model. These data suggest a direct effect of the cationic L-ornithine on brain endothelium. Endothelial surface glycocalyx injury was revealed both in vivo and in vitro, as an additional novel component of the BBB-related pathological changes in AP.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Andrea E Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - György Biczó
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - Zsolt Balla
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Institute of Applied Sciences, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, 6725, Hungary
| | - Balázs Kui
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - László Cervenak
- Department of Internal Medicine and Hematology, Research Laboratory, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u. 43, Budapest, 1083, Hungary
| | - Zoltán Rakonczay
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, Szeged, 6701, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
30
|
Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological disorders requiring hospitalization and is associated with substantial morbidity and mortality. Metabolomics nowadays not only help us to understand cellular metabolism to a degree that was not previously obtainable, but also to reveal the importance of the metabolites in physiological control, disease onset and development. An in-depth understanding of metabolic phenotyping would be therefore crucial for accurate diagnosis, prognosis and precise treatment of AP. In this review, we summarized and addressed the metabolomics design and workflow in AP studies, as well as the results and analysis of the in-depth of research. Based on the metabolic profiling work in both clinical populations and experimental AP models, we described the metabolites with potential utility as biomarkers and the correlation between the altered metabolites and AP status. Moreover, the disturbed metabolic pathways correlated with biological function were discussed in the end. A practical understanding of current and emerging metabolomic approaches applicable to AP and use of the metabolite information presented will aid in designing robust metabolomics and biological experiments that result in identification of unique biomarkers and mechanisms, and ultimately enhanced clinical decision-making.
Collapse
|