1
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
2
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Zhang RX, Zhai YY, Ding RR, Huang JH, Shi XC, Liu H, Liu XP, Zhang JF, Lu JF, Zhang Z, Leng XK, Li DF, Xiao JY, Xia B, Wu JW. FNDC1 is a myokine that promotes myogenesis and muscle regeneration. EMBO J 2024:10.1038/s44318-024-00285-0. [PMID: 39567831 DOI: 10.1038/s44318-024-00285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Myogenesis is essential for skeletal muscle formation and regeneration after injury, yet its regulators are largely unknown. Here we identified fibronectin type III domain containing 1 (FNDC1) as a previously uncharacterized myokine. In vitro studies showed that knockdown of Fndc1 in myoblasts reduces myotube formation, while overexpression of Fndc1 promotes myogenic differentiation. We further generated recombinant truncated mouse FNDC1 (mFNDC1), which retains reliable activity in promoting myoblast differentiation in vitro. Gain- and loss-of-function studies collectively showed that FNDC1 promotes cardiotoxin (CTX)-induced muscle regeneration in adult mice. Furthermore, recombinant FNDC1 treatment ameliorated pathological muscle phenotypes in the mdx mouse model of Duchenne muscular dystrophy. Mechanistically, FNDC1 bound to the integrin α5β1 and activated the downstream FAK/PI3K/AKT/mTOR pathway to promote myogenic differentiation. Pharmacological inhibition of integrin α5β1 or of the downstream FAK/PI3K/AKT/mTOR pathway abolished the pro-myogenic effect of FNDC1. Collectively, these results suggested that myokine FNDC1 might be used as a therapeutic agent to regulate myogenic differentiation and muscle regeneration for the treatment of acute and chronic muscle disease.
Collapse
Affiliation(s)
- Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Rong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia He Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Feng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De Fu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Guo W, Peng J, Su J, Xia J, Deng W, Li P, Chen Y, Liu G, Wang S, Huang J. The role and underlying mechanisms of irisin in exercise-mediated cardiovascular protection. PeerJ 2024; 12:e18413. [PMID: 39494293 PMCID: PMC11531754 DOI: 10.7717/peerj.18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Irisin, a product of the post-translational processing of fibronectin type III domain-containing protein 5 (FNDC5), is a novel myokine which is upregulated during exercise. This hormone not only promotes the transformation of white adipose tissue into a brown-fat-like phenotype but also enhances energy expenditure and mitigates fat accumulation. Its role is crucial in the management of certain metabolic disorders such as diabetes and heart disease. Of note, the type of exercise performed significantly affects blood irisin levels, indicating the critical role of physical activity in regulating this hormone. This article aims to summarize the current scientific understanding of the role of irisin and the mechanisms through which it mediates cardiovascular protection through exercise. Moreover, this article aims to establish irisin as a potential target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhuang Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jianwei Peng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jiarui Su
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jingbo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Weiji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yilin Chen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guoqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Shen Wang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Cheng Y, Ma J, Bo S. Short- and long-term effects of concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals: a systematic review and meta-analysis of randomized controlled trials. PeerJ 2024; 12:e17958. [PMID: 39308824 PMCID: PMC11416761 DOI: 10.7717/peerj.17958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Background Concurrent training (CT) is emerging as a practical and effective approach to enhance body composition, cardiovascular function, and muscle mass, thereby elevating overall individual health. This study aims to systematically investigate the effects of short- and long-term concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals. Methodology The electronic databases, including China National Knowledge Infrastructure, PubMed, Embase, Wan Fang Database, and Web of Science, were systematically searched for articles on "concurrent training" and "irisin" published from their inception to 30 November 2023. The pooled effect size was determined using standardized mean difference (SMD) and corresponding 95% confidence intervals (CIs). The study protocol received registration with the International Prospective Register of Systematic Reviews (CRD42023494163). Results All nine studies, encompassing a total of 264 participants, were randomized controlled trials and met the eligibility criteria. Results indicate that short- and long-term concurrent training moderately increased circulating irisin levels compared to the control group (SMD = 0.56, 95% CI [0.33-0.80], p = 0.00; I 2 = 36.6%, heterogeneity p = 0.106). Subgroup analyses revealed that both equal to or less than 10 weeks (SMD = 0.78, 95% CI [0.18-1.37], p = 0.01; I 2 = 62.3%, heterogeneity p = 0.03) and more than 10 weeks (SMD = 0.45, 95% CI [0.14-0.76], p = 0.00; I 2 = 0%, heterogeneity p = 0.54) of concurrent training significantly increased circulating irisin levels in overweight or obese individuals. There were no significant between-group differences (I 2 = 0%, p = 0.34). Additionally, concurrent training significantly increased irisin levels in overweight or obese participants (SMD = 1.06, 95% CI [0.34-1.78], p = 0.00; I 2 = 50.6%, heterogeneity p = 0.13) and in type 2 diabetes patients (SMD = 0.70, 95% CI [0.30-1.10], p = 0.00; I 2 = 0%, heterogeneity p = 0.99). However, no significant effect was observed in patients with metabolic syndrome (SMD = 0.21, 95% CI [-0.25-0.68], p = 0.37; I 2 = 38.7%, heterogeneity p = 0.18). There were significant between-group differences (I 2 = 53.9%, p = 0.11). Lastly, concurrent training significantly increased circulating irisin levels in overweight or obese individuals aged 45-60 years (SMD = 0.56, 95% CI [0.25-0.86], p = 0.00; I 2 = 6.5%, heterogeneity p = 0.38), and a significant increase in irisin levels was observed 12 h post-intervention (SMD = 0.70, 95% CI [0.35-1.05], p = 0.00; I 2 = 0%, heterogeneity p = 0.74). However, none of the above categorical variables showed significant between-group differences. Conclusions Short- and long-term concurrent training can effectively improve circulating irisin levels in overweight or obese individuals. However, the effects of short- and long-term concurrent training should consider the participants' health status, age, and the timing of post-exercise measurements to maximize health benefits.
Collapse
Affiliation(s)
- Yang Cheng
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Jing Ma
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Shumin Bo
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| |
Collapse
|
6
|
Kim Y, Lee JM, Jang YN, Park AY, Kim S, Kim BJ, Lee JO. Irisin promotes hair growth and hair cycle transition by activating the GSK-3β/β-catenin pathway. Exp Dermatol 2024; 33:e15155. [PMID: 39133009 PMCID: PMC11605494 DOI: 10.1111/exd.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 08/13/2024]
Abstract
Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/β-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/β-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/β-catenin pathway and highlight its therapeutic potential in hair loss treatment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Jung Min Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - You Na Jang
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - A. Yeon Park
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Su‐Young Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Beom Joon Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Jung Ok Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
7
|
Mocanu V, Timofte DV, Zară-Dănceanu CM, Labusca L. Obesity, Metabolic Syndrome, and Osteoarthritis Require Integrative Understanding and Management. Biomedicines 2024; 12:1262. [PMID: 38927469 PMCID: PMC11201254 DOI: 10.3390/biomedicines12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis. Recent studies have increasingly focused on the complex role of white adipose tissue (WAT) in OA. WAT not only serves metabolic functions but also plays a critical role in systemic inflammation through the release of various adipokines. These adipokines, including leptin and adiponectin, have been implicated in exacerbating cartilage erosion and promoting inflammatory pathways within joint tissues. The overlapping global crises of obesity and metabolic syndrome have significantly impacted joint health. Obesity, now understood to contribute to mechanical joint overload and metabolic dysregulation, heightens the risk of developing OA, particularly in the knee. Metabolic syndrome compounds these risks by inducing chronic inflammation and altering macrophage activity within the joints. The multifaceted effects of obesity and metabolic syndrome extend beyond simple joint loading. These conditions disrupt normal joint function by modifying tissue composition, promoting inflammatory macrophage polarization, and impairing chondrocyte metabolism. These changes contribute to OA progression, highlighting the need for targeted therapeutic strategies that address both the mechanical and biochemical aspects of the disease. Recent advances in understanding the molecular pathways involved in OA suggest potential therapeutic targets. Interventions that modulate macrophage polarization, improve chondrocyte function, or normalize adipokine levels could serve as preventative or disease-modifying therapies. Exploring the role of diet, exercise, and pharmacological interventions in modulating these pathways offers promising avenues for reducing the burden of OA. Furthermore, such methods could prove cost-effective, avoiding the increase in access to healthcare.
Collapse
Affiliation(s)
- Veronica Mocanu
- Center for Obesity BioBehavioral Experimental Research, Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Camelia-Mihaela Zară-Dănceanu
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
- Department of Orthopedics, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
8
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
9
|
Delfan M, Saeidi A, Supriya R, Escobar KA, Laher I, Heinrich KM, Weiss K, Knechtle B, Zouhal H. Enhancing cardiometabolic health: unveiling the synergistic effects of high-intensity interval training with spirulina supplementation on selected adipokines, insulin resistance, and anthropometric indices in obese males. Nutr Metab (Lond) 2024; 21:11. [PMID: 38454429 PMCID: PMC10921712 DOI: 10.1186/s12986-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
This study investigated the combined effects of 12 weeks of high-intensity interval training (HIIT) and spirulina supplementation on adipokine levels, insulin resistance, anthropometric indices, and cardiorespiratory fitness in 44 obese males (aged 25-40 years). The participants were randomly assigned to one of four groups: control (CG), supplement (SG), training (TG), or training plus supplement (TSG). The intervention involved daily administration of either spirulina or a placebo and HIIT three times a week for the training groups. Anthropometric indices, HOMA-IR, VO2peak, and circulating adipokines (asprosin and lipocalin2, omentin-1, irisin, and spexin) were measured before and after the 12-week intervention. Post-intervention analysis indicated differences between the CG and the three interventional groups for body weight, fat-free mass (FFM), percent body fat (%BF), HOMA-IR, and adipokine levels (p < 0.05). TG and SG participants had increased VO2peak (p < 0.05). Spirulina supplementation with HIIT increased VO2peak, omentin-1, irisin, and spexin, while causing decreases in lipocalin-2 and asprosin levels and improvements in body composition (weight, %fat), BMI, and HOMA-IR. Notably, the combination of spirulina and HIIT produced more significant changes in circulating adipokines and cardiometabolic health in obese males compared to either supplementation or HIIT alone (p < 0.05). These findings highlight the synergistic benefits of combining spirulina supplementation with HIIT, showcasing their potential in improving various health parameters and addressing obesity-related concerns in a comprehensive manner.
Collapse
Affiliation(s)
- Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran.
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, SPEH, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kurt A Escobar
- Department of Kinesiology, California State University, Long Beach, CA, 90840, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Katie M Heinrich
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66502, USA
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, St. Gallen, 9001, Switzerland.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Rennes, Santé, EA 1274, F-35000, France.
- Institut International des Sciences du Sport (2I2S), Irodouer, 35850, France.
| |
Collapse
|
10
|
Zhang XZ, Jing K, Ma W, Wang J. Antiarrhythmic potentials of irisin in ischemia/reperfusion injury of diabetic rats through modulating mitochondria-endoplasmic reticulum interaction and inhibiting pyroptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1440-1446. [PMID: 39386229 PMCID: PMC11459340 DOI: 10.22038/ijbms.2024.78069.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024]
Abstract
Objectives Myocardial arrhythmia is a major complication of ischemia-reperfusion (I/R) injury in patients with diabetes. Irisin has significant cardioprotective effects, while its role in the pathophysiology of I/R injury-induced myocardial arrhythmia in the presence of diabetes is not well identified. Here, we aimed to investigate the potential antiarrhythmic impacts and mechanisms (mitochondrial biogenesis, endoplasmic reticulum (ER) stress, and pyroptosis) by which irisin reduces I/R injury-induced myocardial arrhythmia in diabetic rats. Materials and Methods Thirty high-fat diet-induced diabetic rats were subjected to I/R injury and myocardial arrhythmia. Irisin (0.5 μg/kg/day) was injected intraperitoneally before induction of I/R injury. Electrocardiography was used to measure the incidence and severity of ventricular arrhythmias. ELISA and western blotting analyses were employed to quantify the expression of mitochondrial biogenesis, ER stress, and pyroptosis-related proteins in ischemic myocardium. Results Irisin treatment in diabetic rats significantly decreased the lactate dehydrogenase level and the number and severity of arrhythmia induced by I/R injury. Irisin up-regulated the expression of mitochondrial biogenesis-related proteins while down-regulating the expression of ER stress and pyroptosis-related proteins. Furthermore, the inhibition of mitochondrial quality control by mdivi-1 significantly abolished the cardioprotective effect of irisin. Conclusion Our findings suggest that irisin reduced myocardial arrhythmia induced by I/R injury in diabetic rats by modulating the interaction of mitochondrial biogenesis and ER stress proteins and inhibiting the pyroptosis pathway. These findings provide a promising strategy for managing myocardial arrhythmia in diabetic patients, but supplementary studies are needed to confirm the clinical efficacy of irisin in these patients.
Collapse
Affiliation(s)
- Xiaona Zhang Zhang
- Department of Cardiovascular Diseases, Xi’an International Medical Center Hospital, Xi’an, 710100, China
| | - Kai Jing
- Department of Proctology, The People’s Hospital of Huaiyin Jinan, 250021, Shandong, China
| | - Wei Ma
- Department of Cardiovascular Diseases, Xi’an International Medical Center Hospital, Xi’an, 710100, China
| | - Jin Wang
- Department of Cardiology, The Fifth People’s Hospital of Jinan, 250022, Shandong, China
| |
Collapse
|
11
|
Wang Y, Yang Y, Song Y. Cardioprotective Effects of Exercise: The Role of Irisin and Exosome. Curr Vasc Pharmacol 2024; 22:316-334. [PMID: 38808716 DOI: 10.2174/0115701611285736240516101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Exercise is an effective measure for preventing and treating cardiovascular diseases, although the exact molecular mechanism remains unknown. Previous studies have shown that both irisin and exosomes can improve the course of cardiovascular disease independently. Therefore, it is speculated that the cardiovascular protective effect of exercise is also related to its ability to regulate the concentrations of irisin and exosomes in the circulatory system. In this review, the potential synergistic interactions between irisin and exosomes are examined, as well as the underlying mechanisms including the AMPK/PI3K/AKT pathway, the TGFβ1/Smad2/3 pathway, the PI3K/AKT/VEGF pathway, and the PTEN/PINK1/Parkin pathway are examined. This paper provides evidence to propose that exercise promotes the release of exosomes enriched with irisin, miR-486-5p and miR-342-5p from skeletal muscles, which results in the activation protective networks in the cardiovascular system. Moreover, the potential synergistic effect in exosomal cargo can provide new ideas for clinical research of exercise mimics.
Collapse
Affiliation(s)
- Yuehuan Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention research center, Wuhan Sports University, Wuhan, 430079, China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China
| | - Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
12
|
Inyushkin AN, Poletaev VS, Inyushkina EM, Kalberdin IS, Inyushkin AA. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review. J Biomed Res 2023; 38:1-16. [PMID: 38164079 PMCID: PMC10818175 DOI: 10.7555/jbr.37.20230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
Collapse
Affiliation(s)
- Alexey N. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Vitalii S. Poletaev
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Elena M. Inyushkina
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Igor S. Kalberdin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Andrey A. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| |
Collapse
|
13
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
14
|
Barbagallo F, Cannarella R, Garofalo V, Marino M, La Vignera S, Condorelli RA, Tiranini L, Nappi RE, Calogero AE. The Role of Irisin throughout Women's Life Span. Biomedicines 2023; 11:3260. [PMID: 38137481 PMCID: PMC10741019 DOI: 10.3390/biomedicines11123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since its discovery, much attention has been drawn to irisin's potential role in metabolic and reproductive diseases. This narrative review summarizes and updates the possible role played by this fascinating molecule in different physiological (puberty and menopause) and pathological (polycystic ovary syndrome (PCOS), functional hypothalamic amenorrhea (FHA), endometriosis, and gestational diabetes) conditions that can affect women throughout their entire lives. Irisin appears to be an important factor for the hypothalamic-pituitary-gonadal axis activation, and appears to play a role in the timing of puberty onset. Serum irisin levels have been proposed as a biomarker for predicting the future development of gestational diabetes (GDM). Its role in PCOS is still controversial, although an "irisin resistance" mechanism has been hypothesized. In addition to its impact on metabolism, irisin also appears to influence bone health. Irisin levels are inversely correlated with the prevalence of fractures in postmenopausal women. Similar mechanisms have also been postulated in young women with FHA. In clinical settings, further controlled, prospective and randomized clinical trials are needed to investigate the casual relationship between irisin levels and the conditions described and, in turn, to establish the role of irisin as a prognostic/diagnostic biomarker or a therapeutic target.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44125, USA
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| | - Marta Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (R.E.N.)
| | - Rossella E. Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (R.E.N.)
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (V.G.); (M.M.); (S.L.V.); (R.A.C.); (A.E.C.)
| |
Collapse
|
15
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
16
|
Adilakshmi P, Suganthi V, Rao KS, Mahendran KB. Effect of High-Intensity Resistance Training Versus Endurance Training on Irisin and Adipomyokine Levels in Healthy Individuals: An 8-Week Interventional Study. Cureus 2023; 15:e46483. [PMID: 37927615 PMCID: PMC10624331 DOI: 10.7759/cureus.46483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Irisin and adipomyokine are proteins secreted by the body during exercise and exhibit potential therapeutic effects for chronic disorders. Gaining insights into how high-intensity resistance training and endurance training influence irisin and adipomyokine secretion could shed light on optimizing exercise regimens for potential therapeutic applications. Such knowledge could pave the way for personalized exercise prescriptions and contribute to the development of novel treatments for chronic conditions, enhancing overall health and well-being. Objectives: To investigate the effects of high-intensity resistance training (HIRT) and endurance training on irisin and adipomyokine levels in healthy individuals. Methods: An 8-week interventional comparative study was conducted at Nimra Institute of Medical Sciences, Andhra Pradesh, India. One hundred healthy male individuals aged 21 to 35 were divided into two groups: HIRT and endurance. The HIRT group performed high-intensity resistance training, while the endurance group performed endurance training. Ethical approval was obtained, and baseline and post-intervention values of the participants were recorded and analyzed using SPSS software. Results: After 8 weeks, irisin levels were significantly elevated in the HIRT group (167.39±11.27) compared to the endurance group (155.39±11.28). A positive correlation was observed between skeletal muscle and irisin levels in both the HIRT group (χ2-16.38; p=0.04) and the endurance group (χ2-18.36; p=0.01). Additionally, TNF-α (HIRT: 81.47±4.02 and Endurance: 61.19±4.00) and interleukin-6 (IL-6) (HIRT: 46.84±4.46 and Endurance: 36.15±3.89) levels significantly increased in the HIRT group. However, there was no significant change in leptin levels in either group (HIRT: 3.75±0.58 0.58 and 4.15±0.58). Conclusion: The findings of this study indicate that HIRT is more effective in increasing irisin levels compared to endurance training. However, the notable elevation of IL-6 and TNF-α in the HIRT group raises concerns about potential chronic inflammation. To optimize outcomes, a combined approach, coupling HIRT and endurance training, may be beneficial. Additionally, the results emphasize the significance of skeletal muscle as a primary source of irisin secretion, implying that increased muscle contraction contributes to higher irisin release even in healthy individuals. These insights can guide exercise prescriptions and potentially enhance therapeutic strategies for chronic disorders.
Collapse
Affiliation(s)
- P Adilakshmi
- Department of Physiology, Vinayaka Missions University, Salem, IND
| | - V Suganthi
- Department of Physiology, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Salem, IND
| | - K Satyanarayana Rao
- Department of General Medicine, Nimra Institute of Medical Sciences, Vijayawada, IND
| | - K Balu Mahendran
- Department of Biochemistry, Siddhartha Medical College, Vijayawada, IND
| |
Collapse
|
17
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Hou YC, Liu YM, Liao MT, Zheng CM, Lu CL, Liu WC, Hung KC, Lin SM, Lu KC. Indoxyl sulfate mediates low handgrip strength and is predictive of high hospitalization rates in patients with end-stage renal disease. Front Med (Lausanne) 2023; 10:1023383. [PMID: 36817773 PMCID: PMC9932816 DOI: 10.3389/fmed.2023.1023383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims Sarcopenia has a higher occurrence rate in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general population. Low handgrip strength-and not sarcopenia per se-is associated with clinical outcomes in patients with CKD, including cardiovascular mortality and hospitalization. The factors contributing to low handgrip strength are still unknown. Accordingly, this study aimed to determine whether uremic toxins influence low handgrip strength in patients with CKD. Materials and methods This cohort study lasted from August 2018 to January 2020. The participants were divided into three groups: the control group [estimated glomerular filtration rate (eGFR) ≥ 60 ml/min], an advanced CKD group (eGFR = 15-60 ml/min), and an ESRD group (under maintenance renal replacement therapy). All participants underwent handgrip strength measurement, dual-energy X-ray absorptiometry, and blood sampling for myokines (irisin, myostatin, and interleukin 6) and indoxyl sulfate. Sarcopenia was defined according to the Asian Working Group for Sarcopenia consensus as low appendicular skeletal muscle index (appendicular skeletal muscle/height2 of < 7.0 kg/m2 in men and < 5.4 kg/m2 in women) and low handgrip strength (< 28 kg in men and < 18 kg in women). Results Among the study participants (control: n = 16; CKD: n = 17; and ESRD: n = 42), the ESRD group had the highest prevalence of low handgrip strength (41.6 vs. 25% and 5.85% in the control and CKD groups, respectively; p < 0.05). The sarcopenia rate was similar among the groups (12.5, 17.6, and 19.5% for the control, CKD, and ESRD groups, respectively; p = 0.864). Low handgrip strength was associated with high hospitalization rates within the total study population during the 600-day follow-up period (p = 0.02). The predictions for cardiovascular mortality and hospitalization were similar among patients with and without sarcopenia (p = 0.190 and p = 0.094). The serum concentrations of indoxyl sulfate were higher in the ESRD group (227.29 ± 92.65 μM vs. 41.97 ± 43.96 μM and 6.54 ± 3.45 μM for the CKD and control groups, respectively; p < 0.05). Myokine concentrations were similar among groups. Indoxyl sulfate was associated with low handgrip strength in univariate and multivariate logistic regression models [univariate odds ratio (OR): 3.485, 95% confidence interval (CI): 1.372-8.852, p = 0.001; multivariate OR: 8.525, 95% CI: 1.807-40.207, p = 0.007]. Conclusion Handgrip strength was lower in the patients with ESRD, and low handgrip strength was predictive of hospitalization in the total study population. Indoxyl sulfate contributed to low handgrip strength and counteracted the benefits of myokines in patients with CKD.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Min Liu
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Min-Ter Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Shyh-Min Lin
- Division of Radiology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
20
|
Choi SW, Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Myokine musclin alleviates lipid accumulation in 3T3-L1 adipocytes through PKA/p38-mediated upregulation of lipolysis and suppression of lipogenesis. Biochem Biophys Res Commun 2023; 642:113-117. [PMID: 36566562 DOI: 10.1016/j.bbrc.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Musclin (MUS), an exercise-responsive myokine, has been documented to attenuate inflammation and enhance physical endurance. However, the effects of MUS on differentiation and related molecular mechanisms in adipocytes have not yet been studied. In this study, we found that treatment with MUS attenuated lipid accumulation in fully differentiated 3T3-L1 cells. Furthermore, MUS treatment enhanced lipolysis assessed by glycerol release, and caused apoptosis, whereas it reduced the expression of lipogenic proteins, such as PPARγ and processed SREBP1. Treatment with MUS augmented phosphorylated PKA expression, whereas suppressed p38 phosphorylation in 3T3-L1 adipocytes. H89, a selective PKA inhibitor reduced the effects of MUS on lipogenic lipid accumulation as well as lipolysis except for apoptosis. These results suggest that MUS promotes lipolysis and suppresses lipogenesis through a PKA/p38-dependent pathway, thereby ameliorating lipid deposition in cultured adipocytes. The current study offers the potential of MUS as a therapeutic approach for treating obesity with few side effects.
Collapse
Affiliation(s)
- Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey; Vaccine Development Application and Research Center, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Poretsky L, Yeshua A, Cantor T, Avtanski D, Stojchevski R, Ziskovich K, Singer T. The effects of irisin and leptin on steroidogenic enzyme gene expression in human granulosa cells: In vitro studies. Metabol Open 2023; 17:100230. [PMID: 36686605 PMCID: PMC9853360 DOI: 10.1016/j.metop.2023.100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Reproduction and energy metabolism are closely related, and fertility can be directly affected by either obesity or malnutrition. In this study, we investigated the in vitro effects of irisin and leptin, two hormones primarily involved in energy metabolism, on the expression of genes encoding key steroidogenic enzymes in primary cultures of human granulosa cells. Granulosa cells were purified from follicular fluid samples obtained during in vitro fertilization (IVF) procedure, cultured, and treated with irisin (125-2000 ng/ml) or leptin (25-400 ng/ml) for 1-3 days. mRNA expression levels of cytochrome P450 enzymes [CYP11A1, CYP19A1, CYP21A2], hydroxy-delta-5-steroid dehydrogenase, 3 beta and steroid delta-isomerase 1 (HSD3B1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3) were measured using qRT-PCR analysis. Irisin significantly upregulated CYP19A1 mRNA levels, while leptin upregulated CYP19A1 and HSD3B1 mRNA levels. These preliminary results show that irisin and leptin may directly affect the expression of the genes important for ovarian steroidogenesis and female reproduction.
Collapse
Affiliation(s)
- Leonid Poretsky
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Corresponding author. 110 E 59th Street, Suite 8B, New York, NY, 10022, USA.
| | | | - Tal Cantor
- Shady Grove Fertility Clinic, New York, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Karina Ziskovich
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | |
Collapse
|
22
|
Effects of exercise on irisin in subjects with overweight or obesity. A systematic review of clinical studies. NUTR HOSP 2022; 39:1389-1396. [PMID: 36327126 DOI: 10.20960/nh.04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Irisin is an adipomyokine involved in white adipose tissue browning, therefore, could be a key protein in metabolic health. However, exercise effects on irisin in subjects with overweight and/or obesity are conflicting. Therefore, this systematic review aims to search and analyse the literature available on this topic. From three databases: PubMed, ScienceDirect, and Medline, clinical studies published between 2010 and 2021 were considered. From 134 found, 14 studies were included. Only six reported plasma increases after exercise (~1.2 to 3-fold from pre-exercise levels). In addition, only 1 reported significant increases in skeletal muscle irisin mRNA levels (~2-fold). Also, irisin was measured from subcutaneous adipose tissue and saliva, where a ~2-fold increase in its protein levels was found in the latter. Exercise seems to increase the circulatory concentrations of irisin in subjects with overweight or obesity. However, this response is highly variable, therefore, a more integrative approach is urgently needed.
Collapse
|
23
|
Hu S, Hu Y, Long P, Li P, Chen P, Wang X. The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes. Front Immunol 2022; 13:1026509. [PMID: 36248820 PMCID: PMC9554800 DOI: 10.3389/fimmu.2022.1026509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background NLRP3 inflammasome and its related antiviral inflammatory factors have been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, but its contribution to pre-diabetes remains poorly understood. Objective To investigate the effects and the potential mechanism of Tai Chi intervention on NLRP3 inflammasome and its related inflammatory factors in the serum of middle-aged and older people with pre-diabetes mellitus (PDM). Methods 40 pre-diabetic subjects were divided into a pre-diabetic control group (PDM-C group, N=20) and a Tai Chi group (PDM-TC group, N=20) by random number table. 10 normoglycemic subjects (NG) were selected as controls. We measured clinical metabolic parameters and collected blood samples before and after the 12 weeks of Tai Chi intervention. Antiviral inflammatory factors in serum were detected by enzyme-linked immunosorbent assay. Results The blood glucose, insulin resistance, and inflammation in PDM groups were higher than those in the NG group (P<0.05 and P<0.01, respectively). The results also suggested that 12 weeks of Tai Chi intervention could reduce body weight, blood pressure, blood glucose, insulin resistance, blood lipid, and the expressions of serum inflammatory factors in the pre-diabetic population. Conclusion Tai Chi intervention may improve blood glucose, lipid levels, and insulin resistance in middle-aged and elderly pre-diabetic patients by reducing the level of NLRP3 inflammasome and its related inflammatory factors.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Education and Physical Education, Yangtze University, Jingzhou, China
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Yingxing Hu
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Peilin Long
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Peixiong Li
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Ping Chen
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
24
|
Irisin, an Effective Treatment for Cardiovascular Diseases? J Cardiovasc Dev Dis 2022; 9:jcdd9090305. [PMID: 36135450 PMCID: PMC9503035 DOI: 10.3390/jcdd9090305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Irisin, as one of the myokines induced by exercise, has attracted much attention due to its important physiological functions such as white fat browning, the improvement in metabolism, and the alleviation of inflammation. Despite the positive role that irisin has been proven to play in the prevention and treatment of cardiovascular diseases, whether it can become a biomarker and potential target for predicting and treating cardiovascular diseases remains controversial, given the unreliability of its detection methods, the uncertainty of its receptors, and the species differences between animals and humans. This paper was intended to review the role of irisin in the diagnosis and treatment of cardiovascular diseases, the potential molecular mechanism, and the urgent problems to be solved in hopes of advancing our understanding of irisin as well as providing data for the development of new and promising intervention strategies by discussing the causes of contradictory results.
Collapse
|
25
|
Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int J Mol Sci 2022; 23:ijms231710055. [PMID: 36077452 PMCID: PMC9456355 DOI: 10.3390/ijms231710055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.
Collapse
|
26
|
Cordingley DM, Anderson JE, Cornish SM. Myokine Response to Blood-Flow Restricted Resistance Exercise in Younger and Older Males in an Untrained and Resistance-Trained State: A Pilot Study. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2022. [PMCID: PMC9099348 DOI: 10.1007/s42978-022-00164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose The purpose of this study was to examine the response of myokines to blood-flow restricted resistance-exercise (BFR-RE) in younger and older males before and after completing a 12-week resistance-training program. Methods There were 8 younger (24.8 ± 3.9 yrs) and 7 older (68.3 ± 5.0 yrs) untrained male participants completed this study. Anthropometric and maximal strength (1RM) measurements were collected before and after a 12-week, supervised, progressive full-body resistance-training program. As well, an acute bout of full-body BFR-RE was performed with venipuncture blood samples collected before and immediately following the BFR-RE, followed by sampling at 3, 6, 24 and 48 h. Results The 12-week training program stimulated a 32.2% increase in average strength and 30% increase in strength per kg of fat free mass. The response of particular myokines to the acute bout of BFR-RE was influenced training status (IL-4, untrained = 78.1 ± 133.2 pg/mL vs. trained = 59.8 ± 121.6 pg/mL, P = 0.019; IL-7, untrained = 3.46 ± 1.8 pg/mL vs. trained = 2.66 ± 1.3 pg/mL, P = 0.047) or both training and age (irisin, P = 0.04; leukemia inhibitory factor, P < 0.001). As well, changes in strength per kg of fat free mass were correlated with area under the curve for IL-4 (r = 0.537; P = 0.039), IL-6 (r = 0. 525; P = 0.044) and LIF (r = − 0.548; P = 0.035) in the untrained condition. Conclusion This study identified that both age and training status influence the myokine response to an acute bout of BFR-RE with the release of IL-4, IL-6 and LIF in the untrained state being associated with changes in strength per kg of fat free mass.
Collapse
Affiliation(s)
- Dean M. Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Pan Am Clinic Foundation, 75 Poseidon Bay, Winnipeg, MB R3M 3E4 Canada
| | | | - Stephen M. Cornish
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, 110 Frank Kennedy Centre, Winnipeg, MB R3T 2N2 Canada
- Centre for Aging, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
27
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
28
|
DEMİREL S, ŞAHİNTÜRK S, İŞBİL N, ÖZYENER F. Irisin relaxes rat thoracic aorta through inhibiting signaling pathways implicating protein kinase C. Turk J Med Sci 2022; 52:514-521. [PMID: 36161624 PMCID: PMC10381200 DOI: 10.55730/1300-0144.5340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/14/2022] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Irisin, a newly identified exercise-derived myokine, has been found involved in a peripheral vasodilator effect. However, little is known regarding the potential vascular activity of irisin, and the mechanisms underlying its effects on vascular smooth muscle have not been fully elucidated. This study was aimed to investigate the effects of irisin on vascular smooth muscle contractility in rat thoracic aorta, and the hypothesis that protein kinase C (PKC) may have a role in these effects. METHODS Isometric contraction-relaxation responses of thoracic aorta rings were measured with an isolated organ bath model. The steady contraction was induced with 10 µM phenylephrine (PHE), and then the concentration-dependent responses of irisin (0.001-1 µM) were examined. The time-matched vehicle control (double distilled water) group was also formed. To evaluate the role of PKC, endothelium-intact thoracic aorta rings were incubated with 150 nM bisindolylmaleimide I (BIM I) for 20 min before the addition of 10 µM PHE and irisin. Also, a vehicle control group was formed for dimethyl sulfoxide (DMSO). RESULTS Irisin exerted the vasorelaxant effects at concentrations of 0.01, 0.1, and 1 µM compared to the control group (p < 0.001). Besides, PKC inhibitor BIM I incubation significantly inhibited the relaxation responses induced by varying concentrations of irisin (p: 0.000 for 0.01 µM; p: 0.000 for 0.1 µM; p: 0.000 for 1 µM). However, DMSO, a solvent of BIM I, did not modulate the relaxant effects of irisin (p > 0.05). DISCUSSION In conclusion, physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. The findings demonstrated that irisin induces relaxation responses in endothelium-intact thoracic aorta rings in a concentration-dependent manner. Furthermore, this study is the first to report that irisin-induced relaxation responses are regulated probably via activating signaling pathways implicating PKC.
Collapse
Affiliation(s)
- Sadettin DEMİREL
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Serdar ŞAHİNTÜRK
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Naciye İŞBİL
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Fadıl ÖZYENER
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| |
Collapse
|
29
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Physiological role of K + channels in irisin-induced vasodilation in rat thoracic aorta. Peptides 2022; 147:170685. [PMID: 34748790 DOI: 10.1016/j.peptides.2021.170685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Irisin, an exercise-induced myokine, has been shown to have a peripheral vasodilator effect. However, little is known about the mechanisms underlying its effects. In this study, it was aimed to investigate the vasoactive effects of irisin on rat thoracic aorta, and the hypothesis that voltage-gated potassium (KV) channels, ATP-sensitive potassium (KATP) channels, small-conductance calcium-activated potassium (SKCa) channels, large-conductance calcium-activated potassium (BKCa) channels, intermediate-conductance calcium-activated potassium (IKCa) channels, inward rectifier potassium (Kir) channels, and two-pore domain potassium (K2P) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with both 10-5 M phenylephrine and 45 mM KCl, and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects in both endothelium-intact and -denuded aortic rings at concentrations of 10-8, 10-7, and 10-6 M (p < 0.001). Besides, KV channel blocker 4-aminopyridine, KATP channel blocker glibenclamide, SKCa channel blocker apamin, BKCa channel blockers tetraethylammonium and iberiotoxin, IKCa channel blocker TRAM-34, and Kir channel blocker barium chloride incubations significantly inhibited the irisin-induced relaxation responses. However, incubation of K2P TASK-1 channel blocker anandamide did not cause a significant decrease in the relaxation responses of irisin. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. Furthermore, this study is the first to report that irisin-induced relaxation responses are associated with the activity of KV, KATP, SKCa, BKCa, IKCa, and Kir channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Serdar Sahinturk
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Naciye Isbil
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Fadil Ozyener
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
31
|
Zhao R. Irisin at the crossroads of inter-organ communications: Challenge and implications. Front Endocrinol (Lausanne) 2022; 13:989135. [PMID: 36267573 PMCID: PMC9578559 DOI: 10.3389/fendo.2022.989135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The physiological functions of organs are intercommunicated occurring through secreted molecules. That exercise can improve the physiological function of organs or tissues is believed by secreting myokines from muscle to target remote organs. However, the underlying mechanism how exercise regulates the inter-organ communications remains incompletely understood yet. A recently identified myokine-irisin, primarily found in muscle and adipose and subsequently extending to bone, heart, liver and brain, provides a new molecular evidence for the inter-organ communications. It is secreted under the regulation of exercise and mediates the intercommunications between exercise and organs. To best our understanding of the regulatory mechanism, this review discusses the recent evidence involving the potential molecular pathways of the inter-organ communications, and the interactions between signalings and irisin in regulating the impact of exercise on organ functions are also discussed.
Collapse
|
32
|
He W, Tang Y, Li C, Zhang X, Huang S, Tan B, Yang Z. Exercise Enhanced Cardiac Function in Mice With Radiation-Induced Heart Disease via the FNDC5/Irisin-Dependent Mitochondrial Turnover Pathway. Front Physiol 2021; 12:739485. [PMID: 34899376 PMCID: PMC8660102 DOI: 10.3389/fphys.2021.739485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Despite the development of radiation therapy (RT) techniques, concern regarding the serious and irreversible heart injury induced by RT has grown due to the lack of early intervention measures. Although exercise can act as an effective and economic nonpharmacologic strategy to combat fatigue and improve quality of life for cancer survivors, limited data on its application in radiation-induced heart disease (RIHD) and the underlying molecular mechanism are available. Methods: Fifteen young adult male mice were enrolled in this study and divided into 3 groups (including exercised RIHD group, sedentary RIHD group, and controls; n =5 samples/group). While the mice in the control group were kept in cages without irradiation, those in the exercised RIHD group underwent 3weeks of aerobic exercise on the treadmill after radiotherapy. At the end of the 3rd week following RT, FNDC5/irisin expression, cardiac function, aerobic fitness, cardiomyocyte apoptosis, mitochondrial function, and mitochondrial turnover in the myocardium were assessed to identify the protective role of exercise in RIHD and investigate the potential mechanism. Results: While sedentary RIHD group had impaired cardiac function and aerobic fitness than controls, the exercised RIHD mice had improved cardiac function and aerobic fitness, elevated ATP production and the mitochondrial protein content, decreased mitochondrial length, and increased formation of mitophagosomes compared with sedentary RIHD mice. These changes were accompanied by the elevated expression of FNDC5/irisin, a fission marker (DRP1) and mitophagy markers (PINK1 and LC3B) in exercised RIHD group than that of sedentary RIHD group, but the expression of biogenesis (TFAM) and fusion (MFN2) markers was not significantly changed. Conclusion: Exercise could enhance cardiac function and aerobic fitness in RIHD mice partly through an autocrine mechanism via FNDC5/irisin, in which autophagy was selectively activated, suggesting that FNDC5/irisin may act as an intervening target to prevent the development of RIHD.
Collapse
Affiliation(s)
- Wuyang He
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinghong Tang
- Department of Geriatric Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunqiu Li
- Department of Geriatric Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyue Zhang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunping Huang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benxu Tan
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Yang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Irisin relaxes rat thoracic aorta: MEK1/2 signaling pathway, KV channels, SKCa channels, and BKCa channels are involved in irisin-induced vasodilation. Can J Physiol Pharmacol 2021; 100:379-385. [PMID: 34826251 DOI: 10.1139/cjpp-2021-0500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, it was aimed to investigate the effects of irisin on vascular smooth muscle contractility in rat thoracic aorta, and the hypothesis that mitogen-activated protein kinase kinase (MEK1/2) signalling pathway, voltage-gated potassium (KV) channels, small-conductance calcium-activated potassium (SKCa) channels, and large-conductance calcium-activated potassium (BKCa) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with 10-5 M phenylephrine (PHE), and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects at concentrations of 10-8, 10-7, and 10-6 M compared to the control group (p<0.001). Besides, MEK1/2 inhibitor U0126, KV channel blocker XE-991, SKCa channel blocker apamin, and BKCa channel blocker tetraethylammonium (TEA) incubations significantly inhibited the irisin-induced relaxation responses. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. The findings demonstrated that irisin induces relaxation responses in endothelium-intact aortic rings in a concentration-dependent manner. Furthermore, this study is the first to report that irisin-induced relaxation responses are related to the activity of the MEK1/2 pathway, KV channels, and calcium-activated K+ (SKCa and BKCa) channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Serdar Sahinturk
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Naciye Isbil
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| | - Fadil Ozyener
- Bursa Uludag University, 37523, Medicine School, Physiology Department, Bursa, Turkey;
| |
Collapse
|
34
|
Wang X, Zhang Z, Lan X, Fu K, Xu G, Zhao J, Yuan H. Irisin Is Correlated with Blood Pressure in Obstructive Sleep Apnea Patients. Int J Hypertens 2021; 2021:4717349. [PMID: 34804606 PMCID: PMC8601862 DOI: 10.1155/2021/4717349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Despite approximately 95% primary cases of hypertension, secondary hypertension seems to be common with resistant forms. Notably, obstructive sleep apnea (OSA) is known as a common cause of secondary hypertension and has a major characteristic of obesity. Irisin acts as a link between muscles and adipose tissues in obesity, playing an essential role in human blood pressure (BP) regulation. However, whether irisin is associated with secondary hypertension caused by OSA and how it takes effect essentially have not been elucidated. PURPOSE To investigate the changes of irisin and its relationship with BP in OSA. METHODS 72 snoring patients finished Epworth Sleep Scale (ESS) evaluation before polysomnography (PSG). BP was the average of three brachial BP values by mercury sphygmomanometer. Serum irisin level was determined by enzyme-linked immunosorbent assay (ELISA). Results were analyzed by SPSS software. RESULTS Irisin was higher in the severe and quite severe group than that in control and nonsevere groups (p < 0.05). For BP, significant differences were found between the control group and the other three groups (p < 0.05) and between the quite severe and the other three groups (p ≤ 0.001). Positive correlations were found between irisin and apnea-hypopnea index (AHI), AHI and BP, and irisin level and BP. Negative correlations were between irisin and SpO2 nadir and SpO2 nadir and BP. Positive correlation still existed between AHI and irisin even after adjusting for some obesity-related variables. CONCLUSIONS Irisin may serve as a potential biomarker for severity of OSA independently of obesity and imply the development of hypertension.
Collapse
Affiliation(s)
- Xing Wang
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhengjiao Zhang
- Department of Neurology and Sleep Center, People's Hospital of Jilin Province, Changchun, China
| | - Xiaoxin Lan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Keyou Fu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Guanhua Xu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jingyi Zhao
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Haibo Yuan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
35
|
Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis. Healthcare (Basel) 2021; 9:healthcare9111438. [PMID: 34828485 PMCID: PMC8618299 DOI: 10.3390/healthcare9111438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise may activate a number of important biochemical processes in the human body. The aim of this systematic review and meta-analysis was to identify the long-term effect of physical activity on irisin blood levels. We searched PubMed, Scopus, and Web of Science for articles addressing the long-term effect of physical exercise on irisin blood levels. Fifty-nine articles were included in the final qualitative and quantitative syntheses. A statistically significant within-group effect of exercise on irisin blood levels was in 33 studies; out of them, the irisin level increased 23× and decreased 10×. The significant positive between-groups effect was found 11×. Furthermore, the meta-analysis indicated that physical exercise had a significant positive effect on irisin blood levels (SMD = 0.39 (95% CI 0.27–0.52)). Nevertheless, considerably high heterogeneity was found in all the analyses. This systematic review and meta-analysis indicate that physical exercise might increase irisin blood levels; however, the results of individual studies were considerably inconsistent, which questions the methodological detection of irisin by ELISA kits.
Collapse
|
36
|
Mancinelli R, Checcaglini F, Coscia F, Gigliotti P, Fulle S, Fanò-Illic G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci 2021; 22:8520. [PMID: 34445222 PMCID: PMC8395159 DOI: 10.3390/ijms22168520] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called "myokines", suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the "Niche". The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines-irisin, directly linked to an active lifestyle-in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Checcaglini
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
| | - Francesco Coscia
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Paola Gigliotti
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
- A&C M-C Foundation for Translational Myology, 35100 Padova, Italy
| |
Collapse
|
37
|
Qiu J, Sato Y, Xu L, Miura T, Kohzuki M, Ito O. Chronic Exercise Protects against the Progression of Renal Cyst Growth and Dysfunction in Rats with Polycystic Kidney Disease. Med Sci Sports Exerc 2021; 53:2485-2494. [PMID: 34310502 PMCID: PMC8594502 DOI: 10.1249/mss.0000000000002737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction Polycystic kidney disease (PKD) is a genetic disorder characterized by the progressive enlargement of renal epithelial cysts and renal dysfunction. Previous studies have reported the beneficial effects of chronic exercise on chronic kidney disease. However, the effects of chronic exercise have not been fully examined in PKD patients or models. The effects of chronic exercise on the progression of PKD were investigated in a polycystic kidney (PCK) rat model. Methods Six-week-old male PCK rats were divided into a sedentary group and an exercise group. The exercise group underwent forced treadmill exercise for 12 wk (28 m·min−1, 60 min·d−1, 5 d·wk−1). After 12 wk, renal function and histology were examined, and signaling cascades of PKD progression, including arginine vasopressin (AVP), were investigated. Results Chronic exercise reduced the excretion of urinary protein, liver-type fatty acid–binding protein, plasma creatinine, urea nitrogen, and increased plasma irisin and urinary AVP excretion. Chronic exercise also slowed renal cyst growth, glomerular damage, and interstitial fibrosis and led to reduced Ki-67 expression. Chronic exercise had no effect on cAMP content but decreased the renal expression of B-Raf and reduced the phosphorylation of extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), and S6. Conclusion Chronic exercise slows renal cyst growth and damage in PCK rats, despite increasing AVP, with the downregulation of the cAMP/B-Raf/ERK and mTOR/S6 pathways in the kidney of PCK rats.
Collapse
Affiliation(s)
- Jiahe Qiu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|