1
|
Abdullahi A, Wong TW, Ng SS. Understanding the potential mechanisms of disease modifying effects of physical activity and exercise in people with schizophrenia. Schizophr Res 2024; 274:381-391. [PMID: 39490219 DOI: 10.1016/j.schres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Schizophrenia is a serious chronic mental health problem that usually starts during adolescence and early childhood. It is characterized by positive symptoms (delusions, hallucinations and grossly disorganized speech and behaviour), negative symptoms (apathy, isolation and diminished affect), and cognitive impairment that negatively affect quality of life. Its treatments include the use of pharmacological interventions, exercise, non-invasive brain stimulation and cognitive remediation training. Exercise is a very simple and cost-effective intervention. However, it is important the mechanisms of its effects are understood so that it can be trusted in clinical practice. In addition, understanding the mechanisms is important for its modification and safe use. Similarly, it may help provide the basis for invention of safe and cost-effective pharmacological or alternative therapies. From the literature, the mechanisms of diseases modifying effects of exercise seem to include increased cardiorespiratory fitness, biochemical changes (increased level of BDNF, increased N-acetylaspartate (NAA)/cr (creatine) ratio, decreased level of triglycerides, increased high density lipoprotein (HDL) and decreased salivary cortisol), structural changes (increase in cerebral volume, increased white matter integrity and increased cortical thickness) and anthropometric changes (reduced body weight and body mass index (BMI), increased muscular strength and decreased waist-hip ratio or waist circumference or hip circumference).
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Decker KP, Sanjana F, Rizzi N, Kramer MK, Cerjanic AM, Johnson CL, Martens CR. Comparing single- and multi-post labeling delays for the measurements of resting cerebral and hippocampal blood flow for cerebrovascular testing in midlife adults. Front Physiol 2024; 15:1437973. [PMID: 39416381 PMCID: PMC11480070 DOI: 10.3389/fphys.2024.1437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To assess the reliability and validity of measuring resting cerebral blood flow (CBF) and hippocampal CBF using a single-post-labeling delay (PLD) and a multi-PLD pseudo-continuous arterial spin labeling (pCASL) protocol for cerebrovascular reactivity (CVR) testing. Methods 25 healthy, midlife adults (57 ± 4 years old) were imaged in a Siemens Prisma 3T magnetic resonance imaging (MRI) scanner. Resting CBF and hippocampal CBF were assessed using two pCASL protocols, our modified single-PLD protocol (pCASL-MOD) to accommodate the needs for CVR testing and the multi-PLD Human Connectome Project (HCP) Lifespan protocol to serve as the reference control (pCASL-HCP). During pCASL-MOD, CVR was calculated as the change in CBF from rest to hypercapnia (+9 mmHg increase in end-tidal partial pressure of carbon dioxide [PETCO2]) and then normalized for PETCO2. The reliability and validity in resting gray matter (GM) CBF, white matter (WM) CBF, and hippocampal CBF between pCASL-MOD and pCASL-HCP protocols were examined using correlation analyses, paired t-tests, and Bland Altman plots. Results The pCASL-MOD and pCASL-HCP protocols were significantly correlated for resting GM CBF [r = 0.72; F (1, 23) = 25.24, p < 0.0001], WM CBF [r = 0.57; F (1, 23) = 10.83, p = 0.003], and hippocampal CBF [r = 0.77; F (1, 23) = 32.65, p < 0.0001]. However, pCASL-MOD underestimated resting GM CBF (pCASL-MOD: 53.7 ± 11.1 v. pCASL-HCP: 69.1 ± 13.1 mL/100 g/min; p < 0.0001), WM CBF (pCASL-MOD: 32.4 ± 4.8 v. pCASL-HCP: 35.5 ± 6.9 mL/100 g/min; p = 0.01), and hippocampal CBF (pCASL-MOD: 50.5 ± 9.0 v. pCASL-HCP: 68.1 ± 12.5 mL/100 g/min; p < 0.0001). PETCO2 increased by 8.0 ± 0.7 mmHg to induce CVR (GM CBF: 4.8% ± 2.6%; WM CBF 2.9% ± 2.5%; and hippocampal CBF: 3.4% ± 3.8%). Conclusion Our single-PLD pCASL-MOD protocol reliably measured CBF and hippocampal CBF at rest given the significant correlation with the multi-PLD pCASL-HCP protocol. Despite the lower magnitude relative to pCASL-HCP, we recommend using our pCASL-MOD protocol for CVR testing in which an exact estimate of CBF is not required such as the assessment of relative change in CBF to hypercapnia.
Collapse
Affiliation(s)
- Kevin P. Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Nick Rizzi
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Mary K. Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexander M. Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Christopher R. Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
3
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Chen H, Mirg S, Gaddale P, Agrawal S, Li M, Nguyen V, Xu T, Li Q, Liu J, Tu W, Liu X, Drew PJ, Zhang N, Gluckman BJ, Kothapalli S. Multiparametric Brain Hemodynamics Imaging Using a Combined Ultrafast Ultrasound and Photoacoustic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401467. [PMID: 38884161 PMCID: PMC11336909 DOI: 10.1002/advs.202401467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Studying brain-wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro- diseases and -disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head-mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2 as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain-wide cerebrovascular reactivity (CVR) at single-vessel resolution via relative changes in CBV, CBF, and SO2 in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti-correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Shubham Mirg
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Prameth Gaddale
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sumit Agrawal
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Menghan Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Van Nguyen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tianbao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Qiong Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Jinyun Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wenyu Tu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiao Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Institute for Computational and Data SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Patrick J. Drew
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Bruce J. Gluckman
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sri‐Rajasekhar Kothapalli
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Penn State Cancer InstituteThe Pennsylvania State UniversityHersheyPA17033USA
- Graduate Program in AcousticsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
5
|
Sun X, Wu X, Yang M, Deng Y, Jia B, Zhang X, Zhang M, Pi C, Bureau C, Caligiuri G, Miao Z. Comprehensive Assessment of Drug Kinetics, Neurotoxicity, and Safety of Sirolimus-Eluting Intracranial Stents in Canine Basilar Artery. Neurosurgery 2024:00006123-990000000-01275. [PMID: 38984822 DOI: 10.1227/neu.0000000000003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Sirolimus-eluting stents (SESs) have shown promise in treating intracranial atherosclerosis but concerns about potential neurotoxicity due to prolonged drug release exist. The aim of this study was to comprehensively assess the safety of SES, with a focus on neurotoxicity. METHODS Stents (1.50 × 7 or 12 mm) were implanted into the basilar arteries of 154 Labrador Retrievers (weighing >25 kg and aged older than 1 year) divided into 4 groups: baer-metal stent, polymer-coated stent, standard-dose SES (sirolimus dose: 71 μg), and high-dose SES group (sirolimus dose: 284 μg). Pharmacokinetic analysis was conducted using liquid chromatography-mass spectrometry on blood and tissue samples, and analysis of brain tissue was performed with 5 different special stains and immunohistochemistry protocols to assess axonal degeneration, vacuolization, astrocyte proliferation, microglial activation, or widespread neurodegeneration. RESULTS In the standard-dose SES group, the stent released 10.56% of the drug on day 1 and 95.41% on day 28 postimplantation. In the high-dose SES group, corresponding figures were 40.20% on day 1 and 98.08% on day 28. Systemic drug concentration consistently remained below 1.5 ng/mL throughout the study. Arterial tissue concentration reached its peak at day 28 days in the standard-dose group and at 7 days in the high-dose group. Importantly, the brain and related tissue concentrations remained below 0.4 µg/g in both standard-dose and high-dose SES groups, peaking on day 21 in the standard-dose group and day 1 in the high-dose group. The detailed 180-day safety assessment revealed no adverse effects on the brain, even at high sirolimus doses in the SES group. CONCLUSION This study provides robust evidence supporting the long-term pharmacokinetic safety of SESs in the context of intracranial interventions for high-grade intracranial atherosclerosis. The results adequately alleviate concerns related to neurotoxicity and substantiate the feasibility of using these stents as a therapeutic choice in neurosurgery.
Collapse
Affiliation(s)
- Xuan Sun
- Interventional Neuroradiology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaojin Wu
- Sino Medical Sciences Technology Inc. (Sinomed), Tianjin, China
| | - Ming Yang
- Interventional Neuroradiology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yiming Deng
- Interventional Neuroradiology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Baixue Jia
- Interventional Neuroradiology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuelei Zhang
- Department of Cerebrovascular Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Min Zhang
- Sino Medical Sciences Technology Inc. (Sinomed), Tianjin, China
| | - Chaoqiong Pi
- Sino Medical Sciences Technology Inc. (Sinomed), Tianjin, China
| | | | - Giuseppina Caligiuri
- Department of Cardiology, Université Paris Cité, Laboratory for Vascular Translational Science, INSERM U1148, Bichat University Hospital, Paris, France
| | - Zhongrong Miao
- Interventional Neuroradiology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Weber AM, Nightingale TE, Jarrett M, Lee AHX, Campbell OL, Walter M, Lucas SJE, Phillips A, Rauscher A, Krassioukov AV. Cerebrovascular Reactivity Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2024; 30:78-95. [PMID: 38799609 PMCID: PMC11123610 DOI: 10.46292/sci23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
- Department of Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Michael Jarrett
- MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Amanda H. X. Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Olivia Lauren Campbell
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, UK
| | - Aaron Phillips
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- RestoreNetwork, Hotchkiss Brain Institute, Libin Cardiovascular Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Astronomy and Physics, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- G.F. Strong Rehabilitation Centre, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Worley ML, Reed EL, Klaes N, Schlader ZJ, Johnson BD. Cool head-out water immersion does not alter cerebrovascular reactivity to hypercapnia despite elevated middle cerebral artery blood velocity: A pilot study. PLoS One 2024; 19:e0298587. [PMID: 38478550 PMCID: PMC10936844 DOI: 10.1371/journal.pone.0298587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/28/2024] [Indexed: 03/24/2024] Open
Abstract
Episodic increases in cerebral blood flow (CBF) are thought to contribute to improved cerebrovascular function and health. Head-out water immersion (HOWI) may be a useful modality to increase CBF secondary to the hydrostatic pressure placed on the body. However, it is unclear whether water temperatures common to the general public elicit similar cerebrovascular responses. We tested the hypothesis that mean middle cerebral artery blood velocity (MCAvmean) and cerebrovascular reactivity to CO2 (CVRCO2) would be higher during an acute bout of thermoneutral (TN; 35°C) vs. cool (COOL; 25°C) HOWI. Ten healthy participants (age: 23±3 y; 4 women) completed two randomized HOWI visits. Right MCAvmean, end-tidal CO2 (PETCO2) mean arterial pressure (MAP), and MCA conductance (MCAvmean/MAP) were continuously recorded. CVRCO2 was assessed using a stepped hypercapnia protocol before (PRE), at 30 minutes of HOWI (HOWI), immediately after HOWI (POST-1), and 45 minutes after HOWI (POST-2). Absolute values are reported as mean ± SD. MCAvmean, PETCO2, MAP, and CVRCO2 were not different between conditions at any timepoint (all P≥0.17). In COOL, MCAvmean increased from PRE (61±9 cm/s) during HOWI (68±11 cm/s), at POST-1 (69±11 cm/s), and POST-2 (72±8 cm/s) (all P<0.01), and in TN from PRE to POST-1 (66±13 vs. 71±14 cm/s; P = 0.05). PETCO2 did not change over time in either condition. In COOL, MAP increased from PRE (85±5 mmHg) during HOWI (101±4 mmHg), at POST-1 (97±7 mmHg), and POST-2 (96±9 mmHg), and in TN from PRE (88±5 mmHg) at HOWI (98±7 mmHg) and POST-1 (99±8 mmHg) (all P<0.01). In COOL, CVRCO2 increased from PRE to HOWI (1.66±0.55 vs. 1.92±0.52 cm/s/mmHg; P = 0.04). MCA conductance was not different between or within conditions. These data indicate that 30 minutes of cool HOWI augments MCAvmean and that the increase in MCAvmean persists beyond cool HOWI. However, cool HOWI does not alter CVRCO2 in healthy young adults.
Collapse
Affiliation(s)
- Morgan L. Worley
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Emma L. Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
- Department of Human Physiology, College of Arts and Sciences, University of Oregon, Eugene, OR, United States of America
| | - Nathan Klaes
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Zachary J. Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States of America
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
8
|
van Niftrik CHB, Sebök M, Germans MR, Halter M, Pokorny T, Stumpo V, Bellomo J, Piccirelli M, Pangalu A, Katan M, Wegener S, Tymianski M, Kulcsár Z, Luft AR, Fisher JA, Mikulis DJ, Regli L, Fierstra J. Increased Risk of Recurrent Stroke in Symptomatic Large Vessel Disease With Impaired BOLD Cerebrovascular Reactivity. Stroke 2024; 55:613-621. [PMID: 38328926 DOI: 10.1161/strokeaha.123.044259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) has been correlated with recurrent ischemic stroke. However, for clinical purposes, most CVR techniques are rather complex, time-consuming, and lack validation for quantitative measurements. The recent adaptation of a standardized hypercapnic stimulus in combination with a blood-oxygenation-level-dependent (BOLD) magnetic resonance imaging signal as a surrogate for cerebral blood flow offers a potential universally comparable CVR assessment. We investigated the association between impaired BOLD-CVR and risk for recurrent ischemic events. METHODS We conducted a retrospective analysis of patients with symptomatic cerebrovascular large vessel disease who had undergone a prospective hypercapnic-challenged BOLD-CVR protocol at a single tertiary stroke referral center between June 2014 and April 2020. These patients were followed up for recurrent acute ischemic events for up to 3 years. BOLD-CVR (%BOLD signal change per mm Hg CO2) was calculated on a voxel-by-voxel basis. Impaired BOLD-CVR of the affected (ipsilateral to the vascular pathology) hemisphere was defined as an average BOLD-CVR, falling 2 SD below the mean BOLD-CVR of the right hemisphere in a healthy age-matched reference cohort (n=20). Using a multivariate Cox proportional hazards model, the association between impaired BOLD-CVR and ischemic stroke recurrence was assessed and Kaplan-Meier survival curves to visualize the acute ischemic stroke event rate. RESULTS Of 130 eligible patients, 28 experienced recurrent strokes (median, 85 days, interquartile range, 5-166 days). Risk factors associated with an increased recurrent stroke rate included impaired BOLD-CVR, a history of atrial fibrillation, and heart insufficiency. After adjusting for sex, age group, and atrial fibrillation, impaired BOLD-CVR exhibited a hazard ratio of 10.73 (95% CI, 4.14-27.81; P<0.001) for recurrent ischemic stroke. CONCLUSIONS Among patients with symptomatic cerebrovascular large vessel disease, those exhibiting impaired BOLD-CVR in the affected hemisphere had a 10.7-fold higher risk of recurrent ischemic stroke events compared with individuals with nonimpaired BOLD-CVR.
Collapse
Affiliation(s)
- Christiaan H B van Niftrik
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Martina Sebök
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Menno R Germans
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Matthias Halter
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Thomas Pokorny
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Vittorio Stumpo
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Jacopo Bellomo
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Marco Piccirelli
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Athina Pangalu
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Mira Katan
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Susanne Wegener
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Michael Tymianski
- Division of Neurosurgery, Toronto Western Hospital (M.T., J.F.), University of Toronto, ON, Canada
| | - Zsolt Kulcsár
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Andreas R Luft
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Joseph A Fisher
- Institute of Medical Science (J.A.F.), University of Toronto, ON, Canada
- Department of Anesthesia and Pain Management (J.A.F.), University Health Network, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and Functional Neuroimaging Laboratory (D.J.M.), University Health Network, Toronto, ON, Canada
| | - Luca Regli
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Division of Neurosurgery, Toronto Western Hospital (M.T., J.F.), University of Toronto, ON, Canada
| |
Collapse
|
9
|
Sayin ES, Duffin J, Poublanc J, Venkatraghavan L, Mikulis DJ, Fisher JA, Sobczyk O. Determining the effects of elevated partial pressure of oxygen on hypercapnia-induced cerebrovascular reactivity. J Cereb Blood Flow Metab 2023; 43:2085-2095. [PMID: 37632334 PMCID: PMC10925865 DOI: 10.1177/0271678x231197000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
Evaluation of cerebrovascular reactivity (CVR) to hypo- and hypercapnia is a valuable test for the assessment of vasodilatory reserve. While hypercapnia-induced CVR testing is usually performed at normoxia, mild hyperoxia may increase tolerability of hypercapnia by reducing the ventilatory distress. However, the effects of mild hyperoxia on CVR was unknown. We therefore recruited 21 patients with a range of steno-occlusive diseases and 12 healthy participants who underwent a standardized 13-minute step plus ramp CVR test with a carbon dioxide gas challenge at the subject's resting end-tidal partial pressure of oxygen or at mild hyperoxia (PetO2 = 150 mmHg) depending on to which group they were assigned. In 11 patients, the second CVR test was at normoxia to examine test-retest differences. CVR was defined as % Δ Signal/ΔPetCO2. We found that there was no significant difference between CVR test results conducted at normoxia and at mild hyperoxia for participants in Groups 1 and 2 for the step and ramp portion. We also found no difference between test and retest CVR at normoxia for patients with cerebrovascular pathology (Group 3) for step and ramp portion. We concluded normoxic CVR is repeatable, and that mild hyperoxia does not affect CVR.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Lashmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David John Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Joseph Arnold Fisher
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
11
|
Pasquini L, Peck KK, Jenabi M, Holodny A. Functional MRI in Neuro-Oncology: State of the Art and Future Directions. Radiology 2023; 308:e222028. [PMID: 37668519 PMCID: PMC10546288 DOI: 10.1148/radiol.222028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.
Collapse
Affiliation(s)
- Luca Pasquini
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Kyung K. Peck
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Mehrnaz Jenabi
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Andrei Holodny
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| |
Collapse
|
12
|
Dasari Y, Duffin J, Sayin ES, Levine HT, Poublanc J, Para AE, Mikulis DJ, Fisher JA, Sobczyk O, Khamesee MB. Convolutional Neural Networks to Assess Steno-Occlusive Disease Using Cerebrovascular Reactivity. Healthcare (Basel) 2023; 11:2231. [PMID: 37628429 PMCID: PMC10454585 DOI: 10.3390/healthcare11162231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebrovascular Reactivity (CVR) is a provocative test used with Blood oxygenation level-dependent (BOLD) Magnetic Resonance Imaging (MRI) studies, where a vasoactive stimulus is applied and the corresponding changes in the cerebral blood flow (CBF) are measured. The most common clinical application is the assessment of cerebral perfusion insufficiency in patients with steno-occlusive disease (SOD). Globally, millions of people suffer from cerebrovascular diseases, and SOD is the most common cause of ischemic stroke. Therefore, CVR analyses can play a vital role in early diagnosis and guiding clinical treatment. This study develops a convolutional neural network (CNN)-based clinical decision support system to facilitate the screening of SOD patients by discriminating between healthy and unhealthy CVR maps. The networks were trained on a confidential CVR dataset with two classes: 68 healthy control subjects, and 163 SOD patients. This original dataset was distributed in a ratio of 80%-10%-10% for training, validation, and testing, respectively, and image augmentations were applied to the training and validation sets. Additionally, some popular pre-trained networks were imported and customized for the objective classification task to conduct transfer learning experiments. Results indicate that a customized CNN with a double-stacked convolution layer architecture produces the best results, consistent with expert clinical readings.
Collapse
Affiliation(s)
- Yashesh Dasari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anesthesia and Pain Management, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anesthesia and Pain Management, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Harrison T. Levine
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anesthesia and Pain Management, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrea E. Para
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON M5G 2C4, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anesthesia and Pain Management, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olivia Sobczyk
- Department of Anesthesia and Pain Management, University Health Network, Toronto, ON M5G 2C4, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mir Behrad Khamesee
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
13
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Williams RJ, Specht JL, Mazerolle EL, Lebel RM, MacDonald ME, Pike GB. Correspondence between BOLD fMRI task response and cerebrovascular reactivity across the cerebral cortex. Front Physiol 2023; 14:1167148. [PMID: 37228813 PMCID: PMC10203231 DOI: 10.3389/fphys.2023.1167148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BOLD sensitivity to baseline perfusion and blood volume is a well-acknowledged fMRI confound. Vascular correction techniques based on cerebrovascular reactivity (CVR) might reduce variance due to baseline cerebral blood volume, however this is predicated on an invariant linear relationship between CVR and BOLD signal magnitude. Cognitive paradigms have relatively low signal, high variance and involve spatially heterogenous cortical regions; it is therefore unclear whether the BOLD response magnitude to complex paradigms can be predicted by CVR. The feasibility of predicting BOLD signal magnitude from CVR was explored in the present work across two experiments using different CVR approaches. The first utilized a large database containing breath-hold BOLD responses and 3 different cognitive tasks. The second experiment, in an independent sample, calculated CVR using the delivery of a fixed concentration of carbon dioxide and a different cognitive task. An atlas-based regression approach was implemented for both experiments to evaluate the shared variance between task-invoked BOLD responses and CVR across the cerebral cortex. Both experiments found significant relationships between CVR and task-based BOLD magnitude, with activation in the right cuneus (R 2 = 0.64) and paracentral gyrus (R 2 = 0.71), and the left pars opercularis (R 2 = 0.67), superior frontal gyrus (R 2 = 0.62) and inferior parietal cortex (R 2 = 0.63) strongly predicted by CVR. The parietal regions bilaterally were highly consistent, with linear regressions significant in these regions for all four tasks. Group analyses showed that CVR correction increased BOLD sensitivity. Overall, this work suggests that BOLD signal response magnitudes to cognitive tasks are predicted by CVR across different regions of the cerebral cortex, providing support for the use of correction based on baseline vascular physiology.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Faculty of Health, School of Human Services, Charles Darwin University, Darwin, NT, Australia
| | - Jacinta L. Specht
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Mazerolle
- Departments of Psychology and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - R. Marc Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- GE HealthCare, Calgary, AB, Canada
| | - M. Ethan MacDonald
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
16
|
So I, Meusel LAC, Sharma B, Monette GA, Colella B, Wheeler AL, Rabin JS, Mikulis DJ, Green REA. Longitudinal Patterns of Functional Connectivity in Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:665-682. [PMID: 36367163 DOI: 10.1089/neu.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal neuroimaging studies aid our understanding of recovery mechanisms in moderate-to-severe traumatic brain injury (TBI); however, there is a dearth of longitudinal functional connectivity research. Our aim was to characterize longitudinal functional connectivity patterns in two clinically important brain networks, the frontoparietal network (FPN) and the default mode network (DMN), in moderate-to-severe TBI. This inception cohort study of prospectively collected longitudinal data used resting-state functional magnetic resonance imaging (fMRI) to characterize functional connectivity patterns in the FPN and DMN. Forty adults with moderate-to-severe TBI (mean ± standard deviation [SD]; age = 39.53 ± 16.49 years, education = 13.92 ± 3.20 years, lowest Glasgow Coma Scale score = 6.63 ± 3.24, sex = 70% male) were scanned at approximately 0.5, 1-1.5, and 3+ years post-injury. Seventeen healthy, uninjured participants (mean ± SD; age = 38.91 ± 15.57 years, education = 15.11 ± 2.71 years, sex = 29% male) were scanned at baseline and approximately 11 months afterwards. Group independent component analyses and linear mixed-effects modeling with linear splines that contained a knot at 1.5 years post-injury were employed to investigate longitudinal network changes, and associations with covariates, including age, sex, and injury severity. In patients with TBI, functional connectivity in the right FPN increased from approximately 0.5 to 1.5 years post-injury (unstandardized estimate = 0.19, standard error [SE] = 0.07, p = 0.009), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.21, SE = 0.11, p = 0.009), and marginally declined afterwards (estimate = -0.10, SE = 0.06, p = 0.079). Functional connectivity in the DMN increased from approximately 0.5 to 1.5 years (estimate = 0.15, SE = 0.05, p = 0.006), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.19, SE = 0.08, p = 0.021), and was estimated to decline from 1.5 to 3+ years (estimate = -0.04, SE = 0.04, p = 0.303). Similarly, the left FPN increased in functional connectivity from approximately 0.5 to 1.5 years post-injury (estimate = 0.15, SE = 0.05, p = 0.002), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.18, SE = 0.07, p = 0.008), and was estimated to decline thereafter (estimate = -0.04, SE = 0.03, p = 0.254). At approximately 0.5 years post-injury, patients showed hypoconnectivity compared with healthy, uninjured participants at baseline. Covariates were not significantly associated in any of the models. Findings of early improvement but a tapering and possible decline in connectivity thereafter suggest that compensatory effects are time-limited. These later reductions in connectivity mirror growing evidence of behavioral and structural decline in chronic moderate-to-severe TBI. Targeting such declines represents a novel avenue of research and offers potential for improving clinical outcomes.
Collapse
Affiliation(s)
- Isis So
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Liesel-Ann C Meusel
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Georges A Monette
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Toronto Western Hospital-University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Differential regional cerebrovascular reactivity to end-tidal gas combinations commonly seen during anaesthesia: A blood oxygenation level-dependent MRI observational study in awake adult subjects. Ugeskr Laeger 2022; 39:774-784. [PMID: 35852545 DOI: 10.1097/eja.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Regional cerebrovascular reactivity (rCVR) is highly variable in the human brain as measured by blood oxygenation level-dependent (BOLD) MRI to changes in both end-tidal CO 2 and O 2 . OBJECTIVES We examined awake participants under carefully controlled end-tidal gas concentrations to assess how regional CVR changes may present with end-tidal gas changes seen commonly with anaesthesia. DESIGN Observational study. SETTING Tertiary care centre, Winnipeg, Canada. The imaging for the study occurred in 2019. SUBJECTS Twelve healthy adult subjects. INTERVENTIONS Cerebral BOLD response was studied under two end-tidal gas paradigms. First end-tidal oxygen (ETO 2 ) maintained stable whereas ETCO 2 increased incrementally from hypocapnia to hypercapnia (CO 2 ramp); second ETCO 2 maintained stable whereas ETO 2 increased from normoxia to hyperoxia (O 2 ramp). BOLD images were modeled with end-tidal gas sequences split into two equal segments to examine regional CVR. MAIN OUTCOME MEASURES The voxel distribution comparing hypocapnia to mild hypercapnia and mild hyperoxia (mean F I O 2 = 0.3) to marked hyperoxia (mean F I O 2 = 0.7) were compared in a paired fashion ( P < 0.005 to reach threshold for voxel display). Additionally, type analysis was conducted on CO 2 ramp data. This stratifies the BOLD response to the CO 2 ramp into four categories of CVR slope based on segmentation (type A; +/+slope: normal response, type B +/-, type C -/-: intracranial steal, type D -/+.) Types B to D represent altered responses to the CO 2 stimulus. RESULTS Differential regional responsiveness was seen for both end-tidal gases. Hypocapnic regional CVR was more marked than hypercapnic CVR in 0.3% of voxels examined ( P < 0.005, paired comparison); the converse occurred in 2.3% of voxels. For O 2 , mild hyperoxia had more marked CVR in 0.2% of voxels compared with greater hyperoxia; the converse occurred in 0.5% of voxels. All subjects had altered regional CO 2 response based on Type Analysis ranging from 4 ± 2 to 7 ± 3% of voxels. CONCLUSION In awake subjects, regional differences and abnormalities in CVR were observed with changes in end-tidal gases common during the conduct of anaesthesia. On the basis of these findings, consideration could be given to minimising regional CVR fluctuations in patients-at-risk of neurological complications by tighter control of end-tidal gases near the individual's resting values.
Collapse
|
18
|
Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA, Kuo KHM, Duffin J. Assessing Cerebrovascular Resistance in Patients With Sickle Cell Disease. Front Physiol 2022; 13:847969. [PMID: 35422710 PMCID: PMC9002264 DOI: 10.3389/fphys.2022.847969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
In patients with sickle cell disease (SCD) the delivery of oxygen to the brain is compromised by anemia, abnormal rheology, and steno-occlusive vascular disease. Meeting demands for oxygen delivery requires compensatory features of brain perfusion. The cerebral vasculature’s regulatory function and reserves can be assessed by observing the flow response to a vasoactive stimulus. In a traditional approach we measured voxel-wise change in Blood Oxygen-Level Dependent (BOLD) MRI signal as a surrogate of cerebral blood flow (CBF) in response to a linear progressive ramping of end-tidal partial pressure of carbon dioxide (PETCO2). Cerebrovascular reactivity (CVR) was defined as ΔBOLD/ΔPETCO2. We used a computer model to fit a virtual sigmoid resistance curve to the progressive CBF response to the stimulus, enabling the calculation of resistance parameters: amplitude, midpoint, range response, resistance sensitivity and vasodilatory reserve. The quality of the resistance sigmoid fit was expressed as the r2 of the fit. We tested 35 patients with SCD, as well as 24 healthy subjects to provide an indication of the normal ranges of the resistance parameters. We found that gray matter CVR and resistance amplitude, range, reserve, and sensitivity are reduced in patients with SCD compared to healthy controls, while resistance midpoint was increased. This study is the first to document resistance measures in adult patients with SCD. It is also the first to score these vascular resistance measures in comparison to the normal range. We anticipate these data will complement the current understanding of the cerebral vascular pathophysiology of SCD, identify paths for therapeutic interventions, and provide biomarkers for monitoring the progress of the disease.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- *Correspondence: James Duffin,
| |
Collapse
|
19
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
20
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
21
|
Stumpo V, Sebök M, van Niftrik CHB, Seystahl K, Hainc N, Kulcsar Z, Weller M, Regli L, Fierstra J. Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challenge. MAGMA (NEW YORK, N.Y.) 2022; 35:29-44. [PMID: 34874499 DOI: 10.1007/s10334-021-00980-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Innovative physiologic MRI development focuses on depiction of heterogenous vascular and metabolic features in glioblastoma. For this feasibility study, we employed blood oxygenation level-dependent (BOLD) MRI with standardized and precise carbon dioxide (CO2) and oxygen (O2) modulation to investigate specific tumor tissue response patterns in patients with newly diagnosed glioblastoma. MATERIALS AND METHODS Seven newly diagnosed untreated patients with suspected glioblastoma were prospectively included to undergo a BOLD study with combined CO2 and O2 standardized protocol. %BOLD signal change/mmHg during hypercapnic, hypoxic, and hyperoxic stimulus was calculated in the whole brain, tumor lesion and segmented volumes of interest (VOI) [contrast-enhancing (CE) - tumor, necrosis and edema] to analyze their tissue response patterns. RESULTS Quantification of BOLD signal change after gas challenges can be used to identify specific responses to standardized stimuli in glioblastoma patients. Integration of this approach with automatic VOI segmentation grants improved characterization of tumor subzones and edema. Magnitude of BOLD signal change during the 3 stimuli can be visualized at voxel precision through color-coded maps overlayed onto whole brain and identified VOIs. CONCLUSIONS Our preliminary investigation shows good feasibility of BOLD with standardized and precise CO2 and O2 modulation as an emerging physiologic imaging technique to detail specific glioblastoma characteristics. The unique tissue response patterns generated can be further investigated to better detail glioblastoma lesions and gauge treatment response.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland. .,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Seystahl
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolin Hainc
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Sayin ES, Davidian A, Levine H, Venkatraghavan L, Mikulis DJ, Fisher JA, Sobczyk O, Duffin J. Does breathing pattern affect cerebrovascular reactivity? Exp Physiol 2021; 107:183-191. [PMID: 34961983 DOI: 10.1113/ep090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is cerebrovascular reactivity affected by isocapnic changes in breathing pattern? What is the main finding and its importance? The main finding is that cerebrovascular reactivity does not change with isocapnic variations in tidal volume and frequency. ABSTRACT Deviations of arterial carbon dioxide tension from resting values affect cerebral blood vessel tone and thereby cerebral blood flow. Arterial carbon dioxide tension also affects central respiratory chemoreceptors, adjusting respiratory drive. This coincidence raises the question whether respiratory drive also affects the cerebral blood flow response to carbon dioxide. A change in cerebral blood flow for a given change in the arterial carbon dioxide tension is defined as cerebrovascular reactivity. Two studies have reached conflicting conclusions on this question, using voluntary control of breathing as a disturbing factor during measurements of cerebrovascular reactivity. Here we address some of the methodological limitations of both studies by using sequential gas delivery and targeted control of carbon dioxide and oxygen to enable a separation of the effects of carbon dioxide on cerebrovascular reactivity from breathing vigor. We confirm there is no detectable superimposed effect of breathing efforts on cerebrovascular reactivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Anahis Davidian
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Harrison Levine
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - David J Mikulis
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Poublanc J, Sobczyk O, Shafi R, Sayin ES, Schulman J, Duffin J, Uludag K, Wood JC, Vu C, Dharmakumar R, Fisher JA, Mikulis DJ. Perfusion MRI using endogenous deoxyhemoglobin as a contrast agent: Preliminary data. Magn Reson Med 2021; 86:3012-3021. [PMID: 34687064 DOI: 10.1002/mrm.28974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE To demonstrate the feasibility of mapping cerebral perfusion metrics with BOLD MRI during modulation of pulmonary venous oxygen saturation. METHODS A gas blender with a sequential gas delivery breathing circuit was used to implement rapid isocapnic changes in the partial pressure of oxygen of the arterial blood. Partial pressure of oxygen was initially lowered to a baseline of 40 mmHg. It was then rapidly raised to 95 mmHg for 20 s before rapidly returning to baseline. The induced cerebral changes in deoxyhemoglobin concentration were tracked over time using BOLD MRI in 6 healthy subjects and 1 patient with cerebral steno-occlusive disease. BOLD signal change, contrast-to-noise ratio, and time delay metrics were calculated. Perfusion metrics such as mean transit time, relative cerebral blood volume, and relative cerebral blood flow were calculated using a parametrized method with a mono-exponential residue function. An arterial input function from within the middle cerebral artery was used to scale relative cerebral blood volume and calculate absolute cerebral blood volume and cerebral blood flow. RESULTS In normal subjects, average gray and white matter were: BOLD change = 6.3 ± 1.2% and 2.5 ± 0.6%, contrast-to-noise ratio = 4.3 ± 1.3 and 2.6 ± 0.7, time delay = 2.3 ± 0.6 s and 3.6 ± 0.7 s, mean transit time = 3.9 ± 0.6 s and 5.5 ± 0.6 s, relative cerebral blood volume = 3.7 ± 0.9 and 1.6 ± 0.4, relative cerebral blood flow = 70.1 ± 8.3 and 20.6 ± 4.0, cerebral blood flow volume = 4.1 ± 0.9 mL/100 g and 1.8 ± 0.5 mL/100 g, and cerebral blood flow = 97.2 ± 18.7 mL/100 g/min and 28.7 ± 5.9 mL/100 g/min. CONCLUSION This study demonstrates that induced abrupt changes in deoxyhemoglobin can function as a noninvasive vascular contrast agent that may be used for cerebral perfusion imaging.
Collapse
Affiliation(s)
- Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, Ontario, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Reema Shafi
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, Ontario, Canada
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacob Schulman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kamil Uludag
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Ontario, Canada.,Center for Neuroscience Imaging Research, Institute for Basic Science & Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - John C Wood
- Division of Cardiology, Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Rohan Dharmakumar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- The Joint Department of Medical Imaging, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|